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Abstract

Clustering and classification critically rely on dis-
tance metrics that provide meaningful compar-
isons between data points. We present mixed-
integer optimization approaches to find optimal
distance metrics that generalize the Mahalanobis
metric extensively studied in the literature. Addi-
tionally, we generalize and improve upon leading
methods by removing reliance on pre-designated
“target neighbors,” “triplets,” and “similarity pairs.”
Another salient feature of our method is its ability

to enable active learning by recommending pre-
cise regions to sample after an optimal metric is

computed to improve classification performance.
This targeted acquisition can significantly reduce

computational burden by ensuring training data

completeness, representativeness, and economy.
We demonstrate classification and computational

performance of the algorithms through several

simple and intuitive examples, followed by results

on real image and medical datasets.

1. Introduction and Motivation

Selecting an appropriate distance metric is fundamental to
many learning algorithms such as k-means, nearest neighbor
searches, and others, as observed by (Davis et al.,[2007) and
other researchers in this field. Further, they observe that
choosing such a measure is highly problem-specific and
ultimately dictates the success - or failure - of the learning
algorithm. Nevertheless, the algorithm used to select the
metric based on data can be designed to be more general,
and designing such algorithm(s) is indeed the objective of
this work, as well as past research on this problem.

In this work, we formulate a general framework for choosing
such metrics that improves and extends previous formula-
tions in some important ways.In particular, we attempt to
couple the metric learning problem with that of recommend-

ing targeted data acquisition, which has not been sufficiently
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addressed in past work which has mostly assumed that the
data is a given, static collection of N-dimensional vectors.
However, in many real-world settings, one does not have
the luxury of learning a once-and-for-all distance metric.
Rather, an iterative approach is required whereby an initial
distance metric is learned, new data is acquired, the distance
metric is refined, and so on. A main goal of this work is
to present a systematic framework for optimizing this itera-
tive procedure so that an optimal and interpretable metric is
learned and is, in turn, used to recommend precise regions
to sample in order to acquire new data to be used to further
refine the metric and improve classification performance.

1.1. Problem Setting

As described in (Xiang et al.l [2008), there are two
prominent batch distance metric learning settings, both
of which assume that we are given a set of N points
x; € RP. In the first setting, a class (or label) C; is
explicitly given for each point i € N = {l1,...,N}.
In the second setting, classes are implicitly furnished
through pairwise constraints in the form of must-links
and cannot-links. Must-links are given as {(i,7)

¢ and j are in the same class}, whereas cannot-links are
specified as {(¢, k) : ¢ and k are not in the same class}. For
both settings, we let C; and C; denote the co-class and non-
class neighbors of ¢z, respectively.

We ask the question: Is there a metric D(x, y) that enforces
the condition that the nearest neighbor of each point is a
co-class point, i.e., Vi € N/
minjee, D(x;,x;) < mingee, D(x4,xx)? (1)
More generally, let N (D) = {ji,...,jx} be the K near-
est neighbors to ¢ with respect to a distance metric D (as-
sume no ties). Then, we are interested in finding a distance
metric D satisfying the condition: Given K, the majority of
the K nearest neighbors are co-class points, i.e., Vi € N’
3K = |5 |+ 1points ji,...,jg € NFD)NC;. (2)
Note that the above condition does not a priori define target
neighbors, as required by most previous work. This is an im-
portant distinction because the closest neighbors of a point
are not determined unless the metric is specified. Our formu-
lation incorporates variables that compare distances between
true neighbors contingent on the distance metric. This prop-
erty avoids the pitfalls of pre-specified target neighbors as
shown below, while preserving the desirable characteris-



Active Metric Learning for Supervised Classification

tics of agglomerative and K -nearest neighbor clustering
methods such as permitting multiple disjoint islands of the
same class and non-convex class regions while maintaining
simplicity and interpretability of the metric.

Form of Distance Metric. In general, we allow the metric
to be a power series of the form

D(x,y) = a'|[x-y|[+(x-y) B-(x—-y)+

Z;?q,rﬂcpqr‘zp = Ypl - lzq — yql - [2r — y7

+higher order terms. 3)
Strictly speaking, the mapping D proposed in (3)) may not
satisfy the four properties - non-negativity, symmetry, trian-
gle inequality, distinguishability - that are required to be a
“metric.” Nevertheless, we use this terminology throughout.

Restricting to the first term loosely corresponds to
SVM/discriminant analysis, while the second term is com-
monly known in the literature as the Mahalanobis metric
if the matrix B is symmetric and positive definite. Higher
order terms introduce additional parameters at a power law
rate, e.g., the fully symmetric tensor C,q- has O(D?) pa-
rameters. In principle, almost any dataset can eventually
be fitted with a metric with a potentially infinite number of
these parameters. However, in practice, a mis-classification
trade-off curve and knee-point can be used to prevent over-
fitting. Further, the mis-classified points could point to
possible outliers, errors in input data, or class boundaries.
In all of these cases, the algorithm points to regions in the
space where further data acquisition/quality testing would
be of most value. This aspect of our method is unique, and
provides significant value in selecting the most effective
training for supervised classification in general, even ap-
plied to SVM/Deep Neural Networks or other algorithms.
Further, we will show in our experimental results that the
ratio of closest co-class to closest non-class point, defined
as

minjec, D(xi,%;)

R; = 4)

ming e, D(x;,Xk)
is a useful metric to separate “interior” points from “bound-
ary points” of classes.

Even in that case where we consider only the second-order
term, the Mahalanobis distance, our approach differs from
past approaches due to condition (1) which we show empir-
ically results in better solutions.

1.2. Comparison with Prior Work

(Wang & Sunl, 2015) survey distance metric learning in
unsupervised and supervised settings. Several recent pub-
lications have proposed metric learning methods similar to
ours, see (Weinberger & Saul,2009; Davis et al.,|2007; Ying
& Li, 2012; |Rosales & Fung|, 2006; Xing et al.,[2003)) and
references therein.

Target neighbors
of a data point i

Figure 1. Poor choice of target neighbors (Weinberger & Saul,
2009) can result in infeasible/distorted metrics. No Mahalanobis
metric can bring the target neighbors closer while simultaneously
pushing the intermediate non-class neighbor k further. Observe
that a simple metric with high vertical weighting and low horizontal
weighting will classify correctly in our approach, which does not
use target neighbors.

®
®
°
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Figure 2. Poorly chosen triplets (Rosales & Fung, 2006) can lead
to similar distortions as target neighbors. The non-class point k
can distort the metric, or result in infeasibility of desired metric
condition[T} As with target neighbors, we can produce a simple
metric here without using triplets.

A fundamental distinction that makes our approach more
general than the distance metric learning approaches of
these authors is that ours does not rely on auxiliary input
information in the form of so-called target co-class neigh-
bors (Weinberger & Saul| 2009; [Ying & Li, 2012; Xing
et al.| [2003), similar and dissimilar point pairs (Davis et al.|
2007), nor triplets with one co-class and non-class neigh-
bor (Rosales & Fung,2006). The target neighbors of a point
are co-class points that the user desires to be closest to it.
Target neighbor-based methods fix a priori a set of points
and attempt to learn a linear transformation of the input
space such that the resulting nearest neighbors of the point
are indeed its target neighbors. Unfortunately, in many ap-
plications target neighbors or triples are not available. In the
absence of prior target neighbor knowledge, (Weinberger|
& Saul, [2009) suggest using the K nearest neighbors with
the same class label, as determined by Euclidean distance.
While these requirements appear reasonable, they can be
misleading and highly data-dependent as shown in the ex-
ample below. Further, target neighbors and/or triplets, even
if available with an initial data set, may become burdensome
and/or error-prone to update when additional data becomes
available.

Figures [I] and 2] illustrate the potential for distorted distance
metrics when target neighbors or triplets are pre-defined.
It is worth emphasizing that (Weinberger & Saul, [2009)
and (Ying & Li,|2012) rely on Euclidean distance in their
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computational experiments.

1.3. Contributions

The contributions of this work are:

1. We present a distance metric learning algorithm that is
competitive with other state-of-the-art metric learning
algorithms including (Weinberger & Saul, [2009) and
(Davis et al.}2007). Moreover, our approach is more
general than the aforementioned algorithms since we
do not require pre-specification of target neighbors or
triplets, which involves a high degree of user and data
choice dependency, and hence possible errors.

2. Our method provides recommendations for new data
acquisition and data quality control to improve clas-
sification performance. This is a key ‘“value-of-
information” criterion that can significantly improve
both classification performance and computational bur-
den by ensuring training data completeness, represen-
tativeness and economy, which are not adequately ad-
dressed in current applications of DNN and other meth-
ods which often depend on very large quantities of
training data (e.g. internet cat images).

3. We show that our underlying metric learning problem
can be formulated and solved as a mixed-integer lin-
ear optimization (MIO) problem. To the best of our
knowledge, this is the first time such a claim has been
made in the metric learning arena. Indeed, this work is
also timely as it builds on what (Hastie et al.||2017)) call
“exciting new work” applying MIO to prominent ma-
chine learning problems with great success (Bertsimas
et al.;,2016; 2017} |[Bertsimas & Van Parys| 2017} |Bert+
simas & King, [2015; Bertsimas et al.,[2014; Friesen &
Domingos| 2017} Wilson & Sahinidis, 2017)

2. Mixed-Integer Linear Optimization
Formulations for Metric Learning

In this section, we present mixed-integer linear formula-
tions to determine an “optimal” distance metric that satisfies
condition (I or (), where optimality is governed by an
appropriately chosen loss function. For ease of exposition,
we describe the formulations for a distance metric (3)) with
only first- and second-order terms. Specifically, the feasible
region F for the distance metric is

F={(a,B,d) e R” x R”*P x [0,1]V*N :B=B",
dij = a' |8 + 6, Bd; Vi, j e N (5)

J
dir, > d™" Vi, k € N : i and k are not in same class}
Here §;; = x; — x; forall i,j € N. d™® > 0isa
given positive parameter that prevents the degenerate metric
(a,B,d) = 0. Note that F is a polyhedron, since we do
not enforce B to be positive semidefinite; this extension is
addressed in Section[2.3] Distances are bounded above by 1

(although any positive upper bound suffices) since our MIO
methods require an upper bound.

2.1. Metric Learning for Single Nearest Neighbor

Consider first the task of determining an “optimal” dis-
tance metric satisfying condition assuming that such
a metric exists. We relax this assumption below. Let
i = min{D(x;,x;) : k € C;} — min{D(x;,x;) : j € C;}
be the separation between the distance to point 7’s nearest
non-class neighbor and the distance to its nearest co-class
neighbor. Since condition (1] seeks a distance metric such
that \; > O for all 7 € N, we first consider the loss function

L\, .. An) = —min{)\; i € N}, (6)
which rewards the minimum separation over all points. The
following mixed-integer nonlinear formulation attempts to

minimize the loss function L, or equivalently, to maximize
A, the minimum separation over all points:

A,;I,ll%fl,y A (72)
s.t. ZjeCidijyij +A<dy,Vie N, ke C_i, (7b)
e Yii = 1, Vie N, (7c)

yi; € {0,1}, Vi e N,jeC;, (7d)

AeR (a,B,d) e F. (7e)

Binary decision variables y;;, which take value 1 if point ¢
is assigned to co-class point j (0 otherwise), are required
to select a single co-class neighbor as nearest neighbor.
Together, constraints and attempt to ensure that at
least one co-class neighbor is closer than all other non-class
neighbors to point ¢. Although it is helpful to think that y;;
will take value 1 if point j is chosen as the nearest co-class
point to ¢ (under the resulting optimal distance metric), it
is possible in an optimal solution (A\*, a*, B* d*, y*) that
y; = 0 when d% <dj;forallj € C, j # 7 for some point
1. This simply means that, for that point ¢, constraint is
not tight in that optimal solution. Nevertheless, an optimal
solution to formulation (7)) is guaranteed to find the largest
minimum separation A* over all points. If A* > 0, then
there exists a distance metric satisfying condition (TJ).

There are at least two deficiencies with formulation (7).
First and most important, although it is guaranteed to be
feasible, it is not guaranteed to return a distance metric
satifying condition (T)). Second, it contains bilinear terms
d;;yi; (the multiplication of two decision variables), which
are non-convex and are undesirable when solving (/) with
an off-the-shelf optimization engine. We now discuss how
to overcome these two deficiencies.

Enforcing condition (T)) to hold for all points ¢ € A/ could
be too stringent. For example, in a sparse data set, it is quite
possible that certain classes are both “islanded” and under-
represented leading to nearest co-class neighbors that are
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far away under most optimized metrics. Furthermore, it is
possible that a small number of points severely limit classes
from being separated by a large margin. In such cases, we
may wish to identify this subset of bottleneck points as
“outliers” and only enforce condition (1)) for non-outliers.

To this end, let © C N be a set of outliers and re-define \;
as \; = min{d;;, : k € C;\O} — min{d;; : j € C;\O} for
all non-outliers i € A"\ O. To obtain a distance metric such
that A; > 0 for all 7 € N\ O, we adopt the loss function

LA Aw) = plO] = min A, (8)

which penalizes all outliers (with respect to the given dis-
tance metric) and rewards the minimum separation over all
non-outliers. It is important to emphasize that p is the only
user-defined parameter in our approach as a large value of
p signals that outliers are highly undesirable, whereas a
small value indicates greater tolerance of outliers and more
preference for larger margin.

In order to handle outliers within an optimization frame-
work, we introduce binary decision variables z; that take
value 1 if point 7 is deemed an outlier; O otherwise. The
main interactions between the binary variables y;; and z;
are captured through the following set:

VZ={(y.2) D jec,¥ij =1 — 2, Vie N, (9a)

yi; <1—zj, Vie N,jeC;, (9b)
z €{0,1}, Vi e N'}. (9d)

Constraints ensure that each point is assigned to exactly
one co-class neighbor or is deemed an outlier. Constraints
(D) only allow point i to be assigned to point j if j is
not an outlier. With these additions for outliers, we can
re-formulate (7) as follows:
A= P ienzi

max

10a
Aa,B.d,y,z ( )

st Yiee, dijyij + A < dig + Mgz, Vi € Nk € C;

(10b)

A>0,(a,B,d) e F,(y,z) e VZ. (10¢)

Here, M;;, is known as a “Big M” parameter and can be

set to 1 for all (7, k) pairs since all distance variables d;,

are bounded above by 1. Besides the additions noted above,

constraints (10b)) are now active only if point ¢ and point k
are non-outliers.

Finally, to overcome the computational issues with the non-
linear terms d;;y;;, we apply a standard “trick” in mixed-
integer optimization to arrive at the following MILP formu-

lation:
- i 11
s A=pu (11a)
a,B,d iEN
s.t. Z wij + X < dig, + Mgz, Yi € N,k €Cy,
JEC;
(11b)
wi; < dyj, VieN,jeCl,, (11c)
Wij Syija ViEN7j€C7;, (11d)
wij 2> dij + yi;—1, Vie N,jel;, (1le)
wi; >0,  VieN,jeC, (11f)
A>0,(a,B,d) e F, (y,z) e YZ. (11g)

Constraints (TTc)-(TTe)) are known as McCormick envelopes
of the bilinear expression w;; = d;;y;;. Note that, in actual
implementation, the decision variables d;; are replaced by
their definition given in ().

2.2. Metric Learning for K Nearest Neighbors

We next turn to the task of determining an “optimal” distance
metric satisfying condition , i.e., the majority of the K
nearest neighbors are co-class points. For the remainder
of this subsection, we assume K is given and that each
class has at least K points. As above, we first present a
formulation that assumes such a metric exists and then relax
this assumption to allow for outliers.

Let P = {(i,j) : i € N,j € N,i # j}. Letr;, =
INE (D) N C;| be the number of co-class points that are
among point ¢’s K nearest neighbors (with respect to the
distance metric D). Since condition (2)) seeks a distance
metric such that x; > % + 1 for all 5 € N, analogous to
loss function @, we first consider the loss function

LY (k1,...,kN) = —min{x; ;i € N}.  (12)
The following MIO formulation attempts to minimize the
loss function L°. Binary decision variables u;;, which take
value 1 if point ¢ € A is assigned to point j € N (0
otherwise), are required to keep track of which points are
selected as the K nearest nearest neighbors of each point

i €N.

515:}31 K (13a)
s.t. Zjeciuij > K, Vi € N, (13b)
ZjeNuij SK, ViGN, (130)

di]‘ < A;+ Mij(l — uij), V(Z,j) eP, (13d)

di > Ai + € — Migug, V(i k) € P : k € Cy,

(13e)
Ui € {Oa 1}; V(Z,j) eP, (131)
k>0,A>0,(aB,d) e F. (13g)

Constraints (13b) allow us to maximize the minimum ;.
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Constraints ensure that no more than K points are
chosen as point ¢’s nearest neighbors. Note that, since we
are maximizing , constraints can be written with
an inequality “< K rather than an equality “= K. Con-
straints require point 7’s (at most) K nearest neighbors
to be within a distance of A;, while constraints en-
force the opposite condition that all of point i’s non-nearest
non-class neighbors be at least A; + € units from 4, where
e > 0 is a user-defined parameter. Assuming there are
no co-located points (i.e., x; # x; V(i,j) € P), setting
e = amin{||x; — x4|| : (¢,4) € P} fora € (0,1] will
guarantee that a feasible solution always exists.

An optimal solution (k*, A*, u*, a*, B*, d*) satisfies con-
dition @) if x* > % + 1 since, together, constraints (T3d)
and ensure that there are at least k* co-class points
among the K nearest neighbors of every point. Note also
that formulation (T3) allows for “ties” amongst co-class
points, thus it could return a distance metric for which a
given point’s K nearest neighbors are not unique.

There are at least two deficiencies with formulation (13).
First, there may not exist a distance metric satisfying con-
dition (@), i.e., an optimal solution to (T3) could result in
K" < % + 1. Second, when using the loss function @,
there may be a large number of optimal solutions to (T3)
with objective function value x*, even though we would
prefer one in which the remaining x;’s are maximized. To
this end, we modify the loss function to account for outliers
and give weight for having more co-class points among the
K nearest neighbors:
Li(k1,...,6N8) = p|lO| — minjenr; — Wzigj\/\olii-
(14
Here, W is a non-negative user-defined scalar that governs
the preference between maximizing the minimum x; and
encouraging more co-class points among the K nearest
neighbors. Setting W = (N K/2)~! suffices to ensure that
maximizing the minimum «; is the dominant objective.

This leads to the following MIO formulation:

Jmax kit WD lien D jec, g — P2ien (152)
aB.d
st D ice,tig > K, Vi€N, (15b)
djentij S K, VieN, (15¢)
ug <1 — 2, Y(i,j) € P, (15d)
uyy <1 — 2z, V(i,5) € P, (15e)
dij < Ay + M (1 —u, ), V(i,j) € P, (15)
dir > Aj + € — Mg (wir + 2 + 2),
V(i,k) € P ke, (15g)
uij € {0,1}, v(i,j) € P, (15h)
5 {01},  VieN, (15i)
k>0,A>0,(aB,d) cF. (15§)

The objective function is the negative loss function
—Lk(K1,...,6N), where 3, >~ cc. wij plays the role
of ;. Constraints (I5d) and ensure that point j is not
chosen as one of point ¢’s K nearest neighbors if either ¢ or
j is deemed an outlier. All other constraints resemble those
of formulation (13)) except perhaps with modifications to
account for outliers.

Note that the K nearest neighbor approach requires more bi-
nary variables than the single nearest neighbor formulation.
In particular, the former requires (N — 1)? binary variables
u;; for all(i, j) € P, whereas the latter requires far fewer
since y;; is only defined for all (¢, 5) : i € N, j € C;.

2.3. Extensions

Thus far, positive semidefiniteness of the B matrix is not en-
forced. Although there is evidence that positive semidefinite-
ness is a desirable attribute and may improve interpretability
of the resulting metric, it may not be as essential as others
have described. Indeed, several highly touted state-of-the-
art approaches do not enforce positive semidefiniteness, e.g.
NCA (Goldberger et al., [2004) and deep neural nets, yet
are still garnering considerable attention. Nevertheless, if
positive semidefiniteness is strongly desired, we could triv-
ially extend formulation (TT)) to include diagonal dominance
constraints as done in (Rosales & Fung} |2006). Although
such constraints would not allow for fully general psd ma-
trices to be generated, they would keep the formulation
mixed-integer linear. On the other hand, if all psd matrices
are desired, we would need to adopt a more sophisticated
approach as in (Weinberger & Saull 2009).

While we have thus far extolled the fact that our approach
does not rely on a priori information, our MILP formulations
can easily accommodate user-provided target neighbors and
similarity/dissimilarity pairs. Indeed, linear constraints,
like those used in (Davis et al., [2007)) and Shavel-Shwartz
(Shalev-Shwartz et al.l 2004), that require user-specified
similar points to be closer than dissimilar points are simple
to incorporate.

3. Active Learning for Targeted Data
Acquisition Using Boundary and Outlier
Identification

Our algorithm is particularly suited for continuous, online
data acquisition aimed at converging to an optimal metric
with the smallest amount of data. This type of active learn-
ing approach is critical to maintaining economy, complete-
ness and representativeness in data selection. To the best
of our knowledge, this work is the first to address the con-
nection between metric learning and active data selection.
A similar approach is applicable to alternative metric and
other learning paradigms including LMNN, ITML, DNN,
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and SVM. For example, for DNN, the current approach
often involves using very large quantities of training data,
causing high computational burdens and convergence is-
sues. Prioritization of data based on empirical boundary
point and outlier determination could significantly improve
performance.

Figure 3]shows a summary of our approach for the K" = 1
nearest neighbor caseﬂ It involves the following steps:

e Compute the R-ratio (@) for all current points.

e Compute the cumulative histogram of each class sepa-
rately (bottom of Figure [3).

e Points with R > 1 are potential outliers, while points
between the “knee-point” R* and 1 are designated as
boundary points. Points with R < R* are the interior
points. E|

e Our recommendation for new data acquisition is to
selectively acquire additional data at the outliers and
boundary points, prioritized in decreased order of R.

The above described procedure is motivated by the self-
evident observation that interior points typically have many
co-class neighbors closer than their nearest non-class neigh-
bor, and are hence less likely to be misclassified, while the
reverse is true of the boundary points. Empirical experi-
mental validation of this observation is shown in Figure 4]
where the metric learned from all the data is very close to
the metric learned from the boundary points only.

4. Numerical Experiments

In this section, we demonstrate the performance of our al-
gorithm on real and synthetic datasets. In all experiments
presented here, we restrict our attention to the search of opti-
mal Mahalanobis distances for which the leading method in
the literature is LMNN (Weinberger & Saul, 2()09E| against
which we compare our approach.

4.1. Synthetic Data

The purpose of this section is to demonstrate the character-
istics of the proposed algorithm on synthetic data sets de-
signed to illustrate complex structure, including classes with
multiple “domains/islands” and non-convex class shapes.

'Both the formula for R and the data selection procedure can
be extended for K > 1 with small modifications.

Note that the parallel line construction shown in the figure
typically results in R* < 1 in practice as the cumulative histogram
is typically convex and monotonically decreasing with high enough
sampling density, which results in many more interior points than
boundary points. However, when this is not the case, we suggest
retaining all data points for the class, i.e. R* = 0 as this condition
is an indication of insufficient sampling and more samples will be
needed before discriminating data selection is possible.

3We have used LMNN 3.0.0 available atlhttp://www.cs |
cornell.edu/~kilian/code/code.html,
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Figure 3. Histogramming the data by R-ratio (@) allows empirical
identification of outlier and boundary points for each class sep-
arately using the histogram as shown on the bottom figure. The
scatter plot shows the resulting boundary and outlier points. Active
learning involves selectively acquiring more data at these outliers
and boundaries (as opposed to the interior), in sorted order of
R-value for better data economy and faster convergence to true
metric.


http://www.cs.cornell.edu/~kilian/code/code.html
http://www.cs.cornell.edu/~kilian/code/code.html

Active Metric Learning for Supervised Classification

Full Data (2000 points)
02050 ooy ¢

Optimal metric from full data

1 e

.:l.'. 0oy 0°
e "" - ’0',:0
o,& % . ’.d" "‘ Optimal metric from boundary points
- ‘a~ '-; ':
%o . 4
Yoy * !
b o, N
L “ .
o, o
] ] ? a !
rfr L "2
hﬁ"; iy "w !
*
® g "hﬁ.
e,

Figure 4. The closest co-class to non-class neighbor ratios R; can
reveal the class boundaries in combination with a trade-off curve
as shown in the top right Figure. Note that the metric inferred from
all class points (top ellipse) is very close to the metric from the
much smaller set of boundary points only (bottom ellipse). The
vertically squished images (top right and center right) are scatter
plots of the points in the transformed coordinates from the optimal
metric in each case. This example demonstrates our algorithm’s
ability to implement data economy. As mentioned in the text, the
boundary points also suggest the most desirable regions for further
data acquisition to improve classification results.
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Figure 5. Synthetic example of a 6-D dataset with 3 classes. The
pattern of the data within classes, as well as the differences between
classes, can be characterized and visualized much more easily on
the scaled coordinates from our optimized metric, as shown in
the figures titled ’Points in Optimized Metric Coordinates’. The
occurrence of vertical stripes in each class visualization implies
that each class has relatively uniform coordinate values in the
transformed metric space.

Further, we show how the boundary points of classes can be
inferred from the metric for data economy and recommen-
dations of further data acquisition. Also, in the Appendix,
we demonstrate that our method produces smoother class
boundaries that standard metrics, thus reducing errors due
to over-fitting. Finally, we provide a higher dimensional
example to illustrate how classes are better represented and
visualized using the optimal metric.
Synthetic Data: No Outliers We start with 2D examples
that permit easy visualization and intuitive geometric ex-
planation. In these examples, we assume that the data has
no outliers, and the sampling is sufficiently large for robust
classification. The Mahalanobis metric allows for simple
and direct interpretation of the metric using eigenvalues
and eigenvectors. We use the co-class to non-class dis-
tance ratio of (@) to define relative coordinate significance
for each coordinate as the eigenvalue-weighted absolute
sum of the corresponding components of the eigenvectors,
i.e., if the Mahalanobis matrix has (eigenvalue, eigenvec-
tor) pairs (A\;,v;),% = 1,..., D, with each eigenvector
v; = {v;; : j =1,..., D}, then the relative significance of
each coordinate dimension j is defined as

Wj = Z’Zl)‘ih}iﬂ' (16)
Figures ][] and 5] show how these concepts can be used, in
2D as well as higher dimensions, to produce more intuitive
and interpretable metrics even when the sample points are
restricted primarily to class boundaries. We deal with identi-
fication and exclusion of outliers in the Appendix. Now we
show some applications of these methods to real data along
with comparisons to competing alternatives.

4.2. Real Datasets. In this section, we present results on
real datasets drawn from handwritten number recognition
MNIST (LeCun et al}[1998) and medical/biological datasets
like diabetes and iris data.

Experiments on MNIST Dataset. The state-of-the-art
classification method for MNIST data uses convolutional
neural networks which extracts useful features. In this ex-
periment we trained convolution auto-encoder (with ReLU
activation) and represented each image by the compressed
feature representation resulting in 16 features per image.
The results of our classification — performed on this reduced
16D space — are shown in Figure[8] These results demon-
strate how our algorithm can be used to classify the training
data into interpretable interiors, boundaries and outliers,
with the latter two being visibly similar to other neighboring
classes leading to possible mis-classification.
Experiments on Medical Datasets. In this experiment we
use cod-rna and diabetes datasetsﬂ each having 8 features.
We trained the optimal metric on 300 random points and
tested on larger sets of points (as indicated in table). Note

“All datasets used in this Section are available
at https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/.
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Figure 8. Row A shows interior points of the classes (class 0 left
and class 1 right); Row B shows typical boundary points of the
classes, while row C shows outliers and row D shows the closest
point to the outlier. Note that the results are generally consistent
with human judgement and provide guidelines for training data
enhancement based on the outliers.

approach cod-rna | cod-rna | diabetes
# of test 4,000 8,000 769
Euclidean distance | 14.47% | 13.43% | 29.42%
MeLLO 6.27 % 6.17% | 23.30%
LMNN K =1 8.82% 9.18% | 29.81%
LMNN K =3 8.29% 8.61% | 30.59%
LMNN K =5 8.19% 847% | 29.94%
LMNNK =7 8.32% 8.78% | 30.07%
LMNN K =11 8.64% 8.88% | 30.46%

1

1.5

2

25
.5 1 1.5 2 25

0

Figure 6. Results on a closely spaced pair of noisy linear class
examples show a metric highly weighted orthogonal to the line as
expected. This example could be challenging for existing methods
like LMNN if target neighbors are chosen using Euclidean metric
at the start as normally suggested.

Figure 7. Results on 4D IRIS dataset. This example illustrates

visualization of high-dimensional data using our optimized metric.

As shown in the synthetic example earlier, note that representation
of class features (top row) on the scaled coordinates reveals unique
signatures of each class as vertical streaks indicating relatively
uniform feature values within each class.

Table 1. Comparison of classification error for various distance
metrics. Note that MeLLO, which uses outlier removal in both
training and testing phases, provides some improvement over state-
of-the-art alternatives. Further, the outliers, as before, suggest new
desirable data to improve performance.

that our algorithm (labeled MeLLO0), provides improvement
in performance over Euclidean and various LMNN alterna-
tives without any significant tuning of parameters on our
part.

Experiments on Biological Dataset. In Figure|/|we show
results on Iris Flower Dataset (Fisher, |[1936) which contains
3 classes of 150 training samples, each represented by 4
features.Note that our method separates the classes reason-
ably well, while also depicting relatively internally uniform
characteristics for each class in terms of the Mahalanobis
vectors, as seen by the vertical streaks in the images on the
top row in Figure[/| In all cases demonstrated above we
observed that our method produces competitive and inter-
pretable classification results as well as outlier identification.
This combination is useful for choosing comprehensive and
economical training datasets.

5. Conclusion

We have presented novel methods for classification based
on optimized metric learning. Our methods are designed to
overcome limitations of state-of-the-art alternatives such as
SVM, DNN by being more interpretable, robust and more
general. We have shown promising results on synthetic and
real datasets.
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Part 1
Appendix

A. Class boundaries

Figure 0] demonstrates the characteristics of class boundaries inferred from our optimal metric in comparison to commonly
used metrics like Manhattan (¢; ), Euclidean (¢3) and Maximum ({,). Smooth and robust boundaries are often practically
important for robust online classification. Note that our boundaries are significantly smoother and less prone to overfitting,
although the Euclidean metric performs similarly. However, in the presence of outliers and noise, we will later show that the
Euclidean metric performs much worse.
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Figure 9. The boundaries learnt by our algorithm are smoother than alternatives. Top left is the original data; top right is the result
produced by our algorithm; bottom 3 are the alternative approaches.

A.1. Handling Outliers

Handling outliers is a very important task for robust classification. In this section, we show how we can improve the distance
metric by iteratively removing outliers using synthetic example. Figure [T0]demonstrates our outlier removal procedure,
which consists of 3 major iterations.

1. determination of optimal metric for the whole dataset;
2. identification of outliers using the distance ratio;

3. reoptimization of the metric after removal of outliers.

Steps 1-3 can be optionally repeated iteratively until satisfactory metric is obtainedﬂ

3This procedure is a heuristic version of our thorough scheme which incorporates trade-off curves.
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Figure 10. Outlier removal.

Finally we present a comparison of our optimal metric with outlier removal to the commonly used Euclidean, Manhattan
and Maximum metric. As mentioned earlier, Figure [T1]shows that our optimal metric produces smoother class boundaries
with outliers. In contrast, Euclidean distance gives significantly inferior results.

B. Training DNN using only boundary points

In this experiment, we explore how our approach can be used in training a deep neural network using far fewer points than
typically required. Specifically, after finding a near-optimal metric using our proposed strategy, we identify the “boundary’
points and “outliers” of the data set and then feed these points to a DNN for training.

>

In Figure[12]left, we show a simple datasets with 10 classes containing 10000 points in 2D. In the middle, we show the
boundary points which were then used to train a fully-connected DNN with 4 hidden layers and ReLU activation function.
We used soft-max cross-entropy loss function and trained it using only boundary points. In the right figure, we show how the
DNN predicts classes for different points in the unit square. The testing error for interior points is 0.7836%, i.e. less than 1%.
This experiment hence further confirms the value of careful data selection using boundary points based on a suitably chosen
metric, by demonstrating substantial computational and data savings even for other more intensive techniques like DNN.

C. Comparison with LMNN

C.1. Qualitative comparison with LMNN

Given that the LMNN approach of (Weinberger & Saul, [2009) is arguably the nearest neighbor to our approach, we now
highlight the salient differences between the two approaches. Let 7; be the pre-defined target co-class neighbors of point ¢
needed as input for LMNN; 7 = {(,j) : : € N, j € T;} be the set of target pairs; U = {(i,j, k) :i € N,j € T,k € C;}
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Figure 11. Our result (bottom right) produces smoother class boundaries with outlier removal compared to alternatives.
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Figure 12. Left figure shows a full, densely sampled 10-class, 10000-point dataset in 2D. Middle figure shows the boundary points
computed using the R-ratio (E[) Right figure shows DNN classification of the entire domain using only the boundary points as training set.
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be the triplets for which a large margin of separation is desired. In our notation, the LMNN optimization problem becomes

HBH? (1—p) Z 5;;B5,-j + i Z Sijk (17a)
(4,7)€T (¢,3,k)eU

st. 8B + 1< 8B+ siji, V(6,4 k) €U, (17b)

sijk =2 0, V(i,j,k) €U, (17¢)

B> 0. (17d)

Here 11 € [0, 1] is a scalar weight to balance the trade-off between imposter violation penalties and the choice of distance
metric. Constraint (I7d]) enforces B to be positive semidefinite.

There are several notable differences between our approach and the LMNN. First, (Weinberger & Saull,2009) rely on a set 7
of pre-defined target co-class neighbors, which can lead to distorted distance metrics if not chosen judiciously (see Figure ).

Second, we use a 0-1 loss function, as opposed to a hinge loss function, for outliers/imposters. This means that, in contrast to
LMNN, which incurs a small penalty for a small violation of condition (T}, our approach treats even the slightest violation
as a grave infringement. A common argument for avoiding the 0-1 loss function is that the resulting optimization problem is
NP-hard. While this is true in theory, it by no means implies that such problems are unsolvable or prohibitively expensive
for current methods. On the contrary, mixed-integer optimization solvers have witness tremendous improvements over the
last two decades (Bixbyl 2012) and challenging MILPs with millions of decision variables and constraints are routinely
solved today. Moreover, there are powerful heuristics for solving MILPs that do not guarantee provable optimality, yet are
capable of quickly generating high quality solutions.

Third, LMMN and other approaches require a minimum margin between co-class and non-class point while allowing
distances to go to infinity. In contrast, we impose an upper bound of 1 on all distance pairs. It is computationally
advantageous when using a 0-1 loss function for outliers to have a known finite bound on all distances. Specifically, it allows
for smaller values of M;y, which, in turn, leads to tighter linear relaxations and faster solve times for standard mixed-integer
optimization methods.

Fourth, our distance metric is more general than a Mahalanobis metric. However, when we restrict our method to search only
for a Mahalanobis metric as done in the LMNN approach, then we see that LMNN strictly enforces positive semidefiniteness,
whereas our current formulation does not.

C.2. Numerical comparison with LMNN

As we argued in Section[I.2] state-of-the-art methods that require target neighbors are susceptible to the choice of target
neighbors, which can lead to distorted distance metrics. Figure [[3|demonstrates precisely this undesirable behavior for
LMNN on a synthetic data set resembling that in Figure T[] with small vertical distance between classes. The optimal metric
for various K from LMNN is inconsistent, thus demonstrating the difficulty of choosing target neighbours effectively — even
in this easy example. In contrast, our approach identifies the ideal Mahalanobis metric B* = 8 ?) Further, note that
the prescribed option in LMNN is the use of Euclidean distance to choose target neighbours, which can be highly misleading

if the optimal metric is skewed.
D. Metric learning modeling extensions

D.1. Enforcing positive semi-definiteness

We may require the matrix B to be positive semi-definite. Gershgorin’s diagonal dominance theorem provides a partial
solution to this approach as it restricts B to live in a restricted space of positive semi-definite matrices. To accomplish this with
our matrix B, let R4 (B) = >_,_,; |bk¢| and note that the condition AZ™ (B) > 0 implies that ming—1,... , {bxx — R(B)} >
0, which is equivalent to by — Y 0k |bre] > 0 forall k = 1,...,p. After introducing auxiliary non-negative decision

%This means that only if we move in y-axis, we are measuring some distance, all points in z-axis have distance 0.



Active Metric Learning for Supervised Classification

K=2 K=3 K=4 K=10
0.05f 0.1 X S 0.02 0.02
0 - 0 0 0
—0.05} -0.1 - 1 20.02 -0.02
-0.05 0 0.05 -0.1 0 0.1 -0.02 0 0.02 -0.02 0 0.02

Figure 13. Suboptimal performance of LMNN on dataset described in Figure[I] The optimal metric for various K from LMNN is
inconsistent, thus demonstrating the difficulty of choosing target neighbours effectively.

variables b& to model |by,| for all k # ¢, the latter can be converted into a set of linear constraint as follows:

bk — Y b, >0 Vk=1,...p (18a)
14k

b, > bre Ve=1,....p,0=1,....,p(k#Y) (18b)

b, > —bi Ve=1,....p,0=1,....,p(k#Y) (18c)

b, >0 Ve=1,....,p0=1,....p(k#{). (18d)

Appending these constraints to the feasible region (3) allows the user to enforce a restricted version of positive semi-
definiteness.

D.2. Sparsification

Regularization terms can easily be incorporated into the objective function to promote a sparse distance metric. Indeed,
adding the term ) ke 0k <t |bi ¢| to the objective/loss function as is done in lasso can accomplish this task. Going a step
further, one can easily include a cardinality constraint to ensure that no more than U coefficients are included. Let B™*
be an upper bound on the absolute value of any coefficient by, , and let g, ¢ denote a binary variable that takes value 1 if
by, ¢ is non-zero (0 otherwise). Appending the following constraints to the feasible region (3) allows the user to enforce
sparsification:

—B"q ¢ <bpe < B qre Yk, (L (19)

Z Qi <U (20)

k,0:k<t



	1 Introduction and Motivation
	1.1 Problem Setting
	1.2 Comparison with Prior Work
	1.3 Contributions

	2 Mixed-Integer Linear Optimization Formulations for Metric Learning
	2.1 Metric Learning for Single Nearest Neighbor
	2.2 Metric Learning for K Nearest Neighbors
	2.3 Extensions

	3 Active Learning for Targeted Data Acquisition Using Boundary and Outlier Identification
	4 Numerical Experiments 
	4.1 Synthetic Data

	5 Conclusion
	I Appendix
	A Class boundaries
	A.1 Handling Outliers

	B Training DNN using only boundary points
	C Comparison with LMNN
	C.1 Qualitative comparison with LMNN
	C.2 Numerical comparison with LMNN

	D Metric learning modeling extensions
	D.1 Enforcing positive semi-definiteness
	D.2 Sparsification



