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Abstract

This article presents a novel approach for optimising maintenance scheduling

and production in a process using decaying catalysts while considering un-

certainties in the kinetic parameters involved. The approach formulates this

problem as a multistage mixed-integer optimal control problem (MSMIOCP)

and uses a solution methodology that can offer a number of potential advan-

tages over conventional methodologies. The solution methodology involves

using a multiple scenario approach to consider parametric uncertainties and

formulating a stochastic version of the MSMIOCP, which is solved as a stan-

dard nonlinear optimisation problem using a technique developed in a previ-

ous work. The proposed formulation and solution methodology are applied

to identify the effects on the optimal process operation, of individual uncer-

tainty of each parameter, of simultaneous uncertainty of all parameters and of

the number of scenarios generated, as four case studies. The results obtained

provide insights into these aspects and indicate the approach’s capability to
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solve this problem.

Keywords: Uncertainties; Optimal control problem; Mixed-integer

optimisation; Catalyst replacement; Scheduling; Production planning

1. Introduction and literature review

In industrial processes that use predictions from kinetic rate equations,

the making of decisions for optimal functionality faces significant challenges

due to uncertainties regarding the values of the parameters used in those

equations. As they are experimentally obtained, these parameters values

are susceptible to a degree of uncertainty because of inevitable inaccuracies

arising from measurement errors, estimation errors, interpolation and extrap-

olation errors etc. In order to incorporate such uncertainties, these kinetic

parameters are considered as taking values within a certain range, rather

than be regarded as fixed constants.

In industrial processes producing commercial products using catalysts

that decay in performance with time, the uncertainties in kinetic parameters

manifest in the rate equations for the product formation reaction and cata-

lyst deactivation. These industries face complex economic challenges because

catalyst deactivation is inevitable and causes a loss in process productivity

and revenue. In order to restore process performance, a maintenance action

is required in which the reactor is shut down to replace the decayed cata-

lyst with a fresh catalyst that has full activity. Such a maintenance action

is called a catalyst replacement or a catalyst changeover operations. While

this maintenance action improves product yield, there are negative effects

involved such as a loss of production time, and energy and labour costs.

Thus, while frequently replacing catalyst loads can ensure high produc-

tivity, it also involves increased maintenance costs and loss of production

time. An efficient schedule for catalyst replacements is needed to address
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this trade-off. Other considerations also have to be managed in tandem with

deciding the catalyst replacement schedule such as the optimal operating

conditions of the reactor, as well as the product inventory and sales to ade-

quately meet time-varying demand.

Since the outputs of the kinetic models form the basis for making optimal

decisions, there can be many implications to not considering uncertainties in

kinetic parameters. For instance, uncertainty in the rate of product formation

or catalyst decay can result in variable and unpredictable production times

and yields. This can create difficulties in identifying the optimal maintenance

schedules, operating conditions, and the appropriate production amounts and

inventory levels to effectively meet product demand. An uncertainty in the

rate of catalyst decay could also lead to the catalyst being used beyond its

recommended lifespan, which could affect the durability of the reactor and

threaten safe process operation. Hence, it is critical to take uncertainty in

kinetic parameters into account while optimising process operations.

A search through literature revealed a very limited set of studies that

considered uncertainty in kinetic parameters while optimising maintenance

scheduling and production planning in processes using decaying catalysts.

Only two such studies have been found and these have been based on online

or data-driven methods of optimisation.

One is a work by Lim et al. (2009), which proposed a proactive schedul-

ing strategy, that used comparisons between model predictions and actual

measurements, to handle uncertainties in coke thickness and growth rates in

the scheduling of decoking operations in a naptha cracking furnace system.

The other work is by Jahandideh et al. (2019), which optimised scheduling of

decaying catalysts and production in a process, while considering uncertain

decay rates, by formulating this problem as a semi-Markov decision process.
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However, the use of online methods, as in the aforementioned literature,

does not enable a sensitivity analysis, or a quantification of the impact of

uncertainty in a particular parameter, to be performed. In addition, these

methods cannot identify the effect of uncertainties before the process begins

execution. Obtaining prior predictions of the optimal maintenance schedules

and operating conditions and the expected profits, while considering uncer-

tainties, can aid in improving investment and operating decisions. To fulfil

such purposes, preventive methods for handling uncertainties need to be used.

The popular preventive methods for scheduling optimisation under uncer-

tainty include stochastic programming, fuzzy programming, robust optimi-

sation and parametric programming (Li and Ierapetritou, 2008a). The use of

one of these techniques in combination with a mixed-integer formulation rep-

resent the conventional methodology of solving scheduling problems involving

parametric uncertainties. There are several publications that have used such

methodologies to optimise scheduling in varied processes while considering

uncertainty in parameters such as processing times, demand and prices, to

name a few, and a literary review of such publications can be found in Aytug

et al. (2005), Li and Ierapetritou (2008a) and Verderame et al. (2010).

However, no work exists that has used one of the conventional method-

ologies to solve the problem under consideration here: that of optimising

maintenance scheduling and production in processes using decaying catalysts

while considering uncertainties in kinetic parameters. In reality, because this

is a large scale problem that can contain highly nonlinear equations, obtain-

ing solutions of this problem using conventional methodologies would face

significant challenges due to the involvement of mixed-integer optimisation

techniques in these methodologies.

The most popular techniques used for optimisation of mixed-integer non-
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linear programming problems include the Branch & Bound, Outer Approx-

imation (Duran and Grossmann, 1986; Viswanathan and Grossmann, 1990)

and Generalised Benders Decomposition (Geoffrion, 1972) algorithms. How-

ever, due to their combinatorial nature, these techniques find it difficult to

converge to optimal solutions and require long solution times when used to

solve large scale problems. Further, when using mixed-integer techniques,

any differential equation present in the problem is approximated as a set of

steady state algebraic equations, which are imposed as equality constraints to

be fulfilled during the optimisation. Not only does the steady state approx-

imation reduce the solution accuracy, the introduction of additional con-

straints further increases the problem size and can thereby cause further

convergence issues. Due to these drawbacks, mixed-integer techniques face

difficulties in obtaining good quality solutions for large scale problems.

A previous work by Adloor et al. (2020) examined the deterministic ver-

sion of the problem under consideration here, that is, one in which there is no

parametric uncertainty involved. In that work it was highlighted how the de-

terministic problem is itself large scale and how if mixed-integer optimisation

techniques were used for solution, the above-mentioned drawbacks of these

techniques come into play. If one of the conventional methodologies is used

to solve the problem under consideration here, it would involve using mixed-

integer techniques to solve a problem of similar or larger size in comparison

to the deterministic problem, and so the drawbacks of these techniques would

once again be manifested or possibly even be further aggravated.

As mentioned by Li and Ierapetritou (2008b), when using stochastic pro-

gramming techniques, the number of scenarios to be considered, and so the

problem size, increases exponentially with number of uncertain parameters

involved and this leads to intractable sizes for large scale problems when

such approaches are used with mixed-integer techniques to obtain solutions.
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Balasubramanian and Grossmann (2003) report that, when used with fuzzy

programming to consider uncertainty, mixed-integer techniques could solve

only small scale problems but fail in the case of larger problems due to the

intractable sizes encountered. The larger problems could only be solved us-

ing meta-heuristic optimisation techniques, which however, cannot provide a

theoretical guarantee of the optimality of the solutions obtained.

When parametric programming is used for mixed-integer problems involv-

ing uncertainty, the established procedures entail solving a series of paramet-

ric and mixed-integer problems (e.g. by Dua and Pistikopoulos (2000), Li

and Ierapetritou (2007), Wittmann-Hohlbein and Pistikopoulos (2012)), the

latter which is larger in size compared to the deterministic problem. And

when using robust optimisation techniques, a robust counterpart of the deter-

ministic problem is formulated (Gorissen et al., 2015), which is comparable

in size to that of the latter. Therefore, if the deterministic problem is itself

large scale and intractable to solve using mixed-integer techniques, similar

difficulties will be experienced by such techniques if used with parametric

and robust optimisation methods for optimisation under uncertainty.

Thus, intractable problem sizes, and therefore convergence issues, are

likely to be faced when mixed-integer techniques are used with any of the

popular preventive methods of handling uncertainty to solve the large scale

problem under consideration here. Further, even if solutions can be obtained

by any of the conventional methodologies, the practice in mixed-integer tech-

niques, of approximating differential equations as sets of steady state alge-

braic equations, implies that the solutions cannot be considered accurate.

Hence, it is concluded that conventional methods would not be well suited

to solve the problem under consideration here. A methodology is needed that

can effectively solve this problem. The contribution of this paper lies in the
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development of such a methodology: a novel approach that formulates this

problem as an optimal control problem. The structure of the optimal con-

trol problem formulation is similar to that developed in the previous work

by Adloor et al. (2020) which solved the deterministic version of this problem.

This completes Section 1, which constitutes the introductory and liter-

ary review part of the paper. The rest of the paper is organised as follows.

In Section 2, the optimal control formulation of this problem is developed.

Section 3 details the solution methodology and the advantages that this for-

mulation and solution methodology can offer over the conventional methods

of solving such problems. In Section 4, the proposed formulation and solu-

tion methodology are applied to identify the effects of uncertainties in kinetic

parameters on the optimal process operations through different case studies,

and the results obtained for each case study are analysed in Section 5. Sec-

tion 6 contains the conclusions and other notable points.

This paper is an extension of the work of Adloor et al. (2020) and hence,

parts of that work are presented in the appendices for reference. Appendix A

details a solution methodology developed in that work which forms a part of

the solution methodology discussed in Section 3. And Appendix B presents

the details of the formulation of an industrial process examined in that work.

The case studies formulated in Section 4 are based on a modification of this

formulation to include uncertainty in the kinetic parameters. The solution

implementation details are mentioned in Appendix C.

2. The optimal control formulation

In this section, an optimal control formulation is presented for the prob-

lem of optimising maintenance scheduling and production planning in a pro-

cess using decaying catalysts, while considering uncertainty in the kinetic

parameters of the process model. This formulation is characterised by a set
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of decision (or control) variables, state variables, a set of Ordinary Differen-

tial Equations (ODEs) and constraints, with the uncertainties occurring in

the parameters present in the ODEs.

A basic optimal control problem (OCP) is represented by equations (1a)

– (1g). The performance index consists of point and continuous indices φ,

and L, respectively. This performance index is minimised by the selection of

controls, w, and the resulting differential state variables, x, when subject to

differential equations, h and constraints, c. Equations (1b) – (1c) define an

ODE system, given fixed initial and final times, t0 and tF , respectively, and

initial condition x0. The controls w comprise binary controls, u, as well as

continuous controls, v, which belong to a real permissible set V .

min
w(t)

W = φ (x(tF )) +

tF∫
t0

L (x(t), w(t), t) dt (1a)

subject to

.
x(t) = h (x(t), w(t), t)

∀t ∈ [t0, tF ]
(1b)

x (t0) = x0 (1c)

c (x(t), w(t), t) ≤ 0

∀t ∈ [t0, tF ]
(1d)

w(t) =
[
[u(t)]T , [v(t)]T

]T
(1e)

u(t) ∈ {0, 1} (1f)

v(t) ∈ V (1g)

The OCP formulation is applied to the problem under consideration by

discretising the whole time horizon of the process into stages, which are of
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known and fixed lengths. The lengths of different stages can be different. A

control parametrisation approach is used wherein the decision variables are

discretised and considered piecewise constant across the times corresponding

to each stage. That is, the controls u and v, take up the form:

u =
[
u(1), u(2), . . . , u(NP )

]T
(2a)

v =
[
v(1), v(2), . . . , v(NP )

]T
(2b)

where NP is the total number of stages. The control profiles can be discon-

tinuous at the junctions, tp, between any two consecutive stages, p and p+1.

On the other hand, the state variables are maintained in their continuous

form, without discretisation, and are determined in each stage from a set

of ODEs. This solution methodology is called a “feasible path approach”

because the ODEs are solved to a high accuracy, using state-of-the-art in-

tegrators, in the right sequential order (Vassiliadis, 1993; Vassiliadis et al.,

1994a,b). Junction conditions between any two consecutive periods, p and

p+ 1, are used to obtain the solutions of the ODEs in each stage, across the

whole time horizon. The general form of these junction conditions is given

by equation (3) (Vassiliadis, 1993):

J
(
ẋ(p+1)

(
t+p
)
, x(p+1)

(
t+p
)
, u(p+1)

(
t+p
)
, v(p+1)

(
t+p
)
,

ẋ(p)
(
t−p
)
, x(p)

(
t−p
)
, u(p)

(
t−p
)
, v(p)

(
t−p
)
, tp

)
= 0

p = 1, 2, . . . NP − 1 (3)

The discretisation of the time horizon into multiple stages in this OCP

that has integer and continuous decision variables leads to a Multistage

Mixed-Integer Optimal Control Problem (MSMIOCP). The basic form of

the MSMIOCP is represented by equations (4a) – (4g). The terminology
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used in equation (4) are similar to the basic OCP formulation in equation

(1), with the superscript (p) indicating that they apply to stage p. The ad-

ditional terms here are the junction conditions, g, analogous to equation (3),

that provide the initial conditions for the solution of the ODEs in stage p.

An illustration of the MSMIOCP formulation is shown in Figure 1.

min
u,v

W =
NP∑
p=1

{
φ(p)

(
x(p)(tp), u

(p), v(p), tp
)

+

∫ tp

tp−1

L(p)
(
x(p)(t), u(p), v(p), t

)
dt

}
(4a)

subject to

ẋ(p)(t) = h(p)(x(p)(t), u(p), v(p), t)

tp−1 ≤ t ≤ tp

p = 1, 2, . . . , NP

(4b)

x(1)(t0) = g(1)
(
u(1), v(1)

)
(4c)

x(p)(tp−1) = g(p)
(
x(p−1)(tp−1), u

(p), v(p)
)

p = 2, 3, . . . , NP
(4d)

c(p)
(
x(p)(t), u(p), v(p), t

)
≤ 0

tp−1 ≤ t ≤ tp

p = 1, 2, . . . , NP

(4e)

u(p) ∈ {0, 1}
p = 1, 2, . . . , NP

(4f)

v(p) ∈ V
p = 1, 2, . . . , NP

(4g)

This MSMIOCP formulation is similar to that developed in a previous
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x(1)(t0)
g(1)

g(2)

g(p)

g(p+1)

g(NP )

x(1)(t1)

x(2)(t1)

x(p�1)(tp�1)

x(p)(tp�1)

x(p)(tp)

x(p+1)(tp)

x(NP�1)(tNP�1)

x(NP )(tNP�1)

x(NP )(tNP )

t0

t1

tp�1

tp

tNP�1

tNP

u(1), v(1)

u(p), v(p)

u(NP ), v(NP )

ẋ(1) = h(1)

ẋ(p) = h(p)

ẋ(NP ) = h(NP )

c(1)  0

c(p)  0

c(NP )  0

Stage 1

Stage p

Stage NP

Initial horizon time

Final horizon time

Figure 1: An illustration of the MSMIOCP formulation
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work by Adloor et al. (2020), which solved the deterministic version of the

problem under consideration here. As in that work, in each stage of the

formulation here, a decision of binary nature has to be made on whether the

catalyst should continue to be in operation or be replaced, and these vari-

ables correspond to the controls, u. Further, the plant operating conditions

of flow rate and temperature, and the amount of product sales should also be

decided at each stage, which are decisions corresponding to the continuous

controls, v.

However, unlike that work, here there is uncertainty regarding the values

of the kinetic parameters present in the differential rate equations of the cat-

alyst deactivation and product formation reactions in each stage. Therefore,

here a mixed-integer optimisation problem involving parametric uncertain-

ties has to be solved to ensure optimal operation of the process.

As mentioned in Section 1, due to the involvement of mixed-integer opti-

misation techniques, the conventional methodologies would not be well suited

to solving such a formulation. Hence, in the next section, a solution method-

ology is presented that aims at effectively solving this problem.

3. Problem solution methodology

The solution methodology proposed to solve this problem is comprised of

two major parts. In the first part, a novel approach is proposed to consider

uncertainties, by developing a stochastic version of the MSMIOCP formu-

lation of Section 2. The second part is to solve this stochastic MSMIOCP

formulation as a standard nonlinear optimisation problem using a technique

developed in a previous work by Adloor et al. (2020).

In the first part of this methodology, in order to consider parametric un-

certainty, a multiple scenario approach is used. That is, multiple scenarios
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are generated, where in each scenario, each uncertain parameter takes a par-

ticular value within a pre-specified range. These scenarios can be generated

through any random sampling method.

As mentioned in Section 2, the uncertainties in this problem occur in the

parameters present in the ODEs of the MSMIOCP formulation. Thus, for

each scenario generated, a new ODE system, comprised of the ODEs, initial

and junction conditions, is formed, the parameter values of which correspond

to the scenario generated. And the state variables describing each scenario

can be determined by the solution of the ODE system corresponding to each

scenario. The uncertainty in the problem is represented by the different sce-

narios: by all the different parameters and state variables values attainable.

The aim is to perform the optimisation while ensuring that the uncertainty

represented by the different scenarios are accounted for.

A feature of the solution procedure of any OCP is that the integration

phase is independent of the optimisation phase. That is, any ordinary differ-

ential or differential algebraic equations present have to be integrated com-

pletely to obtain values of the state variables, which in turn are used to

formulate the objective function and constraints based on which the optimi-

sation can occur. This feature will be exploited here to perform the optimi-

sation under uncertainty.

A new MSMIOCP is formulated wherein the ODE systems correspond-

ing to all scenarios are stacked together. However, while the state variables

obtained from the ODE system for each scenario lead to a unique set of

constraints and objective function corresponding to that scenario, only the

averages of these over all scenarios are used in this MSMIOCP. That is, the

decision (or control) variables have to be chosen to optimise only the average

of the objective functions over all scenarios while fulfilling only the average

13



of each set of constraints over all scenarios. Thus, this new MSMIOCP is a

stochastic version of the formulation presented in equation (4) and is given

by equation (5).

In equation (5), Ws is the performance index of the stochastic MSMIOCP

and S is the number of scenarios considered. A separate term C
(p)

is intro-

duced to represent the average of the set of constraints over all scenarios

in stage p, as shown in equation (5e). The remainder of the terminology

used are similar to the MSMIOCP formulation in equation (4) with the only

difference being that where subscript z occurs, it represents the variable in

scenario z.

min
u,v

Ws =
1

S

[
S∑

z=1

{
NP∑
p=1

φ(p)
z

(
x(p)z (tp), u

(p), v(p), tp
)

+

∫ tp

tp−1

L(p)
z

(
x(p)z (t), u(p), v(p), t

)
dt

}]
(5a)

subject to

ẋ(p)z (t) = h(p)z (x(p)z (t), u(p), v(p), t)

tp−1 ≤ t ≤ tp

p = 1, 2, . . . , NP

z = 1, 2, . . . , S

(5b)

x(1)z (t0) = g(1)z

(
u(1), v(1)

)
z =1, 2, . . . , S

(5c)

x(p)z (tp−1) = g(p)z

(
x(p−1)z (tp−1), u

(p), v(p)
)

p = 2, 3, . . . , NP

z = 1, 2, . . . , S

(5d)
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C
(p) ≤ 0

where

C
(p)

=
1

S

[
S∑

z=1

c(p)z

(
x(p)z (t), u(p), v(p), t

)]
(5e)

tp−1 ≤ t ≤ tp

p = 1, 2, . . . , NP

u(p) ∈ {0, 1}
p = 1, 2, . . . , NP

(5f)

v(p) ∈ V
p = 1, 2, . . . , NP

(5g)

In this stochastic MSMIOCP formulation, it is seen how the feature of

the integration and optimisation phases being independent of each other is

used to advantage: the use of multiple scenarios leads to the size of the ODE

system in the integration phase to increase proportionately compared to a

single scenario case, but the number of control variables and constraints in-

volved in the optimisation is the same as in a single scenario case. Hence,

only a single optimisation problem has to be solved, which has the same

number of decision variables and constraints compared to the deterministic

problem, but with a larger ODE system compared to the latter.

A schematic describing the underlying principle of this formulation is

shown in Figure 2. A similar principle has been used for optimisation un-

der uncertainty in works by Al Ismaili et al. (2019) for scheduling of heat

exchanger network cleaning operations and by Kanavalau et al. (2019) in

model predictive control for batch process intensification.

This stochastic MSMIOCP formulation is mixed-integer in nature due

to the presence of integer and continuous variables. However, as mentioned
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Average Objective and
Constraints

Scenario 1
ODE model

Scenario 1
Objective and Constraints

Scenario 2
ODE model

Scenario S
ODE model

Scenario 2
Objective and Constraints

Scenario S
Objective and Constraints

Common decision variables

Scenario 1
Initial conditions

Scenario 2
Initial conditions

Scenario S
Initial conditions

Figure 2: The schematic of the principle of a stochastic optimal control
formulation

in Section 1, there are drawbacks to using mixed-integer optimisation tech-

niques. Hence, here a procedure is used that enables solution as a standard

nonlinear optimisation problem, without the use of mixed-integer optimisa-

tion techniques. This forms the second part of the solution methodology.

This solution procedure, titled Implementation II, was developed in the

previous work by Adloor et al. (2020) and the exact details of this procedure

are given in Appendix A. Essentially, this procedure enables solution of

an MSMIOCP as a standard multistage optimal control problem (MSOCP)

while using the feasible path approach to solve ODEs. The binary variables

are considered continuous variables in the range [0, 1] and the 0 or 1 values

are enforced inherently during the optimisation using a penalty term homo-

topy technique instead of mixed-integer methods. In the work of Adloor et al.

(2020), this procedure was very successful in obtaining optimal solutions for

large scale problems, and was able to overcome the drawbacks of mixed-

integer optimisation techniques by demonstrating advantages of robustness,
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reliability and efficiency over those techniques in solving those problems.

In Section 1, it was discussed how due to the involvement of mixed-integer

optimisation techniques in the conventional methodologies, these methodolo-

gies would not be well suited to solve the large scale problem under consid-

eration in this paper. The solution methodology proposed in this section

can provide a number of potential advantages over the conventional method-

ologies in solving this problem, by overcoming the drawbacks that would

be introduced by the use of mixed-integer optimisation techniques in those

methodologies. These potential advantages are similar to those demonstrated

by the optimal control methodology comprising the procedure of Implemen-

tation II in the work of Adloor et al. (2020), and are enumerated as follows:

1. The practice in mixed-integer techniques of approximating differential

equations as collections of steady state algebraic equations, often causes

the problem to end up containing a very large number of variables and

constraints. This can cause difficulties in convergence to optimal solu-

tions when the conventional methodologies are used, especially in the

cases of mixed-integer techniques being used with stochastic or fuzzy

programming approaches.

However, the use of the feasible path approach in the proposed method-

ology implies that the differential equations will be solved by an inte-

grator without creating additional variables or constraints to be con-

sidered in the optimisation phase. Therefore, when using the proposed

methodology, the number of variables and constraints will be consider-

ably smaller than when any of the conventional methodologies are used.

Hence, the methodology is expected to be more robust in converging

to solutions in comparison to the conventional methodologies.

2. The feasible path approach employs state-of-the-art integrators which

can solve nonlinear differential equations to a high accuracy. On the

other hand, the mixed-integer formulations, when used with any of the
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existing preventive methods of handling uncertainty, solve such equa-

tions by approximations as sets of steady state algebraic equations, and

this tends to reduce the accuracy of the solutions. Thus, the solutions

obtained by the proposed methodology can be expected to be more

reliable than those obtained by the conventional methodologies.

3. By virtue of the penalty term homotopy technique in Implementation

II, a weight term in the objective function forces the controls, originally

binary but considered continuous in this formulation, to take values of

either 0 or 1. Thus, the 0 or 1 values for these controls, which corre-

spond to the catalyst changeover actions in the problem under consid-

eration here, are decided inherently during the optimisation, without

using mixed-integer techniques.

Hence, no additional computational effort will be spent in deciding

when to schedule catalyst changeovers, thereby underlining the poten-

tial efficiency of this methodology. This feature will enable saving a

large amount of computational effort which would be required in the

huge number of combinations to be considered when mixed-integer for-

mulations are used with the existing preventive methods of handling

uncertainty, especially the stochastic or fuzzy programming approaches.

However, in this formulation, since the number of ODEs scales with the

number of scenarios involved, if a large number of scenarios are considered,

as would be needed to sufficiently take uncertainty into account, the number

of ODEs in the formulation would become very large. The use of the feasible

path approach implies considerable computational effort is spent in solving

each differential equation to a high accuracy in each iteration of the opti-

misation, even in those iterations away from the optimal solution. Hence,

the computational time is expected to be large for this solution methodology.

While this can be perceived as a drawback of this solution methodology,

it is highlighted that the scalability of the formulation can be exploited to
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reduce computation time. With the advent of parallel computing and high

performance computing facilities in today’s world, each ODE set or even

each differential equation can be simulated entirely on a separate computer.

Further, any required gradient evaluations can be parallelised within the

computer on which each simulation occurs.

Another limitation is that since this is a non-convex problem, only local

optima can be obtained by the proposed methodology. Thus, several runs

using different start points have to be performed to identify the global op-

timum. The high performance and parallel computing facilities would make

such a task feasible as well.

The preceding discussion suggests that the proposed solution methodol-

ogy has the potential to effectively solve the problem under consideration in

this paper while overcoming the drawbacks that would be introduced by the

use of mixed-integer optimisation techniques in the conventional method-

ologies of solving this problem. In the next set of sections, the proposed

formulation and solution methodology are applied to identify the effects of

uncertainties in kinetic parameters on the optimal solutions through different

case studies.

4. Case Studies: Problem formulation

It is intended to use case studies to examine the effects of uncertainty

in values of the kinetic parameters in the optimisation of the scheduling of

changeovers of decaying catalysts in an industrial process in tandem with

the planning of its operating conditions and sales to meet seasonal demand.

These case studies are derived from a modification of a case study in a pre-

vious work by Adloor et al. (2020) to include uncertainty in the kinetic

parameters.
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The work by Adloor et al. (2020) proposed an optimal control approach

to optimise the scheduling of changeovers of decaying catalysts in tandem

with the operating conditions and sales to meet seasonal demand. In what

was an unrealistic assumption, all parameters values were considered to be

known exactly and a deterministic MSMIOCP formulation, of structure sim-

ilar to that of equation (4), was developed. The MSMIOCP formulation of

one of the case studies investigated in that work is given in Appendix B.

In this work, the case study in Appendix B is modified to include un-

certainty in the kinetic parameters, and to identify the effect of these uncer-

tainties on the optimal maintenance schedule and production operations, the

following case studies are investigated:

Case Study A: Effect of uncertainty in the catalyst deactivation rate con-

stant, Kd

Case Study B: Effect of uncertainty in the pre-exponential factor, Ar, of the

product formation reaction

Case Study C: Effect of uncertainty in the activation energy, Ea, of the

product formation reaction

Case Study D: Parametric uncertainty study that considers the effect of si-

multaneous uncertainty in all kinetic parameters and the number of scenarios

generated

The procedure that will be used to solve all these case studies, is to

first develop an MSMIOCP formulation of this industrial problem, of the

structure of equation (4), and then apply the solution methodology proposed

in Section 3.
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For the MSMIOCP formulation of this industrial problem, the case study

presented in Appendix B will be used equivalently, with the exception that

either one or all of the kinetic parameters Kd, Ar and Ea are uncertain,

depending in the case study. In the following text, the first part of the so-

lution methodology is applied by developing a stochastic formulation of this

industrial problem by using this MSMIOCP formulation as basis. In this

stochastic MSMIOCP formulation, all kinetic parameters are considered un-

certain and hence, it pertains to Case Study D. The stochastic formulations

for Case Studies A, B and C are derived from minor modifications of this

formulation, and these modifications will be detailed later.

As mentioned in Section 3, this stochastic MSMIOCP formulation incor-

porates parametric uncertainty by generating multiple scenarios, with each

uncertain parameter taking a particular value within a pre-specified range

in each scenario. Here, the total number of scenarios generated is given by

NS. The kinetic parameters of the catalyst deactivation rate constant, the

pre-exponential factor and the activation energy of the product formation

reaction generated in scenario z ∈ {1, 2, . . . , NS} of this formulation are rep-

resented by K̃dz, Ãrz and Ẽaz, respectively and these are the counterparts

of Kd, Ar and Ea, respectively, in the MSMIOCP formulation.

Following from Section 3, the decision variables in this stochastic formu-

lation remain the same as in a deterministic formulation and so the same ter-

minology as in Appendix B, applies here for the decision variables. The cat-

alyst changeover decision variables, y(i), for each month i ∈ {1, 2, . . . , NM},
corresponds to the binary control u in equation (5f). The decisions of the

amount of reactor feed flow rate, ffr(i, j), temperature of operation, T (i, j)

and quantity of sales, sales(i, j) for each week, j ∈ {1, 2, 3, 4}, of each month

i ∈ {1, 2, . . . , NM}, correspond to the continuous control v in equation (5g).
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However, as per Section 3, the unique kinetic parameter values in each

scenario lead to a corresponding unique set of state variables and their de-

riving ODE systems, comprised of ODEs, initial conditions and junction

conditions. The state variables of catalyst activity, reactant exit concen-

tration, inventory level and cumulative inventory costs attained in scenario

z ∈ {1, 2, . . . , NS}, are represented by the symbols ˜cat−actz, c̃Rz, ĩnlz and

˜cum−incz, respectively, and these are the counterparts of cat−act, cR, inl

and cum−inc, respectively, in the MSMIOCP formulation. The ODE sys-

tems for each of these state variables, in each scenario z ∈ {1, 2, . . . , NS} are

presented next. The explanations for their formulation are similar to that of

their MSMIOCP counterparts and can be found in Appendix B.

The ODEs for each state variable in each scenario z ∈ {1, 2, . . . , NS}, of

the form of equation (5b), are given by equations (6) – (9) and these are the

counterparts of ODEs (B.4), (B.7) – (B.9), respectively, in the MSMIOCP

formulation. These ODEs are to be solved repeated over a weekly time span,

over each week j ∈ {1, 2, 3, 4}, of month i ∈ {1, 2, ..., NM} of the time

horizon.
d
(

˜cat−actz
)

dt
= y(i)×

[
−K̃dz × ˜cat−actz

]
(6)

d
(
V × c̃Rz

)
dt

= ffr(i, j)×
(
CR0− c̃Rz

)
− y(i)×

[
V × Ãrz × exp

(
− Ẽaz
Rg × T (i, j)

)
× ˜cat−actz × c̃Rz

]
(7)

d
(
ĩnlz

)
dt

= y(i)×
[
V × Ãrz × exp

(
− Ẽaz
Rg × T (i, j)

)
× ˜cat−actz × c̃Rz

]
(8)
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d
(

˜cum−incz
)

dt
= ĩnlz × icf (9)

The initial conditions for week 1 of month 1 for each of the state variables,

in each scenario z ∈ {1, 2, . . . , NS}, of the form of equation (5c), are given

by equations (10) – (13) and are the counterparts of initial conditions (B.11)

– (B.14), respectively, in the MSMIOCP formulation:

init− ˜cat−actz (1, 1) = start−cat−act (10)

init−c̃Rz (1, 1) = CR0 (11)

init−ĩnlz (1, 1) = 0 (12)

init− ˜cum−incz (1, 1) = 0 (13)

The junction conditions that link the state variable values between any

two consecutive weeks in each scenario z ∈ {1, 2, . . . , NS}, of the form

of equation (5d), are given by equations (14) – (17) and these are the

counterparts of the junction conditions (B.15) – (B.18), respectively, in the

MSMIOCP formulation:

init− ˜cat−actz (i, j + 1) = end− ˜cat−actz(i, j)
∀j = 1, 2, 3 ∀i = 1, 2, . . . , NM

(14a)

init− ˜cat−actz (i, 1) =
[
y(i)× end− ˜cat−actz(i− 1, 4)

]
+ [(1− y(i))× start−cat−act]

(14b)

∀i = 2, 3, . . . , NM

init−c̃Rz (i, j + 1) = end−c̃Rz(i, j)

∀j = 1, 2, 3 ∀i = 1, 2, . . . , NM
(15a)
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init−c̃Rz(i, 1) =
[
y(i)× end−c̃Rz(i− 1, 4)

]
+ [(1− y(i))× CR0]

∀i = 2, 3, . . . , NM
(15b)

init−ĩnlz (i, j + 1) = end−ĩnlz(i, j)− sales(i, j)
∀j = 1, 2, 3 ∀i = 1, 2, . . . , NM

(16a)

init−ĩnlz (i, 1) = end−ĩnlz(i− 1, 4)− sales (i− 1, 4)

∀i = 2, 3, . . . , NM
(16b)

init− ˜cum−incz (i, j + 1) = end− ˜cum−incz(i, j)
∀j = 1, 2, 3 ∀i = 1, 2, . . . , NM

(17a)

init− ˜cum−incz (i, 1) = end− ˜cum−incz(i− 1, 4)

∀i = 2, 3, . . . , NM
(17b)

The constraints in this stochastic formulation, of the form of equation

(5e), are formulated on the basis that only the averages of the sets of con-

straints generated over all scenarios are required to be fulfilled. Among the

constraints in the MSMIOCP formulation, given by (B.19) – (B.27) in Ap-

pendix B, only constraints (B.26) and (B.27) are influenced by the generation

of multiple scenarios. Hence, in this stochastic MSMIOCP formulation, con-

straints (B.19) – (B.25) apply as in the MSMIOCP formulation, while con-

straints (B.26) and (B.27) are modified into their stochastic counterparts,

given by equations (18) and (19), respectively:

1

NS

[
NS∑
z=1

end− ˜cat−actz (i, 4)

]
≥ min−cat−act (18)

1

NS

[
NS∑
z=1

end−ĩnlz(i, j)

]
− sales(i, j) ≥ 0 (19)

And finally, the objective function of the stochastic formulation, of the

form of equation (5a), is formulated. It is highlighted that among the com-
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ponents of the objective function in the MSMIOCP formulation, given by

equations (B.28) – (B.37), only the Total Inventory Cost (TIC), given by

equation (B.30), is influenced by the generation of multiple scenarios and its

counterpart in the stochastic formulation is given by equation (20):

T̃ ICz = end− ˜cum−incz(NM, 4)

∀z = 1, 2, . . . , NS
(20)

As per the proposed solution methodology, only the average of the net

inventory costs over all scenarios will be included in the objective function

of the stochastic formulation. The remaining components of this objective

function are the same as those given by (B.28), (B.29) and (B.31) – (B.37)

in the MSMIOCP formulation, as these are not influenced by the generation

of multiple scenarios. Thus, the objective function in this stochastic formu-

lation, which is the counterpart of (B.38) in the MSMIOCP formulation, is

given by equation (21):

min NCs = −GRS+

[
1

NS

(
NS∑
z=1

T̃ ICz

)]
+ TCCC+ NPUD+ TFC (21)

where GRS is the Gross Revenue from Sales, TCCC is the Total Cost of

Catalyst Changeovers, NPUD is the Net Penalty for Unmet Demand, TFC

is the Total Flow Cost and NCs is the Net Cost in this stochastic formulation.

This concludes the formulation of the stochastic MSMIOCP for Case

Study D, wherein all kinetic parameters are considered uncertain. The

stochastic MSMIOCP formulation to be used for Case Study A is largely

similar to that of Case Study D with the exception that because Kd is the

only uncertain parameter involved, the pre-exponential factor and activation

energy values in the formulation are fixed to their deterministic values of Ar

and Ea, respectively, which are assumed to be known. That is, the stochastic
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MSMIOCP formulation of Case Study A is a special case of Case Study D,

wherein Ãrz = Ar, ∀z ∈ {1, 2, . . . , NS} and Ẽaz = Ea,∀z ∈ {1, 2, . . . , NS}.

Similarly, in Case study B where Ar is the only uncertain parameter, the

stochastic MSMIOCP formulation is a special case of Case Study D, wherein

K̃dz = Kd,∀z ∈ {1, 2, . . . , NS} and Ẽaz = Ea,∀z ∈ {1, 2, . . . , NS}, where

Kd, is the known, deterministic value of the catalyst deactivation rate con-

stant. And, in Case study C where Ea is the only uncertain parameter, the

stochastic MSMIOCP formulation is a special case of Case Study D, wherein

K̃dz = Kd,∀z ∈ {1, 2, . . . , NS} and Ãrz = Ar, ∀z ∈ {1, 2, . . . , NS}.

The impact of parametric uncertainty in all case studies is analysed by

solving sub-problems within each case study. That is, the results of all sub-

problems of the case study together represent the impact of the considered

parametric uncertainty in that case study. Depending on the case study, the

sub-problems differ either in the range of values considered for the uncertain

parameter or the number of scenarios. The details of the sub-problems in-

vestigated in each case study follow next.

In both, Case Study A and Case Study B, wherein Kd and Ar are the

uncertain parameters, respectively, three sub-problems are examined, that

consider values for Kd and Ar in the ranges of 10%, 20% and 30% relative

standard deviations (RSDs) around the means assumed to be Kd and Ar,

respectively. In each of these sub-problems, NS = 20 scenarios are sampled

from the respective ranges.

In Case Study C, wherein Ea is the uncertain parameter, three sub-

problems are again examined, but because Ea appears within an exponential

function in the model, smaller ranges of 5%, 7.5% and 10% RSDs around the

mean assumed to be Ea, are considered. Once again, in each sub-problem,
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NS = 20 scenarios are sampled from the respective ranges.

And in the parametric uncertainty study of Case Study D, five sub-

problems are examined that consider NS values of 5, 10, 15, 20 and 25.

For each of these sub-problems, the respective number of scenarios are sam-

pled from only one range of values for each uncertain parameter: 10% RSD

around the mean, Kd, for Kd, 10% RSD around the mean, Ar, for Ar and

5% RSD around the mean, Ea, for Ea.

The stochastic MSMIOCP formulated in each sub-problem of each case

study is solved using the second part of the proposed solution methodology.

That is, each is solved as a series of standard MSOCPs using the feasible

path approach, by applying the procedure of Implementation II, as given in

Appendix A, and solving a set of problems of the following form:

Gk : min

[
NCs +Mk

NM∑
i=1

y(i) [1− y(i)]

]
k = 1, 2, 3 . . .

(22)

In each problem, Gk (k = 1, 2, 3 . . .), of the above series, the appropriate

ODEs, initial conditions, junction conditions and constraints apply, depend-

ing on the case study. As per this procedure, if in the solution of Gk, the

condition, y(i) ∈ {0, 1}, i = 1, 2, . . . NM , does not apply, then problem Gk+1

is solved using the solution of Gk as initial guesses, with weight Mk+1 > Mk.

Details of the parameters that apply for all case studies, the size of the

sub-problems for all case studies, and the implementation on Python are

given in Appendix C. It is noted that in all sub-problems of all case studies,

the initial guesses for the decision variables in the first problem (major iter-

ation) of the series (k = 1) in the optimisation were set to their respective

upper bounds. And for the choice of parameters used in this article, the
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weight term in equation (22) is increased as per the arithmetic progression

in equation (23):

Mk+1 = (2×Mk) +
(
5× 107

)
M1 = 0

k = 1, 2, 3 . . .

(23)

In the next section, the results obtained for all sub-problems of all case

studies are discussed.

5. Results and discussions

It was found that the proposed solution methodology faced no difficul-

ties in obtaining solutions for any sub-problem in any of the case studies,

regardless of the ranges of the uncertain parameters considered or number

of scenarios involved. In each sub-problem, the ODEs were solved to the

specified integration tolerances and the optimisation converged to within the

stipulated tolerances, thereby underlining the high quality of solutions ob-

tained.

In each sub-problem, the variations of the decision and state variables

over the time horizon were very similar to those obtained in the determinis-

tic (single scenario) study done in Adloor et al. (2020). Hence, these are not

discussed here. The reader is referred to the work by Adloor et al. (2020) for

a presentation and explanation of the trends of these variables over the time

horizon.

The major impacts of parametric uncertainties were seen in the values

of objective functions and the time and frequency of catalyst replacements.

These properties showed variations between different sub-problem within the

same case study as well as in comparison to a deterministic (single scenario)

optimisation run performed using the same initial points.
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Table 1: Deterministic run solution details

Property Value

Profit (Million $) 447.139

Number of catalyst replacements 4

Months of catalyst replacements 7, 14, 19, 26

Number of major iterations 2

Solution time (seconds) 9183

The deterministic (single scenario) case was run using the values of Kd,

Ar and Ea for the catalyst deactivation rate constant, pre-exponential fac-

tor and activation energy for the product formation reaction, respectively.

Details of the solution obtained from this deterministic run, using the same

initial points as in all case studies, are given in Table 1. It is noted that the

value of “Profit” in Table 1 is equivalent to the value, in the optimal solution,

of −NC, where NC is given by equation (B.38).

The properties of the results of the sub-problems of the four case studies,

analogous to the properties of the deterministic solution in Table 1, are given

in Tables 2 – 5. It is noted that the value of “Mean profit over all scenarios”

in these tables is equivalent to the value, in the optimal solution, of −NCs,

where NCs is the net costs in the examined sub-problem of the case study,

of the form of equation (21). The effects of uncertainty considered in each

case study will be analysed by making a comparison between the results of

the sub-problems of the case study, as well as comparing the results of these

sub-problems with that of the deterministic run.

5.1. Case Study A

Details regarding the solutions obtained from the sub-problems investi-

gated in this case study are given in Table 2 and Figure 3. As can be seen in
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Table 2, the inclusion of uncertainty in Kd introduces significant differences

in comparison to the deterministic solution presented in Table 1.

The expected (mean) profits in the sub-problems of 10%, 20% and 30%

RSDs about Kd show a considerable decrease of about 29, 28 and 27 million

dollars, respectively, from the deterministic solution. It is noted that while

the expected profits increase with an expansion in the range of values con-

sidered, the increase between sub-problems is relatively small, showing an

increase of about 2 million dollars for an expansion in range from 10% RSD

to 30% RSD. This suggests that while consideration of uncertainty in Kd

does have an impact on the profits of the process, the sensitivity of profits

to further change in values of Kd is relatively less. The low sensitivity to

change in Kd is also indicated in the small values of the RSDs of the profits

generated over all scenarios for all sub-problems.

The RSD values increase as the range of values considered in the sub-

problems increases, which is natural. This is also reflected in the increasing

difference between the maximum and minimum profits generated over all

scenarios as the range of values considered in the sub-problems increases.

It is highlighted that the RSDs of the profits generated over all scenarios

are of small magnitudes in all case studies. This can be attributed to the

fact that it is only the inventory costs that are impacted by the generation

of multiple scenarios and as mentioned in Adloor et al. (2020), these costs

form the smallest proportion of the total expenses. However, different mag-

nitudes are observed in different case studies, which suggests different levels

of sensitivity of the profits to the change in values of different parameters.

Figure 3 provides an insight into the correlation between the profit and

the value of Kd over all scenarios, for each sub-problem. Within all sub-
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Figure 3: The correlation between value of Kd and profit over all scenarios for the three
sub-problems

problems, the profits seem to increase in a linear manner with the increase

in value of Kd. This does not mean a generalisation that a higher value of

Kd always leads to higher profit. It only implies that for a set of optimal

decisions obtained in a particular sub-problem considering a set of scenarios,

the nature of equations in the process model is such that the scenario con-

taining a higher value of Kd attains a larger profit.

The number of catalyst replacements and the months in which they oc-

cur are the same for all sub-problems in this case study, indicating that

these properties are not sensitive to a change in the range of uncertainty

for Kd. But the number of catalyst replacements occurring in all of these

sub-problems is 3, which is one less than in the deterministic case. How-

ever, the months in which these 3 catalyst replacements occur, are the same

as the months of 3 of the 4 catalyst replacements in the deterministic case.
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Thus, compared to the deterministic case, the inclusion of uncertainty in Kd

causes a change in the number of catalyst replacements, but does not cause

a variation in the preferred months of catalyst replacement.

The presence of uncertainty in Kd also causes the penalty term homotopy

technique in the procedure of Implementation II to operate differently com-

pared to in the deterministic study. Each sub-problem here requires 4 major

iterations, or 4 problems of the series given by equation (22) to be solved, to

ensure binary values for the catalyst changeover controls. This is different

from the deterministic study that required only 2 such major iterations.

The use of several different scenarios to consider parametric uncertainty

causes the size of the ODE system to be solved in each of these sub-problems

to become several times larger than that of the deterministic study (Ta-

ble C.8). This causes the solution time for each of these sub-problems to be

much larger than that of the deterministic study.

5.2. Case Study B

Details of the solutions obtained from the sub-problems investigated in

Case Study B are given in Table 3 and Figure 4. It is seen that the inclusion

of uncertainty in Ar also introduces differences in comparison to the deter-

ministic solution.

Compared to the profit in the deterministic solution, the expected profit

for the sub-problem of 10% RSD about Ar showed a relatively small dif-

ference of about 0.3 million dollars, but larger differences of about 6 and 8

million dollars are seen for the sub-problems of 20% and 30% RSD about Ar,

respectively. This suggests that uncertainty in Ar can cause significant differ-

ences from the deterministic profit only when larger ranges of uncertainty are

considered. Further, the differences from the deterministic solution are less

than what was seen for similar ranges of uncertainty for Kd in Case Study A.
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This indicates that uncertainty in Ar has a smaller impact on the profits of

the process compared to uncertainty in Kd. Another difference from Case

Study A is that the expected profits decrease as the range of uncertainty for

Ar increases, whereas an opposite trend was seen for uncertainty in Kd.

On the other hand, as the range of uncertainty in Ar is changed, the

change in the value of expected profits, the RSDs of the profits generated

over all scenarios, as well as the difference between maximum and minimum

profits, are larger in comparison to those seen for a similar change of range

in Kd in Case Study A. This suggests that the profits are more sensitive to

a change in value of Ar compared to a change in value of Kd.

As in Case Study A, a natural increase occurs in the RSDs of the profits

generated over all scenarios and the difference between maximum and mini-

mum profits, as the range of uncertainty is increased in this case study.

An insight into the correlation between the profit and the value of Ar

over all scenarios for each sub-problem is provided in Figure 4. Within all

sub-problems, the profits seem to increase with an increase in Ar value, but

unlike in Case Study A, this increase is not linear. Once again, it is stressed

that a higher Ar value in a scenario leading to a higher profit in that scenario

in each sub-problem, arises from the nature of the process model equations

for a fixed set of optimal decisions and is not a trend that can be generalised.

The number of catalyst replacements for all sub-problems in this case

study is the same and is equal to in the deterministic study, thereby suggest-

ing that this property is not affected by the inclusion of uncertainty in Ar.

However, on observing the months in which these replacements occur, the

timing of the second catalyst replacement appears to vary, by occurring in
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Figure 4: The correlation between value of Ar and profit over all scenarios for the three
sub-problems

the 13th month in the sub-problems of 10% and 30% RSD about Ar and in

the 12th month in the sub-problem of 20% RSD about Ar, in comparison to

the 14th month in the deterministic study. The months of all other catalyst

replacements (7, 19 and 26) in all sub-problems are the same as in the de-

terministic study.

Thus, the observation is that even in the presence of uncertainty in Ar,

majority of the catalyst replacements occur at the same time as in the deter-

ministic study, and in the minority of situations when the timing is different,

it is within one or two months of the time suggested in the deterministic

study. This suggests that while the timing of catalyst replacements is im-

pacted by the uncertainty in Ar, the effects are not drastic in the sense that

the timing is only less sensitive to the uncertainty. It is also worth noting

that majority of the months of catalyst replacements here overlap with the
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times suggested in the sub-problems of Case Study A.

As in the deterministic study, all sub-problems in this case study require

two major iterations of the penalty term homotopy technique for the catalyst

changeover controls to attain binary values. However, due to the large ODE

system (Table C.8), the solution times for all these sub-problems are several

times larger than that of the deterministic solution.

5.3. Case Study C

Details of the solutions obtained from the sub-problems investigated in

Case Study C are given in Table 4 and Figure 5. The occurrence of the

uncertain parameter, Ea, in an exponential term, causes the solutions of

the sub-problems in this case study to be significantly different from the

deterministic study, even while considering smaller ranges of uncertainty in

comparison to the previous case studies.

As seen in Table 4, the expected profits for the sub-problems of 5%, 7.5%

and 10% RSD about Ea were lower by approximately 21 million dollars,

higher by approximately 18 million dollars and lower by approximately 4

million dollars respectively, in comparison to the profit of the deterministic

solution. Thus, it can be concluded that uncertainty in Ea has a significant

effect on the expected profit. However, the wide variation in profit values

between sub-problems and the lack of clearly increasing or decreasing trends

makes it difficult to compare the effect on the expected profit of uncertainty

in Ea with that of the other parameters in the previous case studies.

As in the previous case studies, the RSDs of the profits generated over all

scenarios, as well as the difference between maximum and minimum profits

in a sub-problem, increase as the range of uncertainty for Ea increases. How-

ever, the profit RSD values are comparable to or even larger than those of the

parameters in the previous case studies even though ranges of uncertainty
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Figure 5: The correlation between value of Ea and profit over all scenarios for the three
sub-problems

used for Ea are smaller than those of the parameters in those case studies.

This suggests that the profit values are more sensitive to a change in value

of Ea compared to a change in value of Ar or Kd. This can be attributed

to the occurrence of Ea within an exponential term in the process model

against the linear occurrences of Ar and Kd.

The correlation between the profit and the value of Ea over all scenarios

for each sub-problem is given in Figure 5. Within all sub-problems, the prof-

its seem to increase with an increase in Ea value in a linear manner. Once

again, this is not a trend that can be generalised due to reasons similar to

those mentioned in the explanations of the analogous figures (Figures 3 and

4) in the previous case studies.

The number of catalyst replacements in the sub-problem of 7.5% RSD
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about Ea is 4, which is the same as in the deterministic study. But this

number drops to 3 in the sub-problems of 5% and 10% RSD about Ea. This

suggests that this property is susceptible to change with varying ranges of

uncertainty in Ea.

While the number of catalyst replacements in the sub-problem of 7.5%

RSD about Ea is the same as in the deterministic study, the second catalyst

replacement in this sub-problem occurs in the 13th month, in comparison

to the 14th month in the deterministic study. The months of the other 3

catalyst replacements (7, 19 and 26) in the sub-problem are the same as in

the deterministic study and in fact, these overlap with the months of the 3

catalyst replacements in the sub-problems of 5% and 10% RSD about Ea.

Thus, even in presence of uncertainty in Ea, the catalyst replacements occur

mostly at the same time as in the deterministic study or within one month

of the time suggested in the latter, in the minority of cases. This indicates

that while the timing of catalyst replacements is impacted by the uncertainty

in Ea, the sensitivity to uncertainty in Ea is small. The reporting of sim-

ilar observations in other case studies suggests that the timing of catalyst

replacement is less sensitive to the presence of parametric uncertainty.

While the number of major iterations in the penalty term homotopy tech-

nique is 2 in the deterministic study and the sub-problem of 7.5% RSD about

Ea, it is 4 in the sub-problems of 5% and 10% RSD about Ea. As in the

previous case studies, due to the large ODE system (Table C.8), the solution

times for all these sub-problems are several times larger than that of the

deterministic solution.

5.4. Case Study D

Table 5 provides details of the solutions of the sub-problems examined

in Case Study D, that considered the effect of simultaneous uncertainty in

parameters Kd, Ar and Ea while generating different number of scenarios.
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It is noted that the scenarios for each parameter in each sub-problem were

generated independently of each other. For example, in the 10 scenario sub-

problem, the 10 samples for each parameter were generated exclusively for

this sub-problem and not by adding 5 samples to those of the 5 scenario

sub-problem.

As is seen in Table 5, the expected profits show significant variations

between sub-problems, as well as in comparison to the profit in the deter-

ministic study. The expected profits for the 5, 10, 15, 20 and 25 scenario

sub-problems show an increase of about 11 million dollars, a decrease of about

12 million dollars, a decrease of about 24 million dollars, a decrease of about

22 million dollars and an increase of about 12 million dollars, respectively,

from the profit in the deterministic study.

The difference between the maximum and minimum profit over all scenar-

ios in each sub-problem shows a gradual increase as the number of scenarios

considered in the sub-problem increases. The RSDs of the profit values over

all scenarios show slight variations between sub-problems but are mostly

around the value of about 0.1%.

The number of catalyst replacements also shows variations between sub-

problems: while 4 replacements, the same as in the deterministic study, occur

in the sub-problems of 10 and 25 scenarios, only 3 replacements occur in the

sub-problems of 5, 15 and 20 scenarios.

While the number of catalyst replacements in the 10 and 25 scenario

sub-problems are the same as in the deterministic study, the second catalyst

replacement in these sub-problems occurs in the 13th month, in comparison

to the 14th month in the deterministic study. The months of the other 3

catalyst replacements (7, 19 and 26) in these sub-problems are the same as
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in the deterministic study and in fact, these overlap with the months of the

3 catalyst replacements in the sub-problems of 5 and 15 scenarios. In the

20 scenario sub-problem, while the timing of the first catalyst replacement

(7th month) is consistent with that of the deterministic study and all other

sub-problems, the same does not hold for the timings of the second (15th

month) and third (22nd month) replacements. This anomaly in the 20 sce-

nario sub-problem could be because a unique local optimum is attained.

However, apart from a few anomalous cases in the 20 scenario sub-

problem, the observation is that the timings of catalyst replacements in all

sub-problems are mostly the same as in the deterministic study, or within a

month of the timing in the latter in the minority of situations. This suggests

that the sensitivity of the timing of catalyst replacements to the simultane-

ous inclusion of uncertainty in all parameters as well as different number of

scenarios is small, but not nil. This observation reinforces the suggestions

made in the previous sub-sections that the timing of catalyst replacements

is less sensitive to the presence of parametric uncertainty.

The number of major iterations in Implementation II also varies between

sub-problems. The sub-problems of 10 and 25 scenarios require 2 such it-

erations, as in the deterministic study, but the sub-problems of 5 and 15

scenarios require 4 such iterations and the 20 scenario sub-problem requires

6 such iterations.

The solution times for all sub-problems are several times larger than in

the deterministic study, owing to their larger ODE systems compared to the

latter (Table C.8). The 5 scenario sub-problem has the smallest solution time

among all sub-problems, followed by the 10 scenario sub-problem, and this

follows from the size of their respective ODE systems. It may seem counter-

intuitive that the solution time for the 25 scenario sub-problem is smaller
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than those of the 15 and 20 scenario sub-problems, despite the larger size of

the ODE system in the former. This is because a greater number of major

iterations are needed for the 15 and 20 scenario sub-problems (4 and 6, re-

spectively) compared to the 25 scenario sub-problem (which required only 2).

Thus, it is seen that the solutions of all sub-problems show variations from

the deterministic solution and this is an indication of the significant effects

that the inclusion of uncertainty in all parameters simultaneously can pro-

duce. But there are also variations between the solutions of the sub-problems,

each which considered a different number of scenarios, even though all con-

sidered the same range of uncertainty for each uncertain parameter.

The number of major iterations and the solution times for the different

sub-problems can be expected to be different, due to the different sizes of the

ODE systems involved in each sub-problem. However, the variations in the

RSDs of the profits over all scenarios, the number of catalyst replacements,

the months of catalyst replacements and especially the large differences in

the obtained profit values between sub-problems suggest that an insufficient

number of scenarios have been considered to solve this problem. That is, a

much larger number of scenarios have to be considered in order to identify

the optimal schedule of catalyst replacements and production plan under the

given range of uncertainty for each parameter.

5.5. General discussion of results

In this sub-section, a comparative discussion of the results obtained in all

case studies is carried out and some conclusions are drawn.

With regard to the expected profit of the process, a comparison of the re-

sults of the sub-problems of Case Studies A and B indicate that uncertainty

in Ar has a smaller impact compared to uncertainty in Kd. Another notable

trend is that the expected profits decrease as the range of uncertainty for Ar

42



increases, but increase for an increase in range of uncertainty for Kd.

The results of the sub-problems of Case Study C indicate that uncer-

tainty in Ea has a significant impact on the expected profit of the process.

However, with increasing range of uncertainty in Ea, there is no pattern in

the obtained values of the expected profit, in terms of a variation from the

deterministic profit or an increasing or decreasing trend. Hence, no clear

comparisons could be drawn between the impact on the expected profits of

uncertainty in Ea and uncertainty in Kd or Ar.

On the other hand, a comparison of the RSDs of the profits over all sce-

narios indicates that the profits of the process are most sensitive to a change

in value of Ea, the next highest sensitivity is to a change in value of Ar and

the lowest sensitivity is to a change in value of Kd. The highest sensitivity to

a change in Ea could be attributed to the occurrence of Ea in an exponential

term in the process model, against the linear occurrences of Ar and Kd.

However, in the results of the sub-problems of Case Study D, which con-

sidered different number of scenarios, although the RSDs of the profits over

all scenarios are all around the value of about 0.1%, the expected profits

vary widely between the sub-problems, even though all considered the same

range of uncertainty for each uncertain parameter. This indicates that an

insufficient number of scenarios were being considered to solve this problem.

To obtain the actual solution of this problem, a much larger number of

scenarios need to be considered. The number should be large enough, such

that a further increase beyond this number would cause negligible variations

in the solutions. However, the computational power required to consider such

a large number of scenarios is currently not available to the authors and so,

this has not been carried out in this article.
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The conclusion from Case Study D, that a much larger number of scenar-

ios is needed to solve this problem, throws a question on the inferences drawn

from the solutions of Case Studies A, B and C, as these case studies consid-

ered only 20 scenarios, which is certainly not a large number. Therefore, the

apparent observations such as the profits being least sensitive to change in

Kd, or uncertainty in Ar having a smaller impact on expected profit com-

pared to uncertainty in Kd, cannot be concluded to be true unless the same

are observed while considering the required larger number of scenarios.

However, with regard to the the number and timing of catalyst replace-

ments, the results obtained suggest that parametric uncertainty has a small

impact. In the results of the sub-problems of all case studies, the optimal

number of replacements is either 3 or 4, thus showing small or no variation

from the deterministic solution that has 4 replacements. Further, the months

of replacements are mostly similar or within one or two months of the times

in the deterministic solution, apart from in the 20 scenario sub-problem of

Case Study D which can be considered an anomalous result.

This observation suggests that, just by knowing the deterministic solu-

tion, the operator of the process can obtain good estimates of the optimal

number and timing of catalyst replacements, in the presence of parametric

uncertainty. However the fact remains that variations, though small, are seen

in these properties between the results of the different number of scenarios

considered in Case Study D. The consideration of the required larger number

of scenarios can enable obtaining exact values, rather than estimates, of the

optimal values of these properties in the presence of parametric uncertainty.

And finally, it is highlighted that only one set of initial guesses was used

for the optimisation in all sub-problems of all case studies. As the problem

here is non-convex, the solution obtained for each sub-problem is only a local

44



optimum. In order to find the global optimum in each of these problems, the

best solution out of several optimisation runs, each carried out using different

initial guesses, needs to be identified. This would require a huge amount of

computational effort and hence, has not been carried out in this article.

Thus, the results of the different case studies obtained in this article can

be said to provide useful insights into the effects of parametric uncertainty

in this problem while demonstrating the application of the proposed solution

methodology. But these results cannot be concluded as the actual solutions

of these case studies. In order to fully identify the effect of each uncertain

parameter in Case Studies A, B and C, the sub-problems in these case stud-

ies need to be solved while considering a large number of scenarios and by

identifying the global optimum from a set of solutions obtained from several

different initial guesses. Similarly, the global optimum of the parametric un-

certainty problem in Case Study D can be identified from a set of solutions

obtained from several different initial guesses, while considering a large num-

ber of scenarios for each uncertain parameter.

The advantage of the stochastic formulation in the proposed solution

methodology is that only the size of the ODE system increases as the num-

ber of scenarios considered increases and the number of decision variables and

constraints remain the same as in the deterministic case, regardless of the

number of scenarios involved. This property has prevented an explosion in

problem size and facilitated convergence to high quality solutions, within the

stipulated tolerances, for all case studies considered. Thus, the proposed solu-

tion methodology would face no difficulties in obtaining the global optimum

of the aforementioned case studies by considering the required number of

large scenarios and the several different initial guesses, provided the required

computational power is available. The use of high performance computing

and parallel computing facilities would make such a task feasible.
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6. Conclusions and further discussions

In conclusion, the contribution of this paper is the development of a novel

approach that is capable of identifying the optimal maintenance schedule and

production plan for an industrial process using decaying catalysts while con-

sidering uncertainties in the kinetic parameters of the underlying process

model. The novelty of the approach lies in the formulation of this problem

as a multistage mixed-integer optimal control problem (MSMIOCP) which

is solved using a unique two-part solution methodology. This approach can

provide valuable insights into the individual as well as collective effects of

uncertainties on the optimal operations. Further, it can also offer a number

of potential advantages over the conventional methods of solving problems of

this category, by overcoming the drawbacks introduced by the use of mixed-

integer optimisation techniques in those methods.

Further discussions can be drawn regarding the proposed methodology.

In the multiple scenario approach used here, it is assumed that the scenario

probability distribution is not known and all scenarios are assumed to be of

equal probability. If an unequal scenario probability distribution is known, a

stochastic MSMIOCP formulation similar to that used in this paper could be

developed while using a weighted average of the constraints and the objective

function, wherein the weight corresponding to a scenario is proportional to

the probability of occurrence of that scenario.

In addition, using a multiple scenario approach and formulating a stochas-

tic MSMIOCP is just one way of considering uncertainty. Uncertainty can be

incorporated into an initial MSMIOCP formulation by using the other pre-

ventive methods, such as robust optimisation and parametric programming,

and the resulting formulation can then be solved as a standard nonlinear op-

timisation problem using a procedure of the principle of Implementation II.

It would be interesting to compare the results obtained using such formula-
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tions with those of the stochastic MSMIOCP formulation in this paper.

Discussion can also be drawn regarding the future applications of the

approach developed in this article. While the case studies examined in this

article assume that the catalyst deactivation rate constant is independent of

temperature, such an assumption may not apply in applications of biochem-

ical engineering, for example. It is sought to apply the proposed approach

to optimise scheduling and production in a process while considering uncer-

tainty in a deactivation rate parameter that is dependent on temperature.

Further, while the article here considers a process containing only a single

reactor, it is common for processes to have multiple reactors operating in

parallel and a recent work by Adloor and Vassiliadis (2020) considered the

optimisation of maintenance scheduling and production in such a set up, but

assumed all kinetic parameters involved to be known and fixed in value. It

is sought to apply the proposed approach in order to understand the effects

that uncertainties in kinetic parameters could have on the optimal operation

of such a set up.
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Appendix A. Implementation II details

This section presents the details of Implementation II, a procedure to

solve the stochastic MSMIOCP as a standard nonlinear optimisation prob-

lem, without using mixed-integer methods. This procedure was derived in a

previous work by Adloor et al. (2020) to solve the deterministic version of

the problem under consideration in this paper and the details presented in
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this section are very similar to the procedure details in that work.

In this procedure, the integer restrictions on the binary controls, u(p) for

stage p, in equation (5f), are relaxed and these controls are instead considered

as continuous variables that vary between 0 and 1. That is:

u(p) ∈ [0, 1]

p = 1, 2, . . . , NP
(A.1)

Thus now, the formulation is free from binary variables and only a stan-

dard multistage optimal control problem (MSOCP) has to be solved using the

feasible path approach, which can be done using any nonlinear optimisation

algorithm. A penalty term homotopy technique, similar to that suggested by

Sager (2005, 2009) is used to enforce the 0 or 1 values for the controls, u(p),

for stage p. As per this technique, a monotonically increasing penalty term

is added to the objective function in equation (5a) and a series of MSOCPs

of the following generic form are solved:

Fk : min

[
Ws +Mk

NP∑
p=1

u(p)
[
1− u(p)

]]
(A.2)

subject to equations (5b) – (5e), (A.1) and (5g), for

k = 1, 2, 3 . . .

M1 = 0

Every iteration, k, is referred to as ‘major iteration’. The first major itera-

tion (k = 1) of the series is designated a weight of M1 = 0 and is similar to

solving the problem given by equation (5), the only difference being there are

no integer restrictions on controls u. If solving problem F1 does not produce

binary values for controls u, the second major iteration occurs in which a

weight M2 > 0 is chosen and problem F2 is solved using the solution of F1 as
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starting values. This procedure is repeated in an iterative manner, by choos-

ing a weight Mk+1 > Mk and solving problem Fk+1 with the solution of Fk as

initial guesses, until iteration K (K ≥ 1) such that all controls in u, in the so-

lution of problem FK , are forced by weight MK to take values of either 0 or 1.

The progression for the increase of weights, Mk, is chosen arbitrarily, by

trial and error, and is dependent on the parameters of the problem. It should

be remembered that if the weight is increased too slowly, the computational

time becomes large, while if it is increased too fast, the optimiser can fail to

recognise a solution and continue iterations indefinitely.

Appendix B. Deterministic case study details

This section presents the elements of a case study of an industrial process

examined in a previous work by Adloor et al. (2020). This case study was

developed on the basis of an MSMIOCP formulation, of structure similar to

equation (4), and is deterministic in the sense that its elements involve no

parametric uncertainty. This formulation is used for the development of the

MSMIOCP formulation, of the structure of equation (4), and the stochastic

MSMIOCP formulation, of the structure of equation (5), of the case studies

in Section 4 wherein the kinetic parameters are considered uncertain.

In the industrial problem, the following assumptions apply:

1. The industrial process operates over a fixed time horizon, in the order

of years. Each year is constituted by 12 months and there are a total

of NM months, wherein each month is constituted by 4 weeks.

2. The industrial process functions according to a certain process model

and is subject to operating constraints.

3. The reactor containing the deactivating catalyst is a Continuous Stirred

Tank Reactor (CSTR) that is of known and fixed volume.
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4. The catalyst performance decays with time and has to be replaced

before its activity falls below a certain minimum value.

5. The catalyst deactivation kinetics is first order with respect to the

catalyst activity and is independent of the concentration of the reacting

species. That is, the deactivation rate equation is of general form:

d (cat−act)

dt
= −Kd× cat−act (B.1)

where Kd is the deactivation rate constant and cat−act is the activity

of the catalyst.

6. The catalyst deactivation rate constant is taken to be independent of

the temperature of operation.

7. There is a maximum number of catalyst loads that can be used over

the given time horizon.

8. All available catalysts exhibit identical functioning and performance.

9. The time required to shut down the process, replace the catalyst and

restart the process is taken to be one month, during which time no

production occurs.

10. The main reaction is assumed to be of the form:

R→ Q (B.2)

where R is the reactant and Q is the desired product. The reaction rate

is considered separable from the catalyst activity and is first order with

respect to the concentration of the reactant, R. That is, the reaction

rate equation is of general form:

KR × cat−act× cR (B.3)
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where KR is the reaction rate constant, cat−act is the catalyst activity

and cR is the concentration of reactant exiting the reactor.

11. The reaction rate constant is taken to exhibit an Arrhenius form of

temperature dependence.

12. The feed inlet concentration is taken to be known and constant.

13. The flow rate of raw material to the reactor has to be specified on a

weekly basis.

14. The flow rate of raw material to the reactor has an upper limit during

catalyst operation and is stopped when the catalyst is being replaced.

15. The temperature of the reactor has to be specified on a weekly basis.

16. The temperature of the reactor can be operated only within fixed

bounds during catalyst operation and is set to its lower bound dur-

ing catalyst replacement.

17. The product is produced and stored continuously as inventory.

18. The product produced is sold on a weekly basis.

19. The seasonal demand figures for the product are given.

20. The sales for each week is less than or equal to the customer demand

for the product in that week.

21. There is a penalty corresponding to the unmet demand in each period.

22. The costs involved in the process are known and are subject to a known

value of annual inflation. These include the sales price of the product,

the cost of inventory, the cost of flow and raw material, the cost of

catalyst changeover and the penalty for unmet demand.
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Given the above assumptions, the optimisation model must determine

the following values, which constitute the controls of the MSMIOCP:

(i) The catalyst changeover decision variable, y(i), for each month, i, which

determines whether a catalyst is in operation (y(i) = 1) or being re-

placed (y(i) = 0) during that month.

(ii) The feed flow rate to the reactor, ffr(i, j), during each week, j, of each

month, i.

(iii) The temperature of operation of the reactor, T (i, j), during each week,

j, of each month, i.

(iv) The amount of product sold, sales(i, j), at the end of each week, j, of

each month, i.

In the above list, j ∈ {1, 2, 3, 4} and i ∈ {1, 2, ..., NM}. The catalyst

changeover decisions correspond to the binary controls u in equation (4f)

while the other decision variables correspond to continuous controls v in

equation (4g).

The state variables that characterise the MSMIOCP formulation of this

industrial process include

(i) the catalyst activity, cat−act

(ii) the concentration of the reactant at the exit of the reactor, cR

(iii) the inventory level, inl

(iv) the cumulative inventory costs, cum−inc

These state variables are determined by the decision variables’ values

at any time using a set of Ordinary Differential Equations (ODEs) which

constitute the process model. In the following, ODEs of the form of equation
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(4b), which apply for week j ∈ {1, 2, 3, 4} of month i ∈ {1, 2, ..., NM} of the

process are formulated:

1. The catalyst activity decays according to a deactivation rate law given

by equation (B.1) during times of catalyst operation (y(i) = 1) but

experiences no change during times of catalyst replacement (y(i) = 0),

when there is no production occurring. Thus, the differential equation

for the catalyst activity, accounting for both scenarios, takes the form:

d (cat−act)

dt
= y(i)× [−Kd× cat−act] (B.4)

2. The reactor is assumed to be completely stirred and so the reactant exit

concentration (cR) is obtained from the generic mass balance equation

of a CSTR during months of catalyst operation (y(i) = 1), with the

rate of reaction given by equation (B.3). However, during months of

catalyst replacement (y(i) = 0), no reaction occurs and the reactor is

assumed to be filled with fresh, unreacted reactant at the entry con-

centration (CR0), to be used by the new catalyst after replacement.

The differential equation that accounts for both scenarios is given by:

d (V × cR)

dt
= ffr(i, j)× (CR0− cR)

− y(i)× [V ×KR × cat−act× cR]

(B.5)

where V is the volume of the reactor and KR is the rate constant. Here

KR is assumed to exhibit an Arrhenius form of temperature depen-

dence, of the form:

KR = Ar × exp
(
− Ea

Rg × T (i, j)

)
(B.6)

where Ar is the pre-exponential factor, Ea is the activation energy for

the reaction and Rg is the universal gas constant. Equations (B.5) and
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(B.6) are combined to form a single equation:

d (V × cR)

dt
= ffr(i, j)× (CR0− cR)

− y(i)×
[
V × Ar × exp

(
− Ea

Rg × T (i, j)

)
× cat−act× cR

]
(B.7)

3. It is assumed that whatever product is produced is stored as inventory

before being sold at the end of the week. During catalyst operation

(y(i) = 1), the increase in inventory level at any time depends on the

rate of production (volume times reaction rate) of the product chem-

ical, but during catalyst replacement (y(i) = 0), there is no increase

in inventory level. Hence, the differential equation that provides a de-

scription of the inventory level (inl) for both scenarios is given by:

d (inl)

dt
= y(i)×

[
V × Ar × exp

(
− Ea

Rg × T (i, j)

)
× cat−act× cR

]
(B.8)

4. Finally, the increase in the cumulative inventory cost (cum−inc) at any

time depends on the inventory level at that time and the Inventory Cost

Factor (icf) (adjusted for inflation), which stipulates the cost per unit

product per unit time:

d (cum−inc)

dt
= inl × icf (B.9)

The icf at any time is given by the following equation:

icf = base−icf × (1 + inflation)bi/12c (B.10)

where base−icf is the inventory cost factor before inflation, inflation is the

annual inflation rate and b·c is the greatest integer function.
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The set of ODEs are solved repeatedly over a weekly time span, which

corresponds to one stage of the MSMIOCP. In order to solve these ODEs,

for each stage, suitable initial conditions have to be provided. The initial

conditions for week 1 of month 1 are assumed to be known and are of the

form of equation (4c). The initial conditions for the other stages are obtained

using junction conditions between two successive stages of the process, of the

form of equation (4d).

The initial conditions corresponding to week 1 of month 1, represented

as init−var(1, 1) for variable var, are as follows:

1. The initial catalyst activity is that of a fresh catalyst (start−cat−act):

init−cat−act (1, 1) = start−cat−act (B.11)

2. At the start of the process, the reactor is filled with the reactant R at

its entry concentration CR0. Hence, the initial exit concentration is

given by:

init−cR (1, 1) = CR0 (B.12)

3. There is no inventory at the beginning of the process, and so:

init−inl (1, 1) = 0 (B.13)

4. There is no inventory at the start of the process and so the initial

cumulative inventory cost is given by:

init−cum−inc (1, 1) = 0 (B.14)

The junction conditions are described next. These junction conditions

differ depending on whether the catalyst is in operation (y (i) = 1) or is
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being replaced (y (i) = 0) during that month. In the following text, the

expressions init−var (i, j) and end−var (i, j) indicate the initial and end

values, respectively for the variable var, for week j of month i:

1. During months of catalyst operation (y (i) = 1), the initial catalyst ac-

tivity for the week corresponds to the catalyst activity at the end of

the previous week. However, during months of catalyst replacement

(y (i) = 0), the catalyst activity has to be reset to the activity corre-

sponding to that of a fresh catalyst, which remains the same throughout

the duration of month i. The junction conditions that describe both

scenarios is given by:

init−cat−act (i, j + 1) = end−cat−act(i, j)

∀j = 1, 2, 3 ∀i = 1, 2, . . . , NM
(B.15a)

init−cat−act (i, 1) = [y(i)× end−cat−act(i− 1, 4)]

+ [(1− y(i))× start−cat−act]
(B.15b)

∀i = 2, 3, . . . , NM

2. During months of catalyst operation (y (i) = 1), the exit concentration

for the beginning of a week corresponds to the exit concentration at the

end of the previous week. And during months of catalyst replacement

(y (i) = 0), the reactor is filled with reactant at entry concentration

CR0, ready to be used by the fresh catalyst at the beginning of the

next month. So, the junction conditions take the form:

init−cR (i, j + 1) = end−cR(i, j)

∀j = 1, 2, 3 ∀i = 1, 2, . . . , NM
(B.16a)
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init−cR(i, 1) = [y(i)× end−cR(i− 1, 4)] + [(1− y(i))× CR0]

∀i = 2, 3, . . . , NM

(B.16b)

3. At the end of a week, an amount, sales(i, j) of the stored product is

sold. Thus, the initial inventory level for the week corresponds to the

inventory present after the sales at the end of the previous week. The

following junction conditions apply during months of catalyst operation

as well as catalyst replacement, as the sales do not cease at any time:

init−inl (i, j + 1) = end−inl(i, j)− sales(i, j)
∀j = 1, 2, 3 ∀i = 1, 2, . . . , NM

(B.17a)

init−inl (i, 1) = end−inl(i− 1, 4)− sales (i− 1, 4)

∀i = 2, 3, . . . , NM
(B.17b)

4. The inventory cost accumulated until the beginning of a week is equal

to the value of the inventory cost accumulated until the end of the

previous week and the following junction conditions apply regardless

of whether the catalyst is being used or replaced:

init−cum−inc (i, j + 1) = end−cum−inc(i, j)

∀j = 1, 2, 3 ∀i = 1, 2, . . . , NM
(B.18a)

init−cum−inc (i, 1) = end−cum−inc(i− 1, 4)

∀i = 2, 3, . . . , NM
(B.18b)

The initial conditions (B.11) – (B.14) and junction conditions (B.15) –

(B.18) enable a solution for the ODEs for all stages, and thereby obtain the

values of the state variables for the entire time horizon. These are then used
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to compute the values of some of the constraints and the objective function

of the problem, whose formulations are described next.

The constraints, of the form equation (4e), that apply to this industrial

problem for week j ∈ {1, 2, 3, 4} of month i ∈ {1, 2, ..., NM} are as follows:

1. In the context of solving the MSMIOCP as a series of standard MSOCPs

using the feasible path approach, the catalyst changeover decision vari-

ables y(i), for a month i, are considered continuous variables that vary

between 0 and 1, and so the following bounds are imposed:

0 ≤ y(i) ≤ 1 (B.19)

2. The flow rate of raw material to the reactor has an upper limit (FUp)

at which it can operate. Hence, the following bounds are set on the

feed flow rate for each week:

0 ≤ ffr(i, j) ≤ FUp (B.20)

3. The sales in each week are assumed to be less than or equal to the de-

mand for the product in that week (demand(i, j)). Hence, the following

bounds on the sales at the end of each week are imposed:

0 ≤ sales(i, j) ≤ demand(i, j) (B.21)

4. The temperature of the reactor operates between known, fixed lower

and upper bounds, TLo and TUp, respectively. Hence, the following

bounds are set on the weekly temperature of operation of the reactor:

TLo ≤ T (i, j) ≤ TUp (B.22)

5. During times of catalyst replacement, the process is shut down and so
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the flow of raw material to the reactor stops. The following constraint

ensures that the weekly feed flow rate remains below the upper bound

during times of catalyst operation (y(i) = 1) and drops to zero when

there is catalyst replacement (y(i) = 0).

ffr(i, j)− [FUp× y(i)] ≤ 0 (B.23)

6. When the process is shut down for catalyst replacement, the tempera-

ture of the reactor is required to drop to its lower bound. This condi-

tion is imposed using the following constraint which ensures that the

temperature for the week remains between its bounds during times of

catalyst operation (y(i) = 1) and drops to the lower bound when there

is catalyst replacement (y(i) = 0):

TLo ≤ T (i, j) ≤ [(TUp− TLo)× y(i)] + TLo (B.24)

7. There is only a certain number of catalysts available to be used by the

process. The limit on the maximum number of catalyst changeovers

(n) allowed is imposed using the following constraint:

NM∑
i=1

y(i) ≥ NM − n (B.25)

8. The catalyst undergoes deactivation over time and has to be replaced

before it the activity falls below a certain minimum value (min−cat−act).

As the the decision on whether to replace a catalyst or not is made on

a monthly basis, it is sufficient to ensure that the catalyst activity does

fall below this limit at the end of each month i:

end−cat−act (i, 4) ≥ min−cat−act (B.26)
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9. In order to ensure that more product than available is not sold, the

inventory level at the end of each week should be greater than the sales

for the week. This is imposed using the following constraint:

end−inl(i, j)− sales(i, j) ≥ 0 (B.27)

The objective function that represents the net costs of the industrial process,

is of the form of equation (4a) and comprises the following elements:

1. The Gross Revenue from Sales (GRS)

This term represents the revenue for the process from the net sales of

the product chemical over the whole time horizon:

GRS =
NM∑
i=1

4∑
j=1

psp(i, j)× sales(i, j) (B.28)

where psp(i, j) is the sales price per unit product for week j of month

i, adjusted for inflation at that time:

psp(i, j) = base−psp× (1 + inflation)bi/12c (B.29)

where base−psp is the unit product sales price before inflation.

2. The Total Inventory Cost (TIC)

This term represents the net storage costs for the product over the

whole time horizon and is obtained from the solution of the ODEs for

the state variable cum−inc at the end of the final week of the process:

TIC = end−cum−inc(NM, 4) (B.30)

3. The Total Cost of Catalyst Changeovers (TCCC)

The total expenditure for the catalyst changeover operations is:
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TCCC =
NM∑
i=1

crc(i)× (1− y (i)) (B.31)

where crc(i) is the cost of the catalyst replacement operation for month

i, adjusted for inflation at that time:

crc(i) = base−crc× (1 + inflation)bi/12c (B.32)

where base−crc is the cost of a catalyst changeover operation before

inflation. It is highlighted that the terms within the summation remain

non-zero only during the times of catalyst replacement (y (i) = 0) and

only these terms contribute to the total costs.

4. The Net Penalty for Unmet Demand (NPUD)

The unmet demand in each week (unmet−demand (i, j)) is the quantity

of product by which the sales falls short of the demand in that week:

unmet−demand (i, j) = demand (i, j)− sales (i, j)

∀j = 1, 2, 3, 4 ∀i = 1, 2, . . . , NM
(B.33)

There is a penalty associated with this unmet demand and the net

penalty costs over the entire time horizon is given by:

NPUD =
NM∑
i=1

4∑
j=1

pen(i, j)× unmet−demand(i, j) (B.34)

where pen(i, j) is the penalty per unit product for week j of month i,

adjusted for inflation at that time:

pen(i, j) = base−pen× (1 + inflation)bi/12c (B.35)

where base−pen is the penalty per unit product before inflation.
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5. The Total Flow Cost (TFC)

This term represents the net expenditure on the feed of raw material

to the reactor and is given by:

TFC =
NM∑
i=1

4∑
j=1

cof(i, j)× ffr (i, j) (B.36)

where cof(i, j) is the cost of raw material per unit volume per week for

week j of month i, adjusted for inflation at that time:

cof(i, j) = base−cof × (1 + inflation)bi/12c (B.37)

where base−cof is the cost of raw material per unit volume per week

before inflation.

If the Net Cost is represented by NC, the objective function for this optimi-

sation problem takes the form:

min NC = −GRS + TIC + TCCC + NPUD + TFC (B.38)

This concludes the formulation of the industrial problem as an MSMIOCP,

with the appropriate decision variables, state variables, differential equations,

initial conditions, junction conditions, constraints and objective function.

The initial MSMIOCP formulation of the case studies in Section 4, of the

structure of equation (4), is equivalent to this formulation, with the exception

that the kinetic parameters, Kd, Ar and Ea are uncertain. The stochastic

MSMIOCP formulation, of the structure of equation (5), for optimisation of

this industrial problem under uncertainty is developed in Section 4 using this

MSMIOCP formulation as a basis.
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Appendix C. Case Studies: Implementation details

The set of parameters that apply to all case studies are given in Table C.6.

These are largely similar to the parameters used in the work by Adloor et al.

(2020) that solved the deterministic version of this problem.

Table C.6: List of parameters

Parameter Symbol Value

Ar 885 (1/day)

base−cof $ 210 /week

base−crc $ 107

base−icf $ 0.01 /(kmol day)

base−pen $ 1250 /kmol

base−psp $ 1000 /kmol

CR0 1 kmol/m3

demand

1st quarter of year: 8000 kmol/week

2nd quarter of year: 7200 kmol/week

3rd quarter of year: 3300 kmol/week

4th quarter of year: 4500 kmol/week

Ea 30,000 J/gmol

FUp 9600 m3/day

inflation 5%

Kd 0.0024 (1/day)

min−cat−act 0.2983

n 5
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Table C.6: List of parameters

Parameter Symbol Value

NM 36 months (= 3 years)

Rg 8.314 J/(gmol.K)

start−cat−act 1

TLo 400 K

TUp 1000 K

V 50 m3

For the given time horizon of 3 years, Table C.7 provides details of the

number of decisions variables and constraints, which as mentioned previ-

ously, remain the same size as in the deterministic (single scenario) case, for

all sub-problems of all case studies considered in this article. It is only the

size of the ODE system that varies between the deterministic study and the

case studies, and details regarding this, for the time horizon of 3 years, are

given in Table C.8.

For each sub-problem in each case study, the implementation was per-

formed in PythonTM 3.7.1 under PyCharm 2019.3.3 (Community Edition).

The multiple scenario values for each uncertain parameter in each sub-problem

were generated by constructing sobol sequences (Sobol, 1976), of the length

of the number of scenarios, within the specified range for that uncertain pa-

rameter. Using quasi-random low-discrepancy sobol sequences provided the

advantage of ensuring that the range of uncertainty is covered evenly. The

sobol sequences were generated using the i4 sobol generate method in the

sobol−seq module (version 0.1.2) in Python.
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Table C.7: Size specifications for the decision variables and constraints,
applicable for the deterministic problem as well as all sub-problems of all
case studies

Property Size

Decision variables

Catalyst changeover actions 36

Feed flow rate 144

Sales 144

Temperature 144

Total 468

Constraints

Constraints (B.19) 72

Constraints (B.20) 288

Constraints (B.21) 288

Constraints (B.22) 288

Constraints (B.23) 144

Constraints (B.24) 288

Constraint (B.25) 1

Constraints (18) 36

Constraints (19) 144

Total 1549

The codes for all sub-problems were written using CasADi, an open source

software that enables a symbolic framework for numerical optimisation (An-

dersson, 2013). The elements of the problem for all case studies, as given in

Section 4, were defined as symbolic expressions using CasADi v3.5.1. The

Automatic Differentiation (AD) feature of CasADi enabled constructions of

symbolic expressions of the derivatives of all predefined functions, thereby

maintaining differentiability to an arbitrary order. This allowed for an effi-

cient calculation of gradients, that did not suffer from round-off and trunca-

tion errors, unlike gradient calculation using finite differences.
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Table C.8: Details of the size of the ODE systems present in the determin-
istic problem and the sub-problems of all case studies

Case Study Sub-problem Number of ODEs

Deterministic problem N/A 576

Case Study A All sub-problems 11520

Case Study B All sub-problems 8784

Case Study C All sub-problems 8784

Case Study D

5 scenario sub-problem 2880

10 scenario sub-problem 5760

15 scenario sub-problem 8640

20 scenario sub-problem 11520

25 scenario sub-problem 14400

The integration of the ODEs in the feasible path approach was performed

using the CasADi plug-in to the open source SUNDIALS suite (Hindmarsh

et al., 2005). The IDAS solver of SUNDIALS was used for the integration

of the ODEs with the following termination criteria: an absolute tolerance of

10−6 and a relative tolerance of 10−6. The optimisation was performed using

the CasADi plug-in to IPOPT by COIN-OR (Wächter and Biegler, 2006).

The optimisation by IPOPT had, respectively, the following termination and

‘acceptable’ termination criteria: 10−4 and 10−4 for the optimality error, 1

and 106 for the dual infeasibility, 10−4 and 10−2 for the constraint violation,

and 10−4 and 10−2 for the complementarity. The ‘acceptable’ number of it-

erations was set at 15.

The implementations were performed on a 2.80 GHz Intel(R) Core(TM)

i5-8400 CPU, 16 GB RAM, Windows machine running on Microsoft Windows

10 Enterprise.
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