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Abstract: Existing open-source modeling frameworks dedicated to energy systems optimization typically utilize (mixed-
integer) linear programming ((MI)LP) formulations, which lack modeling freedom for technical system design and operation.
We present COMANDO, an open-source Python package for component-oriented modeling and optimization for nonlinear
design and operation of integrated energy systems. COMANDO allows to assemble system models from component models
including nonlinear, dynamic and discrete characteristics. Based on a single system model, different deterministic and stochastic
problem formulations can be obtained by varying objective function and underlying data, and by applying automatic or manual
reformulations. The flexible open-source implementation allows for the integration of customized routines required to solve
challenging problems, e.g., initialization, problem decomposition, or sequential solution strategies. We demonstrate features of
COMANDO via case studies, including automated linearization, dynamic optimization, stochastic programming, and the use of
nonlinear artificial neural networks as surrogate models in a reduced-space formulation for deterministic global optimization.
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Highlights:

• Open-source framework for optimization of energy systems design and operation

• Component-oriented modeling, allowing for hybrid mechanistic/data-driven models

• Optimization considering nonlinearity, dynamics and parametric uncertainty

• Four case studies, demonstrating flexibility and wide range of application
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1 Introduction

Energy systems are networks of interconnected components
that generate and transform energy using a set of renew-
able or fossil resources to satisfy various kinds of demands
(Beller, 1976). The economic and ecologic performance
of energy systems is strongly influenced by system design
and operation. The design comprises all choices regarding
the configuration, i.e., the selection and interconnection
of components (discrete variables), as well as sizing and
other technical specifications (continuous variables). The
operation comprises commitment (discrete variables) and
dispatch (continuous variables) of individual components,
i.e., how their activity and output levels are chosen at dif-
ferent points in time. The prospective operation also needs
to be taken into account during system design (Pistikopou-
los, 1995; Frangopoulos et al., 2002). However, energy
demands, prices, weather and other operational aspects
can be highly variable and their future values are inherently
uncertain, rendering the design and operation of energy
systems a challenging decision process. To ensure optimal
economic and ecologic performance, it is common to cast
these decision processes into mathematical optimization
problems (e.g. Papoulias and Grossmann, 1983; Ghobeity
and Mitsos, 2012; Gunasekaran et al., 2014; Andiappan,
2017; Frangopoulos, 2018; Demirhan et al., 2019; Sass
et al., 2020). This is typically done via general purpose al-
gebraic modeling languages (AMLs), e.g., GAMS (Bussieck
and Meeraus, 2004) or Pyomo (Hart et al., 2011), or via
specialized energy system modeling frameworks (ESMFs),
e.g., OSeMOSYS (Howells et al., 2011) or oemof (Hilpert
et al., 2018). While AMLs offer flexibility in the choice
of algebraic formulation and solution approach, ESMFs
employ a component-oriented modeling approach, i.e., sys-
tem models are created by specifying connections between
component models. This approach simplifies the modeling
process, model maintenance, and model re-use.
Established ESMFs typically employ linear program-

ming (LP) (Schrattenholzer, 1981; Fishbone and Abilock,
1981; Loulou and Labriet, 2007; Bakken et al., 2007; How-
ells et al., 2011; Hunter et al., 2013; Dorfner, 2016) or
mixed-integer linear programming (MILP) (Pfenninger and
Keirstead, 2015; Hilpert et al., 2018; Atabay, 2017; Brown
et al., 2018; Johnston et al., 2019) formulations, well-suited
for techno-economic analysis of large-scale systems (Con-
nolly et al., 2010; Pfenninger et al., 2014; van Beuzekom
et al., 2015). In contrast, technical system design and
operation must consider more detailed system behavior,
often giving rise to nonlinearities and dynamic effects that
are difficult or impractical to represent with MILP formu-
lations, (see e.g., Li et al., 2011; Goderbauer et al., 2016;
Schäfer et al., 2019a,b). To address the challenges of tech-
nical design and operation, we propose a next-generation
ESMF for component-oriented modeling and optimization

for nonlinear design and operation (COMANDO), an open
source Python package (COMANDO Repository). CO-
MANDO borrows a generic, nonlinear representation of
mathematical expressions and features for algorithm de-
velopment from AMLs, and the representation of differ-
ential equations and more general system model aggre-
gation from differential-algebraic modeling frameworks
(DAMFs) such as gPROMS (Process Systems Enterprise,
1997-2019), MODELICA (Elmqvist and Mattsson, 1997),
or DAE Tools (Nikolić, 2016). With this combination
of features, COMANDO incorporates flexible nonlinear
and dynamic modeling into the modularity of an ESMF.
Additionally, COMANDO enables the simultaneous consid-
eration of multiple operating scenarios through a two-stage
stochastic programming formulation, allowing for rigorous
optimization of energy system design and operation un-
der uncertainty and/or variability of operating conditions.
While the vast majority of existing ESMFs is implemented
as a layer on top of an AML, COMANDO is based on
the computer algebra system SymPy (Meurer et al., 2017).
SymPy provides data structures for representing generic
mathematical expressions and corresponding methods to
analyze and manipulate expressions. These features facili-
tate the creation of automatic reformulation routines (e.g.,
automatic linearization), custom interfaces to AMLs or
solvers, and user-defined solution algorithms.
This paper is structured as follows: In Section 2, we

give a brief review of the state of the art in optimization-
based energy-system design and operation and identify the
lack of an open-source tool dedicated specifically to the
technical design and operation of different types of energy
systems. To this end, we present COMANDO in Section 3.
In Section 4, we present four case studies highlighting
important features of COMANDO. Section 5 concludes the
work.

2 Optimization-based energy sys-
tem design and operation

In Section 2.1 we introduce a generic mathematical pro-
gramming problem for the optimal design and operation
of energy systems. In Section 2.2, we briefly summarize
advantages and disadvantages of the three major classes
of tools that can be used to formulate and tackle vari-
ants of this problem, namely algebraic modeling languages
(AMLs), energy system modeling frameworks (ESMFs) and
differential-algebraic modeling frameworks (DAMFs).

2.1 Problem formulation
Realizing an optimal energy system requires optimal deci-
sions at both the design stage and the operational stage.
Due to the variability and uncertainty associated to energy
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system operation, there can be many relevant operational
scenarios that need to be considered to obtain a reliable
design. A suitable modeling approach for this setting is
two-stage stochastic programming (Dantzig, 1955; Birge
and Louveaux, 2011; Li and Barton, 2015; Yunt et al.,
2008). It allows for the simultaneous consideration of mul-
tiple operating scenarios s ∈ S, resulting in the following
problem structure:

min
x

FI(x) +
∑
s∈S

ws F
∗
II,s(x)

s. t. gI(x) ≤ 0

hI(x) = 0
F
∗
II,s(x) = min

ys(·)
FII,s(x,ys(·)) =

∫
Ts
ḞII

(
x,ys(t),ps(t)

)
dt

s. t. y
d
s (t = 0) = y

d
s,0

ẏd
s (t) = f

(
x,ys(t),ps(t)

)
gII

(
x,ys(t),ps(t)

)
≤ 0

hII

(
x,ys(t),ps(t)

)
= 0

ys(t) = [yd
s (t), ...]

ys(t) ∈ Ys(t) ⊂ Rny× Zmy


∀t ∈ Ts

Ts = [0, Ts]



∀s ∈ S

x ∈ X ⊂ Rnx× Zmx

S = {s1, s2, · · · , s|S|}
(P)

The two-stage structure of (P) distinguishes between
design- and operation-related variables, constraints, and
objectives. We group design decisions into the vector x and
operational decisions into one vector ys(·) for each scenario
s, with associated probability of occurrence ws. Further,
the operational decisions are functions of time t from a
continuous operating horizon Ts = [0, Ts] (in general, each
scenario may consider a different time horizon). Likewise,
for different scenarios s the input data, i.e., the values of
model parameters ps(·), may be functions of time t. The
objective function of the first stage is comprised of design
costs FI and the expected value of the optimal operating
costs. For a given design x and scenario s, the optimal
operating costs F ∗II,s correspond to the optimal objective
value of the second stage. The operating costs are de-
scribed by an integral over the operating horizon Ts of the
momentary operating costs ḞII . The set of feasible design
and operational decisions is described via constraints gI ,
gII , hI , and hII (with an appropriate number of elements
in hII , allowing for degrees of freedom), as well as bounds
and integrality restrictions in the form of X and Ys(t),
with n and m corresponding to the number of continuous
and discrete decisions, respectively. Additionally, for the
subset of operational variables that correspond to differ-
ential states (identified via the superscript d), an initial
state yd

s,0 and the right hand side f of a corresponding
differential equation are given.

Formulation (P) covers both mixed design and operation
problems, as well as pure operational problems (with fixed
design decisions x). If the values of ws are interpreted as
frequencies of occurrence for a certain operational setting,
the corresponding scenarios can also be interpreted as typ-
ical operating points or periods, as done e.g., in Yunt et al.

(2008) and Baumgärtner et al. (2019a), respectively. Such
scenarios can be derived from standardized reference load
profiles, or via clustering of historical data (see, e.g., Schütz
et al., 2018). If constraints coupling different scenarios are
added to formulation (P), problems considering long-term
effects such as seasonal storage can also be considered (see,
e.g., Gabrielli et al., 2018; Baumgärtner et al., 2019b).

The two-stage formulation (P) can be cast into an equiv-
alent single-stage formulation, also referred to as the deter-
ministic equivalent, see e.g., (Yunt et al., 2008), that can
be solved with general-purpose solvers. While solvers in-
terfaced from DAMFs, as well as some specialized dynamic
optimization solvers, e.g., DyOS (Caspari et al., 2019),
directly accept continuous-time problem formulations and
take care of time-discretization internally, almost all solvers
available via AMLs and ESMFs require discrete-time for-
mulations as input. To obtain a discrete-time formulation,
a particular discretization scheme is chosen, and ys(·),
FII,s(x,ys(·)), and f

(
x,ys(t),ps(t)

)
are replaced by cor-

responding discrete-time counterparts.
An alternative to solving the deterministic equivalent is

to employ an algorithm capable of exploiting the special
constraint structure of the two-stage formulation (P). Such
an algorithm decomposes (P) into multiple subproblems
that are solved iteratively to obtain increasingly tighter
bounds on the solution of (P). Different decomposition
algorithms are applicable, depending on the presence and
location of nonlinearity, nonconvexity and integrality; for
a concise overview, see Li and Grossmann (2019).

2.2 Tools

Both deterministic equivalent formulations as well as
suitable decomposition algorithms can be implemented
in AMLs such as AMPL (Fourer et al., 1990), GAMS
(Bussieck and Meeraus, 2004), or AIMMS (Bisschop, 2006).
In recent years, several AML extensions have been devel-
oped that can be leveraged for energy system modeling. In
particular, stochastic programming related functionality
has been incorporated widely, both in commercial AMLs
such as AMPL (Fourer et al., 1990) and GAMS (Bussieck
and Meeraus, 2004) (through SAMPL (Valente et al., 2009)
and Extended Mathematical Programming (Ferris et al.,
2009), respectively), as well as in the open-source AMLs
Pyomo (Hart et al., 2011) and JuMP (Dunning et al., 2017)
(through PySP (Watson et al., 2012) and StructJuMP, for-
merly StochJuMP, (Huchette et al., 2014) or StochasticPro-
grams.jl (Biel and Johansson, 2019), respectively). Fur-
ther modeling constructs tailored towards special problem
structures have been incorporated through block-oriented
modeling (Friedman et al., 2013) in Pyomo and through
Plasmo.jl (Jalving et al., 2017, 2019) in JuMP. Finally,
Pyomo.DAE (Nicholson et al., 2018) enables the direct
representation of differential equations within optimization

3
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problems expressed in Pyomo and provides various options
for automatic discretization. Through the combination of
features offered by these extensions, newer AMLs are in
principle well suited to model and optimize energy system
design and operation. However, their abstract nature can
complicate implementation, code maintenance, and re-use,
and renders the resulting problem formulations difficult
to comprehend. Development on the Pyomo AML has
resulted in the modeling tool IDAES (Miller et al., 2018),
which employs methodologies from process systems engi-
neering with the aim of advancing fossil energy systems
(IDAES homepage). In particular, IDAES provides mod-
els for thermal power plants and associated components.
These systems are considered in the form of process flow-
sheets, i.e., components are modeled as control volumes
with in- and outflows, whose steady-state and dynamic
behavior can be specified via so-called property packages.

Compared to AMLs and their various extensions, ESMFs
provide an even higher level of abstraction, allowing to
model generic energy systems comprised of utilities for gen-
erating, converting, or storing different energy forms. This
higher level of abstraction is commonly achieved via an
interface layer on top of an AML that separates component
and system modeling from problem formulation. In a first
modeling step, models of energy system components, e.g.,
boilers, combined-heat-and-power units, or heat pumps
are created. These component models contain variables,
parameters and constraints specifying possible in- and out-
puts as well as the internal component behavior. In a
second modeling step, system models are aggregated by
specifying the connections between different components.
Finally, component- and system-level constraints are com-
bined with an objective, e.g., the minimization of total
annualized cost (TAC) or global warming impact (GWI),
yielding a problem formulation that can be passed to an
appropriate solver.

The modular, object-oriented nature of modern ESMFs
such as oemof (Hilpert et al., 2018) allows component and
system models to be implemented as classes, inheriting
reoccurring functionality, e.g., from generic models repre-
senting generation, transformation, storage or consumption
of different energy commodities. Such inheritance allows
for more structured modeling, thereby simplifying model
maintenance and re-use compared to AMLs, e.g., through
the creation of component libraries. However, the vast
majority of ESMFs is based on either linear programming
(LP) or mixed-integer linear programming (MILP) formula-
tions, i.e., all participating functions must be linear in the
decision variables x and y. In such ESMFs, the user must
provide linear approximations for all nonlinear expressions.
While this is usually not considered a limitation in the
context of system analysis, i.e., the principal focus of most
ESMFs (cf. Pfenninger et al., 2014), problems concerned

with technical design and operation need to represent sys-
tems in more detail, often giving rise to nonlinearities that
are difficult or impractical to linearize. In the presence of
such nonlinearities, it is often sensible to use the original
nonlinear equations or nonlinear surrogate models such
as artificial neural networks (ANNs), as, e.g., in Schäfer
et al. (2020), which however is not possible in MILP-based
ESMFs.

Besides AMLs and ESMFs, differential-algebraic model-
ing frameworks (DAMFs) constitute a third class of tools
that can be used to model energy systems. DAMFs also em-
ploy a component-oriented modeling approach, which, how-
ever, is more general than in a typical ESMF: In DAMFs,
components may correspond to actual physical machinery
or to a particular physical phenomenon (e.g., heat trans-
fer) and can constitute subsystems, which are themselves
composed of other components. Additionally, the infor-
mation exchanged between components is not restricted
to a particular kind of quantity, such as energy. DAMFs
are particularly focused on detailed operational aspects,
allowing for differential equations and nonlinear expres-
sions within component models. They provide powerful
features for operational simulation of the resulting models
for which a fixed design is assumed. Design optimization is
also possible in several DAMFs, (e.g., Smith, 1997; Pfeiffer,
2012), and the commercial tool gPROMS (Process Systems
Enterprise, 1997-2019) even allows for the direct consider-
ation of parametric uncertainty using formulations similar
to Problem (P), (see, e.g., Bansal et al., 2000). In contrast,
noncommercial, open-source tools such as Open-Modelica
(Thieriot et al., 2011) or Optimica (Åkesson et al., 2010) are
currently limited to a single set of operational data, imped-
ing design optimization under uncertainty. Furthermore,
DAMFs usually offer less freedom in the choice of problem
formulation, solver or algorithm in comparison to AMLs.
In particular, many tools employ gradient-based methods,
(e.g., Pfeiffer, 2012; Navarro and Vassiliadis, 2014; Mag-
nusson and Åkesson, 2015) yielding only local solutions, or
heuristic global optimization methods, e.g., random search,
genetic algorithms, or simulated annealing (Thieriot et al.,
2011; Pfeiffer, 2012; Kim et al., 2018), which treat the
system model as a black box and cannot reliably locate
global solutions.

AMLs, ESMFs and DAMFs each exhibit strengths re-
lated to a particular aspect of modeling and optimizing
energy system design and operation. ESMFs are tailored to
energy systems modeling and offer a component-oriented
approach that benefits model maintenance and re-usability.
However, their principal focus is on system analysis. In
particular, their restriction to LP or MILP formulations
makes them less suited for applications concerned with
technical design and operation. Both AMLs and DAMFs
lift the restriction to (MI)LP formulations, but AMLs

4
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Tab. 1. Overview of the three tool classes that inspired COMANDO: algebraic modeling languages (AMLs), energy
system modeling frameworks (ESMFs), and differential-algebraic modeling frameworks (DAMFs)

tool
class

representative
examples

typical domain
of application

features adopted
in COMANDO

AMLs • AMPL (Fourer et al., 1990)
• GAMS (Bussieck and Meeraus, 2004)
• AIMMS (Bisschop, 2006)
• PYOMO (Hart et al., 2011)
• JuMP (Dunning et al., 2017)

development of detailed, application-
specific (MI)LP/(MI)NLP problem
formulations for arbitrary applica-
tions and specialized solution rou-
tines

• free choice of modeling approach
• possibility to specify alternative

problem formulations
• development of user-defined algo-

rithms

ESMFs • MESSAGE (Schrattenholzer, 1981)
• MARKAL/TIMES (Fishbone and Abilock, 1981;

Loulou and Labriet, 2007)
• eTransport (Bakken et al., 2007)
• OSeMOSYS (Howells et al., 2011)
• Temoa (Hunter et al., 2013)
• calliope (Pfenninger and Keirstead, 2015)
• urbs (Dorfner, 2016)
• ficus (Atabay, 2017)
• oemof (Hilpert et al., 2018)
• PyPSA (Brown et al., 2018)
• Switch 2.0 (Johnston et al., 2019)

system analysis (superstructure
optimization, capacity expan-
sion planning) for large scale na-
tional/international energy systems,
typically using (MI)LP formulations

• component-oriented modeling
• focus on energy systems
• separation of modeling and problem

formulation
• open-source availability

DAMFs • gPROMS (Process Systems Enterprise, 1997-
2019)

• MODELICA (Elmqvist and Mattsson, 1997)
• DAE Tools (Nikolić, 2016)

detailed operational simulation; vary-
ing degrees of optimization capabili-
ties, typically local solutions to NLP
formulations

• modeling with differential equations
• generic bidirectional connectivity
• modularity for definition of subsys-

tems

lack high-level component-oriented abstractions for generic
energy systems and DAMFs lack control over the choice
of problem formulation and optimization algorithm. We
therefore propose a next-generation ESMF that allows
for flexible, component-oriented modeling, including non-
linear and differential-algebraic formulations, parametric
uncertainty, and the possibility to specify specialized so-
lution algorithms. Its basic structure is presented in the
following Section. A summary of the above discussion,
highlighting the roles of each tool class and their influence
on COMANDO is given in Tab. 1.

3 The COMANDO ESMF

The goal of COMANDO is to provide an open-source ESMF
which allows to generate detailed models of energy system
components, including differential-algebraic and nonlinear
elements, and aggregate them to system models for the
purpose of optimization. Traditional ESMFs are typically
oriented towards techno-economic analysis of systems at
national or international scales, where (MI)LP formulations
are an asset that ensures computational tractability. In
contrast, COMANDO is oriented towards the technical
design and operation of small- to medium-scale systems,
e.g., district energy systems, industrial sites, or energy
conversion processes. At these scales, investigation of
realistic component and system behavior is possible via
the consideration of technically relevant effects such as
part-load and dynamic behavior.
Unlike most ESMFs, which are commonly based on an

AML, COMANDO is implemented as a flat layer on top
of the computer algebra system SymPy (Meurer et al.,
2017). This choice provides: i) data structures for the
mathematical expressions used to describe components
and systems, as well as ii) several routines useful for creat-
ing automatic reformulations and user-defined algorithms,
such as automatic differentiation, substitution of expres-
sions or solution of nonlinear systems of equations. As
a modeling framework, COMANDO itself does not pro-
vide any specialized solution methods. Instead, it allows
for component-oriented modeling at a high level of ab-
straction, while at the same time granting users access to
low-level data structures. This allows for both intuitive
modeling, as well as advanced use cases such as problem
reformulations and the development of user-defined algo-
rithms, simplifying the development of tailored solution
approaches. During the development of COMANDO, we
made an effort to maximize chances of its adoption by fol-
lowing best-practices for code development. This includes
the creation of automated unit and integration tests, pro-
vision of documentation (both in the source code and as a
standalone document (COMANDO Documentation)), and
the inclusion of the full code for running the case studies
as detailed usage examples. In order to further encourage
adoption, we provide a generic parsing routine to translate
individual COMANDO expressions to alternative textual
or object-oriented representations, allowing users to easily
link COMANDO to other software. An overview of the
structure of COMANDO and the typical workflow of mod-
eling, problem formulation and optimization is given in
Fig. 1.

5
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modeling
Section 3.1

component models
parameters, variables, states,
constraints, expressions

system models
used component models and
their connections, additional
parameters, variables, states, . . .

problem formulation
Section 3.2

min e/min CO2

MINLP ?→ MILP

design/operation problem
time steps, scenarios,
objective, parameter values,
additional constraints

alternative formulations optional:
- piecewise linearization
- steady-state asumptions
- . . .

solution
Section 3.3

user-defined
algorithma

AML interfaces:
Pyomo,

GAMS, . . .

solver interfaces: Gurobi, MAiNGO, BARON, . . . solver options

optimal system design and operation

Fig. 1. Workflow for modeling, problem formulation, and optimization using COMANDO.

In Section 3.1 we describe the process of creating models
for components and systems in COMANDO. Section 3.2
provides details on how optimization problems can be cre-
ated from a system model and how alternative formulations
of these problems can be obtained. Finally, the different
options for solving the formulated problems are given in
Section 3.3.

3.1 Modeling process

The goal of the modeling phase is to generate a model
describing the behavior of a given energy system. For the
creation of such a system model, models for its constituting
components as well as information on their connectivity
are required.
We begin with the description of component models,

which are used to represent elementary parts of an energy
system. Fig. 2 depicts the structure of the Component
class used for that purpose. A model of a component
i consists of several types of mathematical expressions,
given in symbolic form. Following the notation introduced
in Section 2, the expressions describing the component
contain different symbols corresponding to quantities which
are either parameters (pi), i.e., placeholders for values
that are assumed to be given before an optimization, or
design or operational variables (xi and yi, respectively),
i.e., placeholders for scalar and vector values that are to
be determined during optimization.
To instantiate a Component, a unique name must be

provided, which serves as an identifier for the component.
The names of parameters, variables, and constraints asso-

design variables
xi

operational variables
yi

parameters
pi

reference expressions
ei
(
xi,yi,pi

)

differential states
ẏd
i = fi

(
xi,yi,pi

)

constraints
gi
(
xi,yi,pi

)
≤ 0

hi

(
xi,yi,pi

)
= 0

ci,1
(
xi,yi,pi

)

ci,2
(
xi,yi,pi

)

...

ci,N
(
xi,yi,pi

)

connectors

Fig. 2. Structure of a generic component i in COMANDO.
Mathematical expressions are specified based on symbols
that are either parameters, design variables, or operational
variables. These expressions can be kept for later reference,
constitute the right-hand side of differential equations,
form part of algebraic constraints, or describe possible in-
and/or outputs through connectors.

ciated to the component are prepended with this identifier,
in order to distinguish quantities from different instances
of the same component model. The Component class can
either be used directly or subclassed to specify specialized
component classes with custom behavior. To create and
add symbols to a component, the Component class provides
three methods:

6
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• make_parameter,
• make_design_variable, and
• make_operational_variable.

All three methods require a name for the symbol that is
used to represent the quantity. The methods for creating
variables provide optional arguments for the specification of
variable bounds, domain (integer/real) and a scalar value
for initialization, while the parameter creation method only
provides a single optional argument for the specification
of its value. Note that time- and scenario-specific values
for operational quantities are set in the problem formula-
tion phase after the time and scenario structure, has been
specified, see Section 3.2.

Based on variables and parameters, mathematical expres-
sions can be formed using the overloaded Python operators
+, -, *, /, **, or any of the functions implemented in
SymPy (e.g., exp, log, trigonometric, and hyperbolic func-
tions). Any intermediate expressions ei that are of interest
can be assigned an identifier and stored in the component
using the add_expression method. These expressions can
simply be used for evaluation or as parts of more complex
expressions, e.g., system-level constraints, or an objective
function, cf. Section 3.2. Vectors gi and hi contain inequal-
ity and equality constraints associated to the component i
and their elements can be specified using the methods

• add_le_constraint,
• add_eq_constraint, and
• add_ge_constraint.

Each of these methods takes two expressions and an op-
tional name for the resulting relation as arguments. Ex-
plicit distinction into first and second stage expressions
and constraints is not necessary and occurs automatically,
based on the symbols present in the respective expressions.

Dynamic behavior can be represented by specifying right-
hand side expressions fi for the time derivatives of differ-
ential states yd

i (recall that yd
i constitutes a subset of

the operational variables yi). Previously created opera-
tional variables may be declared differential states using
the declare_state method or differential states may be
created directly using the make_state method. The first
method requires an existing variable and an expression,
corresponding to entries of the vectors yd

i and fi as manda-
tory arguments and allows for the specification of an initial
state as well as bounds and an initial guess for the value of
the derivative. The method results in the creation of a new
operational variable, corresponding to an element in ẏd

i ,
and an equality constraint, linking the time derivative with
the given expression in fi. An explicit relation between the
state and its derivative is not specified at this point, as it
depends on the desired time-discretization which is handled
by the solution interfaces, cf. Section 3.2. The make_state

∑

i∈{Aout,Bin,Cflow}
ci = 0A

cAout ≤ 0

B

cBin ≥ 0

C cCflow

Fig. 3. A connection formed by connecting three connec-
tors to a bus: The components A, B, and C each define
a connector for a particular quantity. The connectors of
A and B are marked as outputs and inputs, respectively,
restricting the sign of the associated expression, while
the connector of C is not restricted. The connection of
Aout,Bin, and Cflow via a bus results in the creation of a
balance constraint in the system model. This graphical
notation is also used for the case studies in Section 4.

method creates a new operational variable corresponding
to the differential state and then calls declare_state.
To allow for the aggregation of components to systems,

individual expressions in ci can be assigned to connectors
(cf. Fig. 2). Connectors are generally bidirectional, but
may be specified to only allow for in-, or output. In- and
output connectors restrict the assigned expression to a
nonnegative or nonpositive range, respectively.
A system model can be created as an instance of the

System class, whose instantiation again requires a unique
label that serves as an identifier. Optionally, a list of
components and the connections between them can be
passed to the constructor of the System class. Each con-
nection is specified via a label and a list of associated
connectors. The connectors are connected to a ‘bus’ at
which the quantities associated to them are balanced and
a corresponding constraint is created automatically, see
the graphical notation in Fig. 3, which is also used for the
case studies in Section 4. The elementary connections pro-
vided by COMANDO’s System class, handle only simple
balance equations. More complicated connectivities such
as mixing streams with different temperatures, concentra-
tions or other qualities are most naturally implemented
as a dedicated component within COMANDO. Instead of
specifying the complete structure during construction of
a System instance, components and connections can also
be added sequentially via corresponding methods, allowing
for procedural model generation. As in DAMFs, a nested
creation of systems from subsystems is possible by exposing
connectors of individual components or extending exist-
ing connections via additional connectors. For instance, a
neighborhood can be represented as a system composed
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of buildings as subsystems, which are in turn composed of
heating, cooling and power equipment. As with component
models, system models can be assigned their own variables,
parameters, expressions and constraints describing their be-
havior. These two features are accomplished by letting the
System class inherit from the Component class. The system
superstructure can be considered explicitly by including
appropriate design decisions within component models.
More advanced approaches where the superstructure is not
specified a-priori, e.g., superstructure-free synthesis (Voll
et al., 2012), or automated superstructure generation and
expansion (Voll et al., 2013), can be easily incorporated in
the form of user-defined algorithms.

3.2 Problem formulation

Based on a system model, different kinds of optimiza-
tion problems considering system design and/or operation
can be created. To this end, COMANDO provides the
Problem class, instances of which can be created by the
create_problem method of the System class. As the sys-
tem model defines a constraint set which is parameterized
by the parameters p, only the objective terms FI and ḞII

as well as a time and scenario structure and appropriate
data (i.e., values for the parameters p) need to be specified
in the create_problem method to obtain a complete prob-
lem formulation, corresponding to (P). Note that the user
may decide which units to use for data and time steps but
must ensure they match. Units given in the Nomenclature
are those used for the case studies in Section 4.

To define the objective terms, the System class provides
the aggregate_component_expressions method. For a
given expression identifier, it returns the sum of all ex-
pressions stored under that identifier in the individual
components. The resulting expressions can be used for the
objective terms FI and ḞII , depending on whether they con-
sist exclusively of first stage (i.e., scalar) quantities or not.
A second use for the aggregate_component_expressions
method is to create expressions for system-level constraints
involving contributions from multiple components.
The time and scenario structure is specified in terms

of the considered scenarios s ∈ S and the corresponding
discretized time horizons T̂s. The T̂s are required by CO-
MANDO’s solver or AML interfaces for the automatic
discretization of the differential equations. If more than
one operational scenario is considered, the different scenar-
ios can either be specified as a list ofM scenario identifiers,
corresponding to scenarios with probability 1/M , or by a
series of scenario identifiers and associated weights ws. In
the latter case, the weights are not required to sum to one,
allowing for a more general weighting. Similarly, individual
time points for each time horizon are either specified via a
mapping of time point labels t to the corresponding lengths
∆s,t or in the case of equidistant time steps via a list of

0 t1 t2 · · · tN

T =
∑N

j=1 ∆tj

∆t1 ∆t2 · · ·

timesteps = {'t_1': Delta_t_1,
't_2': Delta_t_2,

...
't_N': Delta_t_N}

0 t1 t2 · · · tN

∆t1=
T
N∆t2=

T
N

T

· · ·

timesteps = (['t_1', 't_2',
· · · , 't_N'], T)

Fig. 4. Alternative ways to specify time steps for a par-
ticular scenario: For variable length an ordered mapping
(left) and for constant length a list and the total length
(right) can be specified. If multiple scenarios with different
time structures are to be considered, one such description
is given per scenario.

labels and an end-time Ts, see Fig. 4. If the time horizons
are identical for all scenarios, a single time horizon can
be specified, otherwise, one specification per scenario is
required.
Parameter values corresponding to the resulting time

and scenario structure can be specified during problem
creation and may later be updated using the data at-
tribute of the Problem instance. Similarly, design and op-
erational variable values can be updated using the design
and operation attributes, respectively. Values for design
variables must be scalar while values for parameters and
operational variables may be provided as scalars or as time-
and/or scenario-dependent data.

After the abovementioned steps, a problem in the form
of (P) is fully specified. However, it may be desirable to
adapt the original problem formulation in different ways.
Adaptations to the problem formulation range from simply
adding further constraints to the reformulation of expres-
sions in the problem. One generic reformulation routine
implemented in COMANDO is the automatic linearization
of arbitrary continuous multivariate expressions via convex-
combination or multiple-choice linearization (Vielma et al.,
2010). More generally, custom reformulations may be cre-
ated making use of existing algorithms provided by SymPy
(Meurer et al., 2017), e.g., for automatic differentiation,
analytic solution of different kinds of nonlinear equation
systems, or symbolic substitution of subexpressions. Note
that reformulations do not have to result in approximations
but can also be used to create alternative formulations that
possess better properties than the original one, e.g., tighter
relaxations for deterministic global optimization.

3.3 Problem solution

A fully specified problem formulation can be directly passed
to a suitable solver or to an AML. In this step, the problem

8
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structure and data are translated from the COMANDO rep-
resentation to a new representation, matching the syntax
of the target solver or AML. For this purpose, COMANDO
contains a generic parsing routine that can be used to cre-
ate new interfaces based on target-specific representations
of the symbols and operations occurring within the differ-
ent expressions of the problem formulation. Interfaces may
be text-based, resulting in an input file for a solver or AML,
or they can be object-oriented, resulting in a translation of
the problem formulation using the target-API. Currently
implemented interfaces are:

• text-based:

– BARON (Sahinidis, 2020) (solver)
– GAMS (Bussieck and Meeraus, 2004) (AML)
– MAiNGO (Bongartz et al., 2018) (solver)

• API-based:

– Pyomo (Hart et al., 2011) (AML)
– Pyomo.DAE (Nicholson et al., 2018) (AML)
– Gurobi (Gurobi Optimization, LLC, 2020)
(solver)

– MAiNGO (Bongartz et al., 2018) (solver)

All of these interfaces provide methods to solve the de-
terministic equivalent formulation of Problem (P) with a
given set of options, and to write back the obtained results
to COMANDO. Note that a problem formulation may
contain differential equations if states were defined in the
component or system model. Since most solvers and AMLs
do not support differential equations, the corresponding
interfaces can specify different schemes for automatic time
discretization. All existing interfaces implement implicit
Euler discretization. More advanced schemes are available
through the Pyomo.DAE interface.
Instead of directly solving a problem, it can also be

addressed with a user-defined algorithm. User-defined al-
gorithms can range from simple preprocessing routines
based on the system model and available data to more
advanced methods, such as decomposition techniques, com-
monly used in stochastic programming (see, e.g., Li and
Grossmann, 2019). The architecture of COMANDO allows
for manipulation at the level of component and system
models as well as at the level of the resulting optimization
problems. In particular the Problem class can also be used
to specify the sub-problems that may occur within user-
defined algorithms, allowing them to be passed to any of
the available interfaces.

4 Case Studies
We now demonstrate key features of COMANDO in four
case studies, which are illustrative of the kinds of design

and operation problems we address with COMANDO. The
case studies focus on different aspects of energy systems
and vary in their approaches for modeling the considered
systems and their components. The complete source code
for all case studies can be found in the examples directory
of the COMANDO Repository.
The first case study, based on our previous work (Voll

et al., 2013; Sass and Mitsos, 2019), consists of the green-
field design and operation of an industrial energy system
considering both economic and environmental impact. The
component models account for nonlinearities in part-load
behavior and investment cost, and differential equations for
the state of charge of battery and thermal energy storage
units, resulting in a mixed-integer dynamic optimization
(MIDO) problem. Here, the automatic implicit Euler dis-
cretization as well as the automatic linearization imple-
mented in COMANDO are employed to obtain a MILP
formulation, and a simple user-defined algorithm for multi-
objective optimization is demonstrated.
In the second case study, the operation of a simple

building energy system is optimized, considering forecasts
for electricity price and ambient temperature. The system
model makes use of differential equations to describe the
thermal behavior of the building, allowing to represent
dynamic aspects of demand response via a MIDO problem.
The interface to Pyomo.DAE (Nicholson et al., 2018) is
used to apply orthogonal collocation on finite elements as
an advanced time discretization method.

The third case study is a variation of the benchmark prob-
lem from (Saelens et al., 2020), integrating low-temperature
waste heat into a district heating network via heat pumps.
The explicit consideration of thermal losses and tempera-
tures at different points of the network results in a non-
convex mixed-integer quadratically-constrained quadratic
programming (MIQCQP) problem. For the implementa-
tion in COMANDO, repeated structures within the system
are abstracted via subsystems, allowing for re-use of the
models and reducing modeling effort. A stochastic formu-
lation considering multiple operational scenarios based on
clustered historical data is solved to obtain an optimal
system design.

The fourth case study is a reimplementation of our previ-
ous work (Huster et al., 2019), where the power production
of an organic Rankine cycle is maximized. The detailed
thermodynamic behavior of the working fluid is described
via artificial neural networks (ANNs), capable of predicting
fluid properties with high accuracy. The ANNs result in
a highly nonconvex, but reduced-space NLP formulation
that can be solved to global optimality with our inhouse
solver MAiNGO (Bongartz et al., 2018).
All case studies are solved on a desktop PC with an

i7-8700 CPU (3.20GHz), 32GB RAM, running Windows
10 Enterprise LTSC. An overview of the presented case
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Tab. 2. Overview of the presented case studies

case study system structure
problem class

(reformulations)
problem

type

operational horizon
representation demonstrated features

industrial energy
system
(Section 4.1)

superstructure with
CHP subsystem, 15
instances of 11
component classes

MINLP
(MILP, NLP)

design 6 scenarios representing 4
typical days with 4 time
steps of varying length,
each, and two isolated time
steps representing extreme
demands, implicit Euler
time discretization

• superstructure optimization
• automatic linearization
• user-defined algorithm
• re-use of model for multiple

problem formulations

building demand
response
(Section 4.2)

9 instances of 4
component classes

MIDO (MILP) operation 24 h horizon with 15min
time steps, each with 4
collocation points

• abstract components
• modeling with differential equa-

tions
• advanced time discretization

via collocation in Pyomo.DAE
(Nicholson et al., 2018)

low-temperature
district heating
network
(Section 4.3)

superstructure with
9 instances of 2
subsystem classes
(linking, consumer
group), 26 instances
of 6 component
classes

MIQCQP design 11 scenarios, each
representing a static
operating point

• modular model generation
• superstructure optimization
• stochastic programming

organic Rankine
cycle
(Section 4.4)

8 instances of 4
component classes

NLP operation single operating point • hybrid modeling with ANNs
• reduced space formulation
• integration with different

solver/AML interfaces

studies and their key characteristics is given in Tab. 2.

4.1 Case study 1: Greenfield design of an
industrial energy system

This case study is inspired by our previous work (Sass
et al., 2020). For demonstration, we consider a simpler
system, allowing only up to one component of each type.
We make use of inheritance to abstract common model
aspects of conversion and storage components into generic
classes and then derive specialized variants that implement
more specific behavior. Furthermore, we take advantage
of automatic linearization and discretization routines to
obtain MILP problems from the originally dynamic and
nonlinear component models of Sass et al. (2020).

The industrial energy system needs to satisfy given time-
dependent demands for heating, cooling, and electricity
with minimal total annualized costs (TAC) and global
warming impact (GWI). To satisfy these demands, multiple
conversion and storage components are available in the
superstructure of the system (Fig. 5). For self-containment,
we briefly repeat the description of the conversion and
storage components here. More detailed information can
be found in Sass et al. (2020) and in the source code for
this case study, available in the COMANDO Repository.
The conversion components i ∈
Iconv{AC, B, CC, CHP, HP} (cf. Fig. 5) are modeled
with nonlinear investment cost and part-load efficiency

curves. Additionally, minimal part-load requirements
are considered by introducing binary variables. The
investment cost reflect decreasing marginal investment
costs CI

i with increasing nominal component output Ėnom
i ,

i.e.,
CI

i = Cref
i ĖnomMi

i ∀i ∈ Iconv, (1)

where Cref
i andMi are technology-specific parameters. The

part-load efficiency ηi is expressed via a base efficiency
multiplied with a rational function of the part-load fraction
Ėout

i /Ėnom
i , and describes the relationship of input Ėin

i and
output Ėout

i :

Ėout
i = ηiĖ

in
i ∀i ∈ Iconv (2)

The HP and CHP models have variable base efficiencies
that depend on temperatures and the nominal size, respec-
tively. We create a generic conversion component class with
an unparametrized nonlinear efficiency and investment cost
model (Eqs. (1) and (2)). From this conversion component
class, we derive the individual conversion technologies as
subclasses. Three instances of the CHP model with differ-
ent ranges for the nominal size are considered, accounting
for the size-dependence of the conversion efficiencies for
heat and electricity. The three CHP models are aggregated
into a subsystem which enforces that at most one of them
is built. The subsystem can then be incorporated into
other system models like any other component.

The storage components i ∈ Isto = {BAT, TESh,TESc}

10



4.1 Case study 1: Greenfield design of an industrial energy system Page 11 of 24

GG CHP B TESh

HPPG

BAT PVOB PVEF CC AC

TESc

DEM

Fig. 5. Superstructure for the industrial energy system
case study: gas-grid (GG), power-grid (PG), boiler (B),
combined heat-and-power unit (CHP), compression chiller
(CC), absorption chiller (AC), heat pump (HP), photo-
voltaic units on office buildings (PVOB) and on experimen-
tal facilities (PVEF), thermal energy storage for hot water
(TESh) and cooling water (TESc), a battery (BAT), and a
demand (DEM). Natural gas is shown in green, electricity
in yellow, hot water in red, and cooling water in blue.

are modeled with the differential equation

dEi

dt
= ηini Ė

in
i −

1

ηouti

Ėout
i − 1

τi
Ei ∀i ∈ Isto, (3)

where the state Ei is the stored energy, ηini and ηouti are
constant charging and discharging efficiencies, Ėin

i and Ėout
i

are the charging and discharging rates, and τi is a time
constant describing self-discharging. As with the conversion
components, we create a generic storage component class
and derive technology-specific sub-classes, e.g., batteries.
For each component we additionally consider a binary
variable and associated constraints, representing whether
the component is built or not.
We use the aggregated data from the supplementary

material of Sass et al. (2020), which originate from clus-
tering a full year of data for demands, weather, prices,
and global warming impacts via the method described in
Bahl et al. (2018). The aggregated data represent the full
year via four typical days, each with four time steps of
varying lengths (between 1 and 17 hours), and two isolated
time points of length zero, representing peak heating and
cooling demands. For a similar design problem, Bahl et al.
(2018) showed that even coarse time resolutions such as
this one provide optimal objective values, sufficiently close
to those obtained with a full year at hourly resolution. In
COMANDO we can consider such a time structure via six
scenarios, corresponding to the four typical days and the
two isolated time points for peak demands. The scenarios
corresponding to typical days are weighted by number of
days associated to them during clustering, and the scenar-
ios for peak demands are assigned a weight of zero, i.e.,
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Fig. 6. Bottom: eight Pareto-optimal designs, determined
from multi-objective optimization regarding total annual-
ized cost (TAC) and global warming impact (GWI). Top:
corresponding capacities of conversion (left) and storage
components (right) from the MILP (inner bars) and NLP
(outer bars) formulations. CHP: Combined heat and power
unit, PV: photovoltaic array, AC: absorption chiller, HP:
heat pump, TESh: hot thermal energy storage, TESc: cold
thermal energy storage, BAT: battery. Note that boilers
and compression chillers are not part of any design and
thus excluded from the legend.

they have no effect on the objective but are considered for
feasibility, cf. formulation (P).
Due to the storage dynamics Eq. (3), problems derived

from this system model will be MIDO problems. In our
previous work (Sass et al., 2020), we manually implemented
the MILP formulation resulting from explicit Euler dis-
cretization and a case-specific linearization in GAMS. As
this process and subsequent changes are labor-intensive
and error-prone, we instead make use of COMANDO’s
automatic routines for discretization and piecewise lin-
earization.
The augmented ε-constraint method (Mavrotas, 2009)

is implemented as a user-defined algorithm, in which two
design optimization problems with either TAC or GWI as
objective function are repeatedly solved. For the solution
of the two problems we use Gurobi 9.1.1 with a relative
optimality tolerance of 1%. Generating 8 designs from the
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Pareto front for TAC and GWI, shown in Fig. 6, takes
about 3.6 hours. Note that a Pareto-optimal design can
only improve upon one of the two objectives by worsening
the other.
The total GWI can be reduced by 50% (from 1.152

to 0.577 kt/a) when accepting a fourfold increase in TAC
(from 0.539 to 2.6 Mio. €) (Fig. 6, bottom). Solutions with
lower TAC are characterized by small component capacities
with lower investment costs, whereas solutions with lower
GWI rely on large conversion and storage components
(Fig. 6 inner bars, top). As these results were obtained
with a linearization of the original model, they are only
approximate and the corrsponding designs may not be
feasible with respect to the nonlinear model.

However, correcting the infeasibilities is straightforward
in COMANDO as the original, nonlinear model formu-
lation is available. We first obtain the MINLP problem
resulting from implicit Euler discretization of the original
formulation with TAC as the objective. We then repeat
the multi-objective optimization with the same algorithm
but using the MINLP formulation. For each iteration, we
set the appropriate upper bound on GWI and fix binary
variables to the values of the corresponding MILP solution,
obtaining an NLP formulation. The values of the remain-
ing variables are used as an initial point and the resulting
formulation is passed to BARON 20.10.16 using default
options, except for a relative optimality tolerance of 1%
and a time limit of one hour for the subproblems.

In three cases the subproblems are terminated due to the
time limit (with 3.5% relative gap for the TAC minimiza-
tion of iteration 3 and 4, and 7.5% relative gap for the GWI
correction of iteration 3). The remaining subproblems take
at most 78 s to be solved to the desired optimality. Thus,
all cases result in a design and an operational strategy that
are feasible with respect to the original nonlinear formu-
lation. The resulting solutions exhibit slightly lower TAC
values and slightly higher GWI values than their MILP
counterparts, with the exception of iteration 1, where the
GWI value is 25% lower than for the MILP approach (433
t/a vs. 577 t/a). The corresponding designs can be seen in
the outer bars in Fig. 6 (top). While the MILP and NLP
solutions of iterations 2 and 5–8 are similar, iterations 1,
3 and 4 exhibit larger conversion components and smaller
storages in the NLP case. In summary, the approach pro-
vides MINLP-feasible system designs that allow a trade-off
between the TAC and GWI of the resulting system.

4.2 Case study 2: Demand response of a
building energy system

To illustrate how to formulate and solve optimization prob-
lems with more pronounced dynamic effects in COMANDO,
we model an illustrative building energy system. The sys-
tem is heated by a heat pump (HP) and is capable to

HTwall,E

Mwall HTair,wall Mair

HTcore,wall Mcore

HTair,core

HP

PG
core

wall

air

Tmin
air ≤Tair≤Tmax

air

Fig. 7. Structure of the considered building energy system
and implementation in COMANDO: three instances of the
thermal mass class (Mair, Mcore, Mwall), four instances
of the heat transfer class (HTair,wall, HTwall,E, HTair,core,
HTcore,wall), heat pump (HP), and power grid (PG). Red
arrows represent heat flows and yellow arrows electric power
flows.

perform load shifting via concrete core activation, i.e., a
concrete core with a high thermal inertia can be heated
directly. We investigate a demand response (DR) case,
where we optimize the operation of the building energy
system over the horizon of one day with given profiles for
electricity price and ambient temperature.

The considered building energy system consists of three
thermal zones: air, outside wall, and concrete core. Oc-
cupant comfort has to be ensured by maintaining the air
temperature between minimal and maximal temperatures
Tmin
air and Tmax

air , respectively. To do so, the air in the room
can be heated via a direct heat flow to the air Q̇air,in, or
indirectly through the concrete core, which can be heated
via the heat flow Q̇core,in. We consider a zero-dimensional
model of each thermal zone. For instance, the energy
balance of the air zone is given by

ρairVaircp,air
dTair
dt

= Q̇core,air − Q̇air,wall + Q̇air,in, (4)

where Tair, Vair, ρair, and cp,air are the air temperature,
volume, density, and specific heat capacity, respectively,
and Q̇core,air and Q̇air,wall are heat exchange flows with the
adjacent zones. The heat flow Q̇A,B between two zones
A and B is calculated depending on the temperatures TA
and TB, the area AA,B, and the heat transfer coefficient
UA,B :

Q̇A,B = UA,BAA,B(TA − TB) (5)

The structure of the model is shown in Fig. 7. To model
thermal masses, we introduce a component M, which is
instantiated by specifying volume, density, and specific

12



4.3 Case Study 3: Design of a low-temperature district heating network Page 13 of 24

10

20

30

T
[°C

]

Air Tmin
air , Tmax

air Wall
Core Environment

0

1

2

Q̇
H

P
[k

W
]

0 5 10 15 20
2

3

4

time [h]

C
el

ec
[c

t/
kW

h]

Fig. 8. Results of the demand response optimization
for the building energy system: the temperatures of the
different zones together with the air temperature comfort
bounds Tmin

air and Tmax
air (top), the heat flow supplied by

the heat pump Q̇HP (center), and the electricity costs Celec

(bottom).

heat capacity, and optionally allows to specify minimal and
maximal temperatures. The heat transfer is abstracted as a
component HT, implementing Eq. (5), and the heat pump
is again modeled with a temperature-dependent efficiency,
but with the option of splitting the output to multiple
connectors.
Based on the model of the building energy system, we

define a DR optimization problem, i.e., we minimize the
integral over the electricity costs for a given electricity
price profile. The resulting operational objective function
is thus chosen as ḞII = CelecPHP, where Celec and PHP are
the electricity costs and electric input power of the heat
pump, respectively.

As we consider a minimum part-load constraint for the
heat pump, the resulting problem is a MIDO problem. The
time horizon is a 24 hour period considered at quarter-
hourly resolution and the input data consists of hourly
electricity price data and ambient temperature data at
quarter-hourly resolution. We use a full discretization ap-
proach (Cuthrell and Biegler, 1987) via the COMANDO
interface to Pyomo.DAE (Nicholson et al., 2018). Specif-

Tab. 3. Clustering of neighbouring buildings into con-
sumer groups. Buildings within a group are assumed to
have identical heating curves.

Consumer T fl,max T fl,min

group (Tair=−12°C) (Tair=20°C)

CG40 40°C 35°C
CG50 50°C 40°C
CG70 70°C 50°C
CG85 85°C 60°C

ically, we use Legendre-Radau collocation with four ele-
ments per hour and fourth-order polynomials. Since the
model contains exclusively linear expressions and we use
collocation with a fixed time grid, we obtain a MILP prob-
lem after discretization. The resulting formulation has
6931 constraints and 6257 variables, 96 of which are binary.
The problem can be solved with Gurobi 9.1.1 to global
optimality in less than one second of CPU time. Results
are visualized in Fig. 8, where the temperatures of the
three thermal zones, the ambient temperature, the heat
flow supplied by the heat pump, and the electricity price
are shown. During times of low prices, the concrete core
is heated to store energy. During times of high prices, the
concrete core transfers the stored heat to the air zone and
cools down such that the heat pump has to supply less heat.
Thus, load is shifted to times of favorable prices, while the
air temperature remains within the comfort range.

Using the introduced component models for general ther-
mal masses and heat transfers, the extension to a larger
building energy system with several rooms, thermal masses,
and heat transfers is straightforward. We note that it is
also possible to perform rolling horizon optimization in
COMANDO by defining an appropriate user-defined al-
gorithm, e.g., as in our previous publication (Shu et al.,
2019), where a preliminary version of COMANDO was
used.

4.3 Case Study 3: Design of a low-
temperature district heating network

In this case study, we extend components of previous work
(Hering et al., 2020) to describe a district heating network
and apply them to a design optimization of the network
described by Saelens et al. (2020). The system comprises
a source of waste heat, a distribution network, and 16 con-
sumers. We aggregate the 16 consumers into four consumer
groups, comprising four consumers each, and assume linear
heating curves for the flow temperature T fl. The heating
curves are described by the flow temperatures T fl,max and
T fl,min, at ambient air temperatures of -12°C and 20°C,
respectively, see Tab. 3.
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Fig. 9. Superstructure with components for the gas grid
(GG), power grid (PG), waste heat source (WH) and net-
work (NW) as well as subsystems for linking (L) and con-
sumer groups (CG), see top. The superstructure of the
linking subsystem contains a heat pump (HP) and a heat
exchanger (HE) and that of the consumer group subsystems
contains two heat source (HS) components parameterized
as a heating rod (HSHR) and a boiler (HSB) and demand
(DEM) as well as a decentral linking subsystem. To connect
the different consumer groups, the necessary pipe segments
(depicted as gray bars within NW) need to be built.

The source of waste heat supplies heat to a network to
which each consumer group may be connected or not. Both
waste heat and consumer groups are linked to the network
via a heat exchanger or a heat pump, and connecting a
consumer group additionally requires the necessary pipes
to be built. Independently of whether a consumer group is
connected or not, it may also be equipped with a gas-fired
boiler or an electric heating rod. The superstructure of the
heating network is shown in Fig. 9.
The system is modeled using components for a source

of waste heat (WH), the distribution network (NW), the
power grid (PG) and the gas grid (GG). As both the linking
unit and the consumer groups are composed of multiple
components and occur more than once, they are modeled
as subsystems. The linking subsystem (L) contains a heat
pump (HP) and a heat exchanger (HE) and the consumer
group subsystem (CG) contains a linking subsystem, a
demand (DEM), and two instances of a generic heat source
with different parametrizations, representing a boiler (HSB)
and a heating rod (HSHR).
The design decisions comprise binary variables for the

type of linking component (heat exchanger, heat pump, or
none) and the type of additional heat source (gas boiler,

electric heater, or none) to be built, as well as continu-
ous variables for component sizing and the maximum and
minimum return temperature of the network T re,max

NW and
T re,min
NW , respectively. Finally, four pipe segments can be

added to the network model separately using the decision
variables, bsNW. The linking components for the consumer
groups can only be built if all necessary pipe segments
of the network are built. The demand component has a
parameter for the required heat demand and computes
the required flow temperature based on the ambient air
temperature. The heat demand is based on Saelens et al.
(2020), while the flow temperature is assumed to depend
linearly on the ambient air temperature (cf. Tab. 3). The
network return temperature T re

NW also depends linearly on
the ambient air temperature Tair and the design variables
T re,max
NW and T re,min

NW , while the network flow temperature
T fl
NW is assumed to be 15K higher than T re

NW.
We aggregate the whole network into one pipe network

with two branches, cf. Fig. 9. The central linking compo-
nent is connected to the center of the network with T fl

NW
and T re

NW. Despite being located at different distances from
the center, we assume that all consumer groups receive
and reject water at the same flow and return temperatures,
T fl
NW−∆T fl,loss

NW and T re
NW + ∆T re,loss

NW , respectively. For this
simplification to be conservative, we use the total length
of the network, lNW, calculated as

lNW =
∑

bsls, (6)

to calculate the temperature drops, where bs is the build
decision and ls is the length of each network segment s,
cf. Fig. 9. To obtain the temperature differences in the
flow and return pipes, ∆T fl,loss

NW and ∆T re,loss
NW , respectively,

we consider energy balances of the water for both the flow
(fl) and return (re) pipe of the network, i.e.,

ṁNW cp ∆T fl,loss
NW = UNW lNW (T fl

NW − Tgr) (7)

ṁNW cp ∆T re,loss
NW = UNW lNW (T re

NW + ∆T re,loss
NW − Tgr)

(8)

where ∆T fl,loss
NW and ∆T re,loss

NW are operational variables de-
scribing the temperature drop in the respective pipe, cp
is the constant specific heat capacity of water, UNW =
0.035 W

mK is the specific heat transfer coefficient and lNW
is the pipe network length, and Tgr = 8°C is the average
ground temperature.
The heat pump model in each linking component is

modeled via the following set of equations:

Q̇HP ≤ bHP 400 kW (9)

PHP T
re
con ηCOP = Q̇HP(T re

con − T re
eva) (10)

ṁevacp (T fl
eva − T re

eva) + PHP

= ṁconcp (T re
con − T fl

con) (11)
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Tab. 4. Specific and fixed costs for heating equipment
according to (BMVBS, 2012) and (BBSR, 2014)

Component cspec cfix
central HP 500€/kW 0€
decentral HP 620€/kW 0€
HE 90€/kW 0€
HSHR 10€/kW 100€
HSB 111€/kW 4300€

Here, Q̇HP, PHP, ṁeva, ṁcon, T fl
eva, T fl

eva, T re
con and T fl

con
are operational variables, and ηCOP = 0.6 is the heat pump
efficiency relative to the carnot efficiency. The outgoing
heat flow for the heat pump (Q̇HP) is bounded by zero or
the maximum allowable nominal size of 400 kW through
Eq. (9). The input power PHP is coupled to Q̇HP via
Eq. (10). In the energy balance Eq. (11), enthalpy differ-
ences at the evaporator and condenser side are described
by the associated mass flows ṁeva and ṁcon, and flow and
return temperatures T fl

eva, T fl
eva, T fl

con and T re
con.

For the investment cost, we assume linear cost correla-
tions with a specific cost cspec and a fixed cost cfix according
to Tab. 4.

Additionally, we consider the costs for each pipe segment
of the network based on Jentsch et al. (2008). Thus, the to-
tal investment costs of the system includes the investments
into heating components and piping.

To obtain an economical design, we minimize TAC. We
use k-means clustering (Pedregosa et al., 2011) to aggregate
the original set of ambient temperatures and heat demands
into representative clusters. Each resulting cluster center
is a pair of daily mean values for temperature and heat de-
mand and can be considered as a representative operating
scenario. To reduce computational demand, the data is
clustered into 11 such scenarios, including one scenario rep-
resenting the maximum heat demand. Demand data with
zero heat demand are dropped from the dataset. Fig. 10
shows the resulting 11 clusters.
We use the clusters as scenarios in the COMANDO

framework, with the fraction of data points in each clus-
ter as the corresponding scenario weight. Considering the
data in this way ensures that the final design is feasible
for all considered scenarios and is optimized with regards
to the expected value of TAC. The resulting problem is a
MIQCQP with 526 continuous variables, 147 binary vari-
ables and 275 quadratic constraints. An optimal design
with 0% optimality gap is obtained within six minutes of
CPU time, using the Gurobi API interface with Gurobi
9.1.1 and 12 threads. The global optimal solution corre-
sponds to the system shown in Fig. 11.
The network is designed with a variable return tem-

perature between 25°C and 35°C and is connected to the
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Fig. 10. Heat demand clusters: Each cross represents one
pair of measurements of total daily mean heat demand
and daily mean ambient air temperature. Colors and
boundaries are used to aid visual distinction of the clusters
whose centers are mean values depicted as black dots.

WH LNW
102.3 kW HP

PG

GG

CG40
5.0 kW HR
12.8 kW HE

CG50
5.0 kW HR
12.8 kW HE

CG70
17.8 kW B

CG85
17.8 kW B

NW
T re
NW∈ [25◦C, 35◦C]

Fig. 11. Optimal system structure: A central heat pump
HP supplies waste heat from WH to the network NW.
Consumer groups CG40 and CG50 are connected to NW
via heat exchangers (HE) and use heating rods (HR) for
peak demands. Consumer groups CG70 and CG85 are not
connected and satisfy their heat demand via boilers (B).

waste heat source using a 102 kW heat pump. Consumer
groups CG40 and CG50 are connected to the network using
heat exchangers and have additional electric heating rods
installed. Consumer groups CG70 and CG85 are not con-
nected but satisfy their heat demand using gas-fired boilers
instead. The TAC of this design are 22 095€. At an annual
heat demand of 322.7MWh this corresponds to a specific
heating cost of 68.5€/MWh. In order to assure that the
obtained system design is feasible for the original demand
data, we perform a second optimization for which we fix
the design (i.e., system structure and component sizes) and
perform a purely operational optimization using the full
set of demands. The design proves to be feasible, with the
corrected TAC increasing by less than 2% to 22 414€.
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4.4 Case study 4: Optimal operating
point of an organic Rankine cycle
(ORC)

Finally, we consider a case study from our previous work
(Huster et al., 2019), where an optimal operating point
of an organic Rankine cycle (ORC) with respect to net
power production is sought. With this case study, we
demonstrate how COMANDO can handle complex model-
ing features such as accurate fluid properties via artificial
neural networks (Schweidtmann and Mitsos, 2018; Schwei-
dtmann et al., 2019) and a sequential modeling approach
that gives rise to reduced-space formulations beneficial for
global optimization (Bongartz and Mitsos, 2017).
Again, we give a short overview of the case study for

self-containment. In the considered process, the working
fluid isobutane (ib) is first pressurized by a pump and
then preheated in a recuperator before being heated to
evaporation temperature, evaporated and superheated by
cooling geothermal brine (gb) from 408K to 357K. After
expanding in a turbine, the working fluid is used in the
recuperator to preheat the pressurized fluid and is finally
condensed and cooled to its original state using cooling
water at 288K. The heat passed from the condenser to
the cooling water (cw) is dissipated by a cooling system
consisting of multiple fans.
The ORC is modeled as a system consisting of 4 types

of components, i.e., a pump (P), a turbine (T), a cooling
system (CS), and five heat exchangers (condenser HEcon,
recuperator HErec, economizer HEeco, evaporator HEeva,
and superheater HEsup). All components have connec-
tors for enthalpy in- and out-flows that are connected as
depicted in Fig. 12 to obtain the system model.

P

HEcon

HErec

HEeco HEeva HEsup T

geothermal brine

2 2r 3 4 5

6
isobutane

6r
1

CS cooling water

PP
PT

PCS

Fig. 12. System model of the ORC process from Huster
et al. (2019). The components are a pump (P), a recupera-
tor (HErec), an economizer (HEeco), an evaporator (HEeva),
a superheater (HEsup), a turbine (T), a condenser (HEcon),
and a cooling system (CS). Flows of geothermal brine, the
working fluid isobutane, and cooling water are depicted
in red, gray, and blue, respectively. Electrical power is
consumed by pump (PP) and cooling system (PCS) and
produced by the turbine (PT).

As discussed in Bongartz and Mitsos (2017), reduced-
space formulations, i.e., formulations in which a large num-
ber of variables and constraints are eliminated by substi-
tution, are well suited for global optimization of power
cycles such as the present ORC. To obtain a reduced-space
formulation, model generation begins with an empty sys-
tem model to which different component models are added
sequentially. First, the decision variables are specified at
the system level as follows: The mass flow ṁ of the working
fluid, the pressures p1 and p2 before and after the pump,
and the specific enthalpy after the recuperator h2r, as well
as the isentropic specific enthalpy after the turbine his6 . All
other quantities of interest are defined in terms of these
five variables.

In our previous work (Schweidtmann and Mitsos, 2018;
Schweidtmann et al., 2019), the use of artificial neural
networks (ANNs) in combination with our inhouse global
MINLP solver MAiNGO (Bongartz et al., 2018) has been
shown to result in tight relaxations, beneficial for determin-
istic global optimization. In Huster et al. (2019), we trained
several ANNs to learn the relations between various quan-
tities of different thermodynamic phases of the working
fluid isubutane, using data generated from the equations of
state implemented in the thermophysical property library
CoolProp (Bell et al., 2014). The ANNs are used as data-
driven surrogte models for the equations of state, which
cannot be used directly within the optimization, as they
are not available as analytical expressions (Schweidtmann
et al., 2019). The validity of the ANNs used for this case
study was extensively analyzed and discussed in the origi-
nal publication (Huster et al., 2019). Each ANN has two
hidden layers with six neurons each, all of which use tanh
as the activation function. The ANNs express individual
output quantities in terms of either pressure p, pressure
and specific enthalpy h, or pressure and specific entropy s,
as inputs. As a result of training, we thus obtain explicit
analytical expressions for various quantities. In this case
study, eight of the ANNs from Huster et al. (2019) are used
as analytical surrogate models for the following quantities:

hliq(p, s) liquid enthalpy
T liq(p, h) liquid temperature
hsat,liq(p) enthalpy of saturated liquid
ssat,liq(p) entropy of saturated liquid
T sat(p) saturation temperature

hsat,vap(p) enthalpy of saturated vapor
svap(p, h) vapor entropy
T vap(p, h) vapor temperature

The enthalpy flows of pump and turbine are described
via mass flow and specific enthalpies, and the electrical
power consumed by the pump (PP) and provided by the

16



4.4 Case study 4: Optimal operating point of an organic Rankine cycle (ORC) Page 17 of 24

turbine (PT) are modeled as

PP = ṁ
his,outP − hinP

ηisP
, (12)

PT = ṁ (hinT − his,outT ) ηisT, (13)

where ηisP and ηisT are known, constant isentropic efficiencies
and the required specific enthalpies h are determined via
the appropriate ANNs.

For each heat exchanger, the differences of enthalpy flows
at the hot (h) and cold (c) side are either defined in terms
of a mass flow and specific enthalpies (ib) or in terms of a
specific heat capacity flow ṁcp and temperatures (cw and
gb):

Q̇h =

{
ṁh (hinh − houth ), h = ib
(ṁcp)h (T in

h − T out
h ), h ∈ {cw, gb}

(14)

Q̇c =

{
ṁc (houtc − hinc ), c = ib
(ṁcp)c (T out

c − T in
c ), c ∈ {cw, gb}

(15)

As heat losses are neglected, the energy balance reduces to

Q̇h = Q̇c. (16)

Since we aim for a reduced-space formulation, no vari-
ables are introduced for the left-hand sides of Eqs. (12)–(15)
and the corresponding right-hand side expressions are used
directly, avoiding the addition of constraints. In particular,
where possible, Eq. (16) is automatically reformulated to
obtain a definition for one of the temperatures or specific
enthalpies in the right-hand sides of Eqs. (14) and (15) in
terms of the other quantities. The heat-exchanger model
is configured to perform the appropriate reformulation
automatically, based on the provided quantities.

A pinch point is assumed in the condenser, i.e., the tem-
perature of the cooling water at the pinch point, Tpinch, is
assumed to lie ∆Tmin = 10K below the evaporation tem-
perature T sat(p1). Through this assumption, it is possible
to compute the heat capacity flow of the cooling water,
(ṁcp)cw, as

(ṁcp)cw =
ṁ (hpinch − h1)

max(10−5 K, Tpinch − T in
cw)

=
ṁ
(
hsat,vap(p1)− hsat,liq(p1)

)

max
(

10−5 K, T sat(p1)− 10K− 288K
) .

(17)

Note that the max function and the constant 10−5 in
Eq. (17) are introduced to avoid division by zero. The
electrical power PCS, required to run the fans of the cooling
system, is modeled to be proportional to the specific heat

capacity flow of the air (ṁcp)air passing through them and
is computed as

PCS =
V̇air ∆pfan
ηfan

=
(ṁcp)air ∆pfan
cp,air ρair ηfan

, (18)

where ∆pfan = 170Pa and ηfan = 0.65 are the pressure
drop and efficiency of the fan, V̇air, cp,air = 1000 J

kgK and
ρair = 1.2 kg

m3 are the volume flow, specific heat capacity
and density of the air, respectively. With the assumption
that

(ṁcp)air = (ṁcp)cw, (19)

the power of the cooling system is fully determined. For
the complete formulation, the reader is referred to the
model source code.

The reduced space formulation results in a system model
with relatively few expressions, however, since several quan-
tities that are described by ANNs are themselves inputs
to other ANNs or used in reformulations within the heat
exchangers, the model expressions become deeply nested.
For this particular use case, the standard SymPy backend
(implemented in pure Python) proved to be inefficient as
model generation takes about 45 minutes. Therefore,
SymEngine (Čertík et al., 2019), a C++ implementation of
a subset of SymPy, was integrated as an alternative back-
end for COMANDO. Although SymEngine has a reduced
feature set compared to SymPy, all functionality relevant
for the presented case study is provided. The use of Sym-
Engine reduces the model generation time to about 0.1
seconds. Nevertheless, the nested expressions in the model
result in very large input files that can take substantial
time when written to disk. For instance, when using only
a single scenario and operating point and maximizing the
net power production

Pnet = PT − PP − PCS, (20)

the resulting optimization problem has only 5 variables
and 32 constraints.

In order to solve this problem with BARON (Sahinidis,
2020), the nonsmooth max function in Eq. (17) is approxi-
mated with max(a, b) ≈ 0.5(a+b+[(a−b+10−4)2]0.5) and
the tanh(x) function present in the ANNs is equivalently
expressed as 1− 2/[exp(2x) + 1]. Generating the BARON
input file takes around 1 minute and results in a file size of
about 40MB. This input file is passed to BARON 20.10.16
with absolute and relative optimality tolerances set to 1e-3.
BARON reports finding a feasible solution with an objec-
tive value of Pnet = 16.48MW during preprocessing and
terminates after the first iteration and 8 s of CPU time.
Although a lower bound within the optimality tolerance is
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Fig. 13. Processes resulting from the optimization us-
ing BARON and MAiNGO and boundaries of pressure
variables p1 and p2.

given in the log file, BARON states that it cannot guar-
antee global optimality due to missing bounds for certain
nonlinear subexpressions.
To prove the global optimality of this solution, we use

the COMANDO interface to the API of our inhouse solver
MAiNGO (Bongartz et al., 2018). MAiNGO automatically
provides relaxations of the nested expressions by propagat-
ing McCormick relaxations through subexpressions (Mitsos
et al., 2009). The COMANDO interface uses a SymEn-
gine implementation of common subexpression elimination
to find subexpressions that occur more than once within
the problem description. By creating intermediate vari-
ables and replacing all occurrences of these subexpressions,
a small (21 kB) input file for MAiNGO can be created.
Since MAiNGO is capable of propagating McCormick re-
laxations, the user does not need to provide bounds on
these intermediate variables and they are not treated as
decision variables, maintaining the reduced-space formula-
tion. Solving the resulting problem via MAiNGO version
0.3 with the solution returned by BARON as an initial
point takes 22 s and confirms its global optimality (see
Fig. 13), matching the results reported in Huster et al.
(2019).

5 Conclusion
We present COMANDO, our flexible open-source frame-
work for component-oriented modeling and optimization
for nonlinear design and operation of energy systems. CO-

MANDO combines desirable features of existing tools and
provides layers of abstraction suitable for structured model
generation and flexible problem formulation. The behavior
of individual components can be represented with detailed
models, including dynamic and nonlinear effects based on
mechanistic, data-driven or hybrid modeling approaches.
The component models are then aggregated to energy
system models, based on which different optimization prob-
lems concerning the design and/or operation of the energy
system can be formulated. COMANDO natively allows to
consider multiple operating scenarios via stochastic pro-
gramming formulations, allowing to find system designs
that are suitable for operation under uncertainty. The re-
sulting problem formulations can either be manipulated in
user-defined algorithms, or be passed to algebraic modeling
languages or directly to solvers.
COMANDO allows for flexible model creation beyond

the capabilities of existing MILP-based energy-system mod-
eling tools and provides a wide range of options for prob-
lem formulation. Contrary to classical algebraic modeling
frameworks, it allows for modular component and system
representations, and is dedicated to energy system design
and operation.
In four case studies, we demonstrate how COMANDO

can be used to create modular and reusable component
and system models of various types of energy systems.
Further, we formulate and solve associated optimization
problems. With COMANDO, we facilitate and enhance
workflows of computer-based analysis of future integrated
energy systems. We plan to continuously improve and
expand COMANDO’s capabilities, with future versions
being published via the COMANDO Repository.
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Nomenclature
Acronyms
AML algebraic modeling language
ANN artificial neural network
API application programming interface
COP coefficient of performance
DAMF differential-algebraic modeling framework
ESMF energy system modeling framework
GWI global warming impact
LP linear programming
MIDO mixed-integer dynamic optimization
MILP mixed-integer linear programming
MINLP mixed-integer nonlinear programming
MIQCQP mixed-integer quadratically constrained

quadratic programming
NLP nonlinear programming
ORC organic Rankine cycle
TAC total annualized costs

Component labels
AC absorption chiller
B boiler
BAT battery
CG consumer group subsystem
CC compression chiller
CHP combined heat-and-power unit
CS cooling system
DEM demand
GG gas grid
HE heat exchanger
HP heat pump
HR heating rod
HS heat source
L linking subsystem

Component labels (cont.)
NW network
P pump
PG power grid
PV photovoltaic unit
T turbine
TES thermal energy storage
WH waste heat

Latin symbols
A contact area [m2]
b build decision (1: build, 0: do not build)
c generic connector expression
cp heat capacity [J/kg/K]
C cost [€]
e generic algebraic expression
E, Ė generalized energy, energy flow [J], [W]
F generic objective function
g left-hand side of generic inequality constraints
h specific enthalpy [J/kg]
h left-hand side of generic equality constraints
I set of components
ṁ mass flow rate [kg/s]
M investment cost exponent
p pressure [Pa]
p generic parameters
P electric power [W]
Q̇ heat transfer rate [W]
s specific entropy [W/kg/K]
t time point
T temperature [K]
U heat transfer coefficient [W/m2/K]
V, V̇ volume, volumetric flow [m3], [m3/s]
x generic design variables
y generic operational variables
T set of all considered time points
X host-set of generic design variables
Y host-set of generic operational variables
w scenario weight

Greek symbols
∆s,t time step [h]
∆T temperature difference [K]
η efficiency
ρ density [kg/m3]
τ self-discharge of storage component [h]
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Subscripts
0 initial point
1, 2, 2r,
3, 4, 5, 6,
6r, pinch

working fluid states in the fourth case study

40, 50,
70, 85 design temperatures in the third case study

A,B thermal zones A and B in the second case
study

c cool
con condenser
core concrete core
cw cooling water
eva evaporator
eco economizer
gb geothermal brine
h hot
i generic system component
ib isobutane
I, II first- and second-stage quantities
rec recuperator
s scenario
sup superheater

Superscripts
conv conversion components
d differential states
elec electricity
fl flow
gr ground
I investment
in input, in-flowing stream
is isentropic
liq liquid
max maximum value
min minimum value
nom nominal value
out output, out-flowing stream
re return
ref reference value
sat saturation
sto storage components
vap vapor
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