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Abstract

Control of batch processes is a difficult task due to their complex nonlinear dynamics and unsteady-state operating conditions
within batch and batch-to-batch. It is expected that some of these challenges can be addressed by developing control strategies
that directly interact with the process and learning from experiences. Recent studies in the literature have indicated the advantage
of having an ensemble of actors in actor-critic Reinforcement Learning (RL) frameworks for improving the policy. The present
study proposes an actor-critic RL algorithm, namely, twin actor twin delayed deep deterministic policy gradient (TATD3), by in-
corporating twin actor networks in the existing twin-delayed deep deterministic policy gradient (TD3) algorithm for the continuous
control. In addition, two types of novel reward functions are also proposed for TATD3 controller. We showcase the efficacy of the
TATD3 based controller for various batch process examples by comparing it with some of the existing RL algorithms presented in
the literature.

Keywords: Reinforcement learning, deep Q-learning, deep deterministic policy gradient, twin delayed deep deterministic policy
gradient, batch process control

1. Introduction

Studies have emphasized the usefulness of batch processes
in industrial-scale production of various value-added chemi-
cals because of advantages like low capital cost, raw material
cost, and flexibility in operation [1]. However, the operation
of the batch process grapples with several challenges due to
the characteristics such as non-linearity due to the temperature-
dependent kinetics, time-varying dynamics and a broad range of
operating conditions. Therefore, the control and optimization
of the batch process is a very challenging task. In most of the
batch processes, reaction temperature has a significant effect on
the yield and, therefore, the primary control variable in the ex-
isting literature on the control of the batch process. [2, 3, 4]. In
the end, the yield of the product depends mostly on the choice
of the controller and its capability and the tuning parameters.
Even if the controller is appropriately tuned for an operating
condition, the drifts in process parameters can significantly de-
teriorate the controller performance over time. To overcome
some of these issues, advanced control strategies such as model
predictive control (MPC), iterative learning control (ILC), non-
linear MPC (NMPC) are presented in the literature for the con-
trol of the batch process [5, 6, 7, 8, 9, 10, 11, 3, 12, 13].

The performance of a model-based controller is heavily de-
pendent on the accuracy of the underlying model of the pro-
cess. Even the slightest inaccuracies in the model will result
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in plant-model mismatch and, consequently, inaccurate predic-
tion of the concentration profiles of the species from the model.
These issues could arise mainly due to batch-to-batch variations
or due to parameter drifts. To overcome some of the limitations
of the first-principle based model, data-driven modelling ap-
proaches for nonlinear dynamic batch processes are reported in
the literature [14, 15, 16]. Further, optimization-based control
algorithms are computationally demanding as the computation
of the optimal input sequence involve online optimization at
each time step. Despite the advances in numerical methods and
computational hardware, this is still a challenging task for com-
plex nonlinear, high-dimensional dynamical systems. Hence,
there is much incentive if a control strategy can directly interact
with process trajectory and provide a control solution for online
course correction by learning the operational data profile.

To this extent, it is useful to explore the feasibility of rein-
forcement learning (RL) as a potential paradigm for controlling
batch processes. Contrary to classical controllers, RL based
controllers do not require a process model or control law; in-
stead, they learn the dynamics of the process by directly in-
teracting with the operational environment [17, 18, 19]. As
a result, the controller performance will not be contingent on
having a pressing requirement of a high fidelity model of the
process. Further, as opposed to traditional controllers, the
RL-based controller learns from experiences and past history,
thus improving the control policy at every step. As an earlier
proposition in this direction, approximate dynamic program-
ming (ADP) approach that learns the optimal ‘cost-to-go’ func-
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tion has been proposed for the optimal control of non-linear sys-
tems [20, 21, 22]. Following this, an ADP based ‘Q-learning’
approach that learns the optimal policy using value iteration
in a model-free manner has also been proposed [20]. Unlike
the traditional applications of ‘Q-learning’, the state-space and
action-space are continuous for most process control applica-
tions. This poses a major limitation to the application of con-
ventional Q-learning methods in this context. For systems with
continuous state-space, Mhin et al. combined Q-learning with
a deep neural network for function approximation and devel-
oped a deep Q network (DQN) [23]. Inspired by these, some
of the recent works related to RL applications in chemical pro-
cesses have attempted to optimize the control policy by apply-
ing Q-learning and deep Q-learning for applications such as
chromatography and polymerisation. [24, 25].

Although the advent of DQN based RL was a major break-
through in applications to systems with continuous state-space,
their utility to systems with continuous action-space was still
limited. Another approach to solving the RL problem is by em-
ploying policy gradient (PG), where instead of evaluating the
value functions to find an optimal policy, the optimal policy is
evaluated directly. This approach is particularly well-suited to
deal with problems where both the state and action spaces are
continuous. For instance, Petsagkourakis et al. applied the PG
algorithm to find the optimal policy for a batch bioprocess by
using principles of transfer learning [26]. However, PG meth-
ods suffer from the drawback of noisy gradients due to high
variance, leading to slow convergence. Actor-critic methods re-
duce this low variance gradient estimates by exploiting a critic
network and has been the widely used framework for dealing
with continuous action spaces. In this connection, Deep Deter-
ministic Policy Gradient (DDPG)is one of the actor-critic algo-
rithms that has celebrated a huge success [27]. Indeed, DDPG
was the first efficient algorithm used to solve high dimensional
continuous control tasks. It effectively combines the architec-
ture of DQN and deterministic policy gradient (DPG). Recent
works have shown the application of the DDPG algorithm for
chemical process control as well. For example, Ma et al. have
proposed a DDPG based controller for the control of semi-batch
polymerisation [28], Spielberg et al. has applied the DDPG al-
gorithm for SISO and MIMO linear systems [17]. Recent work
by Yoo et al. proposed a modified DDPG based controller for
stable learning and reward function design for the control of
batch polymerisation process [29]. For a detailed review of the
application of RL for chemical control problems, the readers
are referred to [30, 18, 31].

Fujimoto et al. [32] have shown that the DDPG algorithm
suffers from a critical issue of overestimation of network bias
due to function approximation error and leads to sub-optimal
policy. The authors have also provided an approach to address
the function approximation error in actor-critic methods and
termed the new algorithm as Twin Delayed Deep Deterministic
Policy Gradient (TD3). Some recent work involving the ap-
plication of TD3 algorithm involves motion planning of robot
manipulators, half cheetah robot as an intelligent agent to run
across a field, etc. [33, 34]. Further, some of the recent stud-
ies in the literature have also indicated the advantage of having

an ensemble multiple actors in actor-critic RL frameworks for
improving optimal policy. In a multi-actor architecture, over-
all policy is obtained by amalgamating the results of parallel
training of multi-actor networks [35].

Inspiring from these, this paper presents a novel actor-critic
framework termed as twin actor twin delayed deep determin-
istic (TATD3) policy gradient learning, combining TD3 and
multi-actor frameworks, for the control of the batch process.

We also propose novel reward functions analogous to
proportional-integral (PI) and proportional-integral-derivative
(PID) functions, and their performances are compared. We have
also compared the results of the TATD3 approach with popu-
lar actor-critic methods and RL algorithms with discrete action
spaces. The performance of the different algorithms is com-
pared by numerical evaluation of two batch processes viz. (i)
batch-transesterification process, and (ii) exothermic batch pro-
cess. TATD3 algorithm-based controller shows better perfor-
mance in terms of tracking error and control effort when com-
pared to TD3 and DDPG algorithm based controllers for both
of the batch processes. We believe that the following are the
novel components of this study. To the best of our knowledge
(i) amalgamation of twin actors in a TD3 framework has not
been reported in literature for process control; (ii) we showcase
that reward functions inspired based on PI and PID controller
functions works well in an RL framework, (iii) we also validate
the efficacy of the proposed TATD3 algorithm by comparing the
results with TD3, DDPG and other RL algorithms based on dis-
crete action space. Such a comprehensive study involving the
comparison of RL based algorithms with continuous and dis-
crete action spaces has also not been reported in the literature
in the context of the process control.

The rest of the paper is divided into the following sections.
Section 2 presents the background of RL useful for develop-
ing a TATD3 based controller. Section 3 explain the TATD3
algorithm in detail. Section 4 shows the application of the
proposed controller and important results for the control of (i)
batch-transesterification process and (ii) exothermic batch pro-
cess. Section 5 draws conclusive remarks from the study.

2. Background

2.1. Q- learning and deep Q-learning

A standard RL framework consists of three main compo-
nents, namely the agent, the environment (E) and the reward
(r) [36]. At each time step t, the agent performs an action at

based on the state st of the environment and receives a scalar
reward rt, as a result, the environment moves to a new state
st+1. The objective of the RL problem is to find the sequence of
control actionsA := {a0, a1, a2, . . . } to maximise the expected
discounted reward as given below:

arg max
A

E [Rt :=
∞∑

k=0

γkrt+k] (1)

where 0 < γ < 1 is the discount factor and E denotes the
expectation operator which is applied to the discounted reward
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due to the stochastic nature of the process dynamics. However,
the explicit solution of Eq.(1) is tedious to obtain. Q-learning
is an iterative algorithm to solve the RL problem over a finite
set of actions. The Q-value of a state-action pair, Qπ(st, at) is
the expected return after performing an action at at a state st

following a policy π : S → A :

Qπ(st, at) = Eπ

[ ∞∑
k=0

γkrt+k |st = s, at = a
]

(2)

where S = {s0, s1, s2, . . . }. The objective of the Q-learning is
to find the optimal policy (π∗) by learning the optimal Q-value,
Q∗(st, at) which is the maximum expected return achievable by
any policy for a state-action pair.

The optimal Q-value, Q∗(st, at) must satisfy the Bellman op-
timality equation [37] given as :

Q∗(st, at) = E[rt + γmax
at+1

Q∗(st+1, at+1|st = s, at = a)] (3)

where st+1 and at+1 are the state and action at the next time
step. The Q-learning algorithm iteratively updates the Q-value
for each state-action pair until the Q-function converges to the
optimal Q-function. This is known as value iteration and is
given as:

Q(st, at)← Q(st, at)+α(rt +γmax
at+1

Q(st+1, at+1)−Q(st, at)) (4)

where α is the learning rate.
Major encumbrances of traditional Q-learning are: (i) its ap-

plication is limited only to the problems with discrete state
and actions spaces; (ii) computational difficulty faced while
dealing with large state space owing to the large size of the
Q-matrix. The former problem can be circumvented by em-
ploying a function approximator for modelling the relation be-
tween Q-value and state-action pairs. Deep Q-learning [23]
is an RL framework wherein a Deep neural network (DNN),
termed as the value network, is used as a function for approx-
imating the optimal Q-values. To address the problem of cor-
related sequences, DQN uses a replay buffer or experience re-
play memory which has a pre-defined capacity where all the
past experiences are stored as the following transition tuple
(s := st, a := at, s′ := st+1, r := rt)). The DQN uses past
experiences to train the policy network by selecting suitable
mini-batches from the replay buffer. The state is given as in-
put to the value network, and the network outputs the Q-value
corresponding to all possible actions in the action space. The
loss is calculated as the mean square error (MSE) between the
current Q-value and the target Q-value as given in Eq. (5):

Loss = E
[(

Q∗(s, a) − Q(s, a)
)2] (5)

= E
[(

r + γmax
a′

Qφ,T (s′, a′) − Qφ(s, a)
)2] (6)

where φ represents the parameters of the network.

2.2. Actor-Critic Algorithms for RL
The applications of RL algorithms such as Q-learning and

DQN is limited only to problems with discrete action spaces.

Policy-based methods provide an alternative solution for con-
tinuous stochastic environments by directly optimizing the pol-
icy by taking the gradient of the objective function with respect
to the stochastic parameterized policy πθ :

∇θ(J(πθ)) = ∇θ
(
E
τ∼πθ

[R(τ)]
)

= E
τ∼πθ

( T∑
t=0

∇θ log πθ(at |st)
)
R(τ)


(7)

where R(τ) is the return obtained from the trajectory τ =

{s0, a0, s1, a1, . . . }. The architecture of the actor-critic algo-
rithms is based on policy-gradient, making them amenable for
continuous action spaces [38]. Policy-based (actor) methods
suffer from the drawback of high-variance estimates of the gra-
dient and lead to slow learning. The value-based (critic) meth-
ods are an indirect method for optimizing the policy by op-
timizing the value function. Actor-critic algorithms combine
the advantages of both actor-only (policy-based) and critic-only
(value-based) methods and learn optimal estimates of both pol-
icy and value function. In the actor-critic methods, policy dic-
tates the action based on the current state, and the critic eval-
uates the action taken by the actor based on the value function
estimate. The parameterized policy is then updated using the
value function using the gradient ascent for improving the per-
formance. Deterministic policy gradient (DPG) proposed by
Silver et al. is an actor-critic off-policy algorithm use for con-
tinuous action spaces [39]. It uses the expected gradient of the
Q-value function to evaluate the gradient of the objective func-
tion with respect to parameter θ to find the optimal policy as
given below:

∇θJ(µθ) = E[∇θQµ(s, a)|a=µθ(s)] (8)

where µ is the deterministic policy. However, they have only in-
vestigated the performance using linear function approximators
to evaluate an unbiased estimate of the Q-value.

DPG algorithm is further extended by Lillicrap et al. to
Deep deterministic policy gradient (DDPG) [27] by employ-
ing DQN as a non-linear function approximator for the estima-
tion of Q-values. DDPG incorporate the merits of experience
replay buffer and target networks to learn stable and robust Q-
values. In the actor part of DDPG architecture, rather than di-
rectly copying the weights of the policy network in the target
network, the target network weights are allowed to slowly track
the policy network weights to improve the stability. The critic
part of the DDPG uses a regular DQN to find the estimate of
Q-value by minimising the loss function.

Both the value-based method and actor-critic methods suffer
from the problem of overestimation bias. This problem comes
due to the maximisation in the target action-value function of
the loss function. Since the agent is unaware of the environ-
ment in the beginning, it needs first to estimate Q(s, a) and then
update them further for learning an optimal policy. Since the
estimates of Q(s, a) are likely to be very noisy, evaluating the
maxima over value function does not guarantee the selection of
the optimal action. If the target itself is prone to error, then the
value estimates are overestimated, and this bias is then propa-
gated further through the Bellman equation during the update.
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Double Q-learning or Double DQN [40] was an attempt to
provide a solution to this problem in the value-based frame-
work, where actions are discrete, by separating the action se-
lection step and the estimation of the value of the action step.
For example, Double DQN proposed by Hasselt et al. [41]
uses two estimates of the Q-value: firstly, an online network
is used for the selection of action that gives the maximum Q-
value, and, secondly, a target network estimates the Q-value
based on this action. Fujimoto et al. [32] have proved that this
overestimation-bias problem also exists in an actor-critic setting
which leads to the selection of sub-optimal actions, resulting in
poor policy updates. They have addressed this problem by in-
troducing a variant of DQN in the actor-critic framework, the
twin delayed deep deterministic policy gradient (TD3).

TD3 algorithm is an extension of the DDPG algorithm with
the following modifications to address some of the lacunae of
DDPG. (i) To address the overestimation bias problem, the con-
cept of clipped double Q-learning is used wherein two Q-values
are learned, and the minimum of them is used to approximate
the target Q-value. Thus, TD3 has two critic networks and cor-
responding critic target networks reflecting the ’twin’ term in
its name. (ii) To reduce the high variance and noisy gradients
while minimising the value error per update, target networks
are used to reduce error propagation by delaying the policy net-
work update until the convergence of the Q-value. This results
in less frequent policy network updates than the critic network
updates, which in turn allows more stable policy updates. (iii)
To reduce the variance in the target action values, target pol-
icy smoothing is performed by regularisation technique where
clipped noise is added to the target action obtained from the
policy.

However, none of these steps avoids the local optima that
would have resulted during the training of the actor networks.
Even though multi-actor ensemble essentially tries to achieve
that [35], but they are essentially devoid of the advantages of
the TD3 algorithm explained earlier. Hence, to achieve the best
of both worlds, we propose to integrate TD3 and multi-actor
methods resulting in the proposed TATD3 approach.

3. TATD3 - the methodology

In this section, we present the details of the proposed TATD3
algorithm. We propose a two-stage framework for developing
a TATD3 based controller for the control of the batch processes
as shown in Fig. 1. Here in TATD3 we use twin actor-networks
for policy learning instead of a single actor-network as in the
vanilla TD3 algorithm. The learning of the agent (controller)
includes both offline learning and online learning steps. The
agent performs offline learning by interacting with the process
model of the environment. We propose to adapt the trained ac-
tor networks (twin) and the critic networks (twin) from the of-
fline learning step in the online learning stage, enabling a warm
startup. This is expected to reduce the number of episodes re-
quired by the agent in the online stage to achieve convergence,
making it suitable to apply in real-time.

Figure 1 shows the schematic of the framework of the TATD3
based controller for the control of batch processes. The online

learning starts with the trained actor and critic models, and data
obtained during the offline learning stage serves as the histor-
ical data for the agent in online learning. The historical data
contains tuples of state (s), action (a), reward (r), next state
(s′) which is used as the replay memory. When the TATD3
agent works in a closed-loop fashion, the two actor networks
receive the initial state, s, from the plant and outputs the ac-
tion, a. This action is then injected into the plant, which then
reaches a new state, s′ and outputs the reward, r, for taking the
selected action. We get a transition tuple, add it to the experi-
ence replay memory (E2). A batch of transition tuple, (s,a,r,s′)
is randomly sampled from the experience replay memory. The
state s′ is given to the target actor-networks which outputs the
target action ã. This target action and the state s′ are passed to
the target critic networks to estimate the target Q-values. The
final target value (TV) is the sum of the experience reward r,
and the minimum discounted future reward from the critic net-
works. The critic networks take the state s and action, a, from
the sampled batch of data (’i’ in Fig. 1) and compute the current
Q-values. The TV and the current Q- value is used to compute
the loss, which is then used to update the critic networks. To
update the actor-networks a new random batch of data is sam-
pled from the experience replay memory(E2) for each actor (
ii, iii in Fig. 1). Loss is calculated for each actor, and both the
actor-networks are updated based on deterministic policy gra-
dient (DPG). Finally, the target network of both the critic and
actor gets updated based on Polyak averaging. After the train-
ing, the actor-network outputs the action a′ for the new state s′,
which is again injected into the plant. These steps take place in
an iterative fashion until the first batch run (bi) completes. The
updated model obtained for the bi batch is used for the initiali-
sation of networks at the start time (tstart) of the bi+1 batch run.
The whole process repeats for multiple batches runs. In this
way, the agent is able to learn from the environment and thus
achieve convergence. The detailed steps of the TATD3 method
are mentioned in the subsection 3.2.

The following subsections contain elaborate discussions on
the reward selection procedure and the detailed algorithm of
TATD3.

3.1. Reward function

Reward function is an imperative constituent in the RL as
the agent learns in the direction of increasing the reward. We
have considered two types of reward functions inspiring the PI
and PID control laws functional structure as illustrated below
to accommodate the time-varying nature of the error profiles:

1. Reward Function 1 (PI)

r(t) =
(
cI

1g( f (e(t))) + cI
2g(

(k−1)∑
t=0

f (e(t)))
)

(9)

In Eq. (9), cI
1, c

I
2 are suitable tuning parameters, f (.) and

g(.) are suitable function of error e(t) : x(t) − xre f ∈ Rn.
For instance, the function f (.) may take structural forms
like ||e(t)||w,p , w weighted p norm of the vector space of e,
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while g(.) is a suitable operator. Specific details regarding
functions f (.) and g(.) are mentioned in the simulation ex-
amples. In this reward formulation, instead of calculating
the reward only based on the current error e(t), we have
considered the effect of historical error profiles also. The
idea is basically to minimise the error that is being accu-
mulated over time in the past. Since this is inspired by the
principle of a proportional-integral (PI) controller, so we
are naming it as PI Reward Function.

2. Reward Function 2 (PID)

r(t) =
(
cII

1 g( f (e(t)) + cII
2 g(

(k−1)∑
t=0

f (e(t)) + cII
3 g(cII

4 + f (∆e(t))
)

(10)

Here, in Eq. (10), there is an additional term compared to
Eq. (9) ∆e(t) := e(t) − e(t − 1). This particular term helps
to bring in the information regarding the rate of change
of error profile in the reward calculation. The parameters
cII

1 , . . . , c
II
4 are to be tuned appropriately. Hence, we call

this a proportional integral derivative (PID) reward func-
tion. In the next subsection, we proceed to illustrate simu-
lation steps required for the implementation of the TATD3
based controller.

3.2. TATD3 - steps involved
The various steps of implementation of TATD3 algorithm

employed in our study are given below:
Step 1a Build the two actor networks and the corresponding

‘target actor networks’ with parameters φA10
, φA20

and φA10 ,T,
φA20 ,T, where T, A denote the target network and actor network,
respectively. Initialize the target actor networks as φA10 ,T →

φA10
and φA20 ,T → φA20

.
Step 1b Build two critic networks and initialize them with

parameters φC10
and φC20

and the corresponding ’target critic
networks’ with parameters φC10 ,T and φC20 ,T, where C denotes
the critic network. Initialize the target network as φC10 ,T→ φC10

and φC20 ,T → φC20
.

Step 1c Initialise the experience replay buffer (E1) set with a
defined cardinality.

Step 1d Observe the initial state, s and select action a from
the actor network with noise added to the action.

ai = clip(µφAi0
(s) + ε, amin, amax), i ∈ {1, 2} (11)

where amin and amax represent the upper and lower bounds of
action, respectively, µφAi0

is the parametrized deterministic pol-
icy. Further, select the action a that maximizes the Q function
as:

a = arg max
ai

QφC j0
(s, ai)), i, j ∈ {1, 2} (12)

Step 1e Execute the action, a by injecting it into the process
model and obtain reward r := r(t) and new state s′.

Step 1f Add the obtained tuple of state, action, reward ,next
state (s, a, r := r(t), s′) in the replay buffer (E1).

Step 1g Train both actor and critic according to Step 6 -Step
13 as detailed in the online learning algorithm for n desired
episodes until the convergence.

The above steps are for offline learning. The trained models
from the offline steps will be used in the online learning start-
ing from Step2. Let the updated actor network parameters are
denoted by φA1 and φA2 and the corresponding T network pa-
rameters are denoted by φA,T1 and φA,T2 , respectively. Similarly,
the updated critic model parameters are denoted by φC1 and φC2

and the corresponding ‘target critic networks’ is denoted with
parameters φC1,T and φC2,T respectively.

Step 1 Use the trained actor and critic networks obtained
from offline learning as the actor network and the critic network
for online learning.

Step 2 Initialise the experience replay buffer (E2) with a suit-
able cardinality and add tuples obtained from the offline learn-
ing (E1). Each tuple is composed of a state, action, reward and
new state i.e (s, a, r, s′).

Step 3 Observe the initial state s and compute action a1 and
a2 from the actor networks. Further, it desirable to add Gaussian
noise as a way of exploration during training. Also, clip the
action, a1 and a2 between the action range, as follows:

ai = clip(µφAi
(s) + ε, amin, amax), i ∈ {1, 2} (13)

where ε ∼ N(0, σ2) with a suitable exploration noise variance
σ2. Further, select the action a that maximizes the Q function
as:

a = arg max
ai

QφC j
(s, ai)), i, j ∈ {1, 2} (14)

Step 4 Execute the action, a by injecting it into the true-
process and obtain reward r and new state s′.

Step 5 Add the obtained tuple of state, action, reward,next
state (s, a, r, s′) in the replay buffer (E2).

Step 6 Sample a batch of transitions (s, a, r, s′) from the ex-
perience replay E2.

Step 7 Each of the target actor network outputs the deter-
ministic action ã1, ã2 for state s′, subsequently, a clipped noise
added to this action. The action values are further clipped to
ensure that they are in the valid action range.

ãi = clip(µφAi ,T
(s′) + clip(ε,−c, c), amin, amax), i ∈ {1, 2} (15)

where ε ∼ N(0, σ); c and σ are the noise clip and the policy
noise variance, respectively. Best among ã1 and ã2, ã, are are
chosen by the one that maximize Qφ(s′, ã) as below:

ã = arg max
ãi

QφC j
(s′, ãi)), i, j ∈ {1, 2} (16)

Step 8 The state s′ and the target action ã is given as input to
the target Q-network to estimate the target Q-value, QφC1 ,T

(s′, ã)
and QφC2 ,T

(s′, ã). Select the minimum of the two Q-values to
calculate the target value (TV) given as:

TV = r + γmin QφC j ,T
(s′, ã), j ∈ {1, 2} (17)

v



Figure 1: Schematic of the TATD3 based controller for batch process

Step 9 Estimate the Q- value for the state-action pair (s, a),
QφC1

(s, a) and QφC2
(s, a), and calculate the Loss (equation (5)),

as below,

Loss1 = MS E(QφC1
(s, a),TV) (18)

= E[(QφC1
(s, a) − TV)2] (19)

Loss2 = MS E(QφC2
(s, a),TV) (20)

= E[(QφC2
(s, a) − TV)2] (21)

Loss = MS E(QφC1
(s, a),TV) + MS E(QφC2

(s, a),TV) (22)

Step 10 Update the Q-value by backpropogating the loss and
update the critic network parameters φC1 and φC2 by stochastic
gradient descent using a suitable optimizer.

Step 11 After every two iterations, randomly sample two sep-
arate sets of batch of transitions (s, a, r, s′) from the experience
replay E2 for training the actor networks A1 and A2, respec-
tively. This step brings in the delayed policy update.

Step 12 Update the actor networks A1 and A2 by do-
ing gradient ascent on the Q-value of a critic network,
∇φAi

QφC1
(s, µφAi

(s)), i = 1, 2.

Step 13 Update the weights of the critic target and actor tar-
get networks.

for j= 1,2
φC j,T ← τφC j + (1 − τ)φC j,T (23)
for i= 1,2
φAi,T ← τφAi + (1 − τ)φAi,T (24)
end

by Polyak averaging, where τ ∈ [0, 1] is the suitable target
update rate.

Step 14 Obtain the new state, s → s′ & Repeat from Step 3
until the batch process completes t = tend where tend is the end
time of the batch.

Step 15 Repeat for the Steps 3-14 for subsequent batches.
These steps are concisely presented as Algorithm 1 as next.

4. Results and Discussion

This section discusses the numerical simulation results for
the application of TATD3 based controller to two batch pro-
cesses. We have compared the performance of TATD3 with re-
spect to other continuous RL algorithms such as TD3, DDPG,
and discrete action-space RL algorithms such as DQN and Q-
learning with Gaussian process (GP) [42] as the function ap-
proximator. The algorithms, as mentioned above, are trained
using two types of reward functions that resemble PI reward
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Algorithm 1 TATD3 Algorithm

1: for batch =1 , no. of batches do
2: Observe the initial state s
3: for time ∈ {tinit, . . . , tend} do
4: Compute action a (Step 3)
5: Execute action a to get r and s′

6: Add the tuple (s, a, r, s′) in E2
7: for j in range (iteration) do
8: Randomly Sample batch of transition from E2
9: Compute the target action as done in Step 7

10: Compute the target value (TV)
11: Update the critic network by minimising the Loss

in Step9
12: if j mod policy frequency=0 then
13: for Actor = 1, No.of Actors do
14: Randomly sample a batch of transition tuples

from E2
15: Update the Actor Network by DPG (Step 12)
16: end for
17: Update target Networks of both Actor and Critic

Networks(Step 13)
18: end if
19: end for
20: s→ s′

21: end for
22: end for

and PID reward, respectively. We have also introduced batch-
to-batch variations and evaluated the comparative performance
of TATD3, TD3 and DDPG algorithms in this section.

4.1. Case study 1: Batch transesterification process

Biodiesel is produced by the transesterification reaction,
wherein triglycerides (TG) from the fatty acids react with alco-
hols (methanol/ethanol) in the presence of a catalyst to produce
methyl esters (FAME) with Diglyceride (DG) and Monoglyc-
eride (MG) as intermediates and glycerol(GL) as a byproduct
[43]. The lipids/fatty acids are obtained from various plant-
based sources such as vegetable oil, soyabean oil, palm oil,
waste cooking oil, animal fats, etc. [44, 15]. Three consecutive
reversible reactions occur during this process which is given as
follows:

TG + CH3OH
k1


k2

DG + R1COOCH3

DG + CH3OH
k3


k4

MG + R2COOCH3

MG + CH3OH
k5


k6

GL + R3COOCH3

Here ki is the rate constant and is given by the Arhenius equa-
tion, ki = koi exp (−Ei/RTr) and Tr is the Reaction Temper-
ature. The kinetic-model involving the mass balance of con-
centration of the species and the model assumptions is adopted

from [45, 46] and is given as follows:

d[TG]
dt

= −k1[TG][A] + k2[DG][E]

d[DG]
dt

= k1[TG][A] − k2[DG][E] − k3[DG][A] + k4[MG][E]

d[MG]
dt

= k3[DG][A] − k4[MG][E] − k5[MG][A] + k6[GL][E]

d[E]
dt

= k1[TG][A] − k2[DG][E] + k3[DG][A]

− k4[MG][E] + k5[MG][A] − k6[GL][E]
d[A]

dt
= −

d[E]
dt

d[GL]
dt

= k5[MG][A] − k6[GL][E]

where ’[]’ represents the concentration of the reactants involved
and [E] is the FAME concentration.

The desired FAME concentration is mainly affected by the
reactor temperature (Tr), and therefore this work focuses on the
control of Tr, which can be achieved in a jacketed batch reactor
by manipulating the jacket inlet temperature (T jin). The reac-
tor temperature (Tr) and the jacket temp (T j) is determined by
applying an energy balance on the jacketed batch reactor. The
model equations and the parameters’ values are referred from
[2, 47] and are given as follows:

dTr

dt
=

MR(−V∆HRr + Q j)
Vρrcm,R

dT j

dt
=

F j(T jin − T j)
V jρ j

−
Q j

V jρ jcw

Q j = UA(T j − Tr)

r =
d[E]

dt

Herein, we present the training details of RL-based agents
used to control the batch transesterification problem. A neural
network consisting of 2 hidden layers with 400 and 300 hid-
den nodes is used for both the twin actor-networks and the twin
critic-networks. Rectified Linear Unit (ReLU) is the activation
function between each hidden layer for both actor networks and
critic networks. Further, a linear activation function is used for
the output in the actor-networks. The network parameters are
updated using the ADAM optimiser for both the actor and crit-
ics networks. Both the state and action are given as input to the
critic network to estimate the Q-value.

The implementation of the algorithm was done in Python,
and the neural network framework is constructed in PyTorch
(for continuous action space) and Keras (for discrete action
space) API. The mathematical model of the transesterification
process was simulated in Matlab and integrated into Python via
the Matlab engine. Table 1 lists the hyper-parameters used for
the implementation of the TATD3 algorithm.

In this study, the function f (.) in the reward formulation
(as discussed in Section 3) is taken as the absolute value of
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Table 1: Hyperparameters for TD3 algorithm

Hyperparameters Value
Discount factor(γ) 0.99
Policy noise 0.2
Exploration noise 0.1
Clippd noise (c) 0.5
Actor Learning Rate 10e-3
Critic Learning Rate 10e-3
Target Update Rate(τ) 0.005
Policy frequency 2

Table 2: Tracking error (in terms of RMSE values) comparison of five different
RL algorithms for batch transesterification process

Reward Continuous Action Discrete Action
TATD3 TD3 DDPG DQN GP

PI 1.1626 1.1785 1.2365 1.3088 1.3866
PID 1.1502 1.1666 1.2051 1.2763 1.2875

error, |e(t)| i.e.,
∣∣∣Tr(k) − Tre f

∣∣∣ and g(.) is the inverse operator
(g(.) = 1

f (.) ). Here Tr is the reactor temperature and Tre f is the
desired temperature. For the PI reward the constant values cI

1, c
I
2

are taken as 10, 100 and for the PID reward the constant values
from cII

1 . . . c
II
4 are taken as 10, 100, 1, 0.1 respectively.

Table 2 compares the tracking error (in terms of RMSE val-
ues) for five different algorithms, namely, TATD3, TD3, DDPG,
DQN, and GP, respectively. Neural network and Gaussian pro-
cess regression (GPR) are the candidates for function approx-
imators in DQN and GP, respectively. Further, the results are
compared for the two types of reward functions considered,
namely, PI and PID, as discussed in Section 3. Here, the RMSE
values reported are the average of the last four batches for a to-
tal of 10 batches. It can be seen that the TATD3 based controller
has the lowest RMSE of 1.1502 and 1.1626 for PID and PI re-
ward functions, respectively, as compared to TD3, DDPG and
other discrete action space algorithms. Additionally, it can be
seen that the PID reward function is a better choice for reward
function due to their low RMSE for all five algorithms.

Figure 2 and Figure 3 shows the comparison of the tracking
performance with reactor temperature (Tr) with respect to time.
Figure 2 compares the tracking performance of continuous ac-
tion space algorithms, namely, TATD3 vs TD3 vs DDPG for
both the PID and PI reward in subplots (a) and (b), respectively.
Similarly, the performance of the discrete action space algo-
rithms, namely, DQN and GP, for both the reward functions are
shown in Figure 3. It can be seen from the plots that the reactor
temperature profile closely follows the target value for TATD3
controller for the PID reward function. The results clearly con-
clude that that the proposed TATD3 based controller is capa-
ble of learning from the given environment and controlling the
system by achieving the desired set-point of temperature (Tre f )
which is 345K.

Since the steady-state error with the PID reward function is
better than the PI reward function for all the five algorithms, the
subsequent analysis considers only the PID reward function. It

Table 3: Variability in control action for four different RL algorithm for the PID
reward for batch transesterification process

Algorithm SD
TATD3 3.3229
TD3 3.5532
DDPG 3.3726
DQN 12.068
GP 10.115

Table 4: Comparison of control effort for continuous action space algorithms
for batch transesterification process

Algorithm Control Effort
TATD3 118515.80
TD3 118597.47
DDPG 118553.28

can be seen that the variability in control actions is more for
the discrete case as compared to the continuous action space.
Table 3 reports the average value of standard deviation (SD) of
control actions across the last four batches. The results show
that the SD values for the TATD3 are less than TD3 and DDPG
while the input fluctuations are more for the discrete case. It is
worth noting that we have constrained the action space between
330-350 K for continuous action space algorithms. However,
we have observed that the discrete action space algorithms are
unable to honour this constraint due to limited discrete action
options. Hence, we have relaxed the constraint space to 330-
360 K for discrete action space algorithms, with an interval of
0.75 K. Figure 4 (a) shows the control action plots for all the
five algorithms for the PID reward. Further, the control effort is
calculated and compared for TATD3, TD3 and DDPG by taking
the average of integral of the square of the control actions and
the obtained values are reported in Table 4.

We have also compared the results of reward vs time plots for
TATD3, TD3, and DDPG. Here, in order to make the contrast
visible, we have evaluated the inverse of the reward function,
the penalty, and plotted the penalty values vs time as shown
in Figure 4 (b). Figure 4(b) shows that DDPG and TD3 has a
higher value of penalty than TATD3 algorithm, indicating low
rewards obtained in comparison with TATD3. These results re-
inforce that TATD3 is better than TD3 for the control applica-
tion of batch transesterification processes.

To compare offline and online learning, the controller per-
formance is compared when the agent is trained with offline
learning and then followed by the online learning. The online
learning starts after 30 batches of the offline learning. It can be
seen from Figure 5 that the tracking performance gets gradually
improved (in online learning) when the agent is trained with the
network parameters learned during the offline learning part, and
the best tracking performance is achieved at the 10th batch of
online learning. Whereas, the offline learning has a steady state
error.
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(a) Continuous Action (PID)
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(b) Continuous Action (PI)

Figure 2: Comparison of tracking performance of a) TATD3, TD3, and DDPG
for PID reward and b) TATD3,TD3, and DDPG for PI reward for batch transes-
terification process
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(a) Discrete Action(PID)
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(b) Discrete Action(PI)

Figure 3: Comparison of tracking performance of a) DQN and GP for PID
reward b) DQN and GP for PI reward for batch transesterification process

4.2. Case study 2: Exothermic batch process
Here we consider a second-order batch exothermic chemical

reaction A → B. takes place in a batch reactor having non-
linear dynamics. The following mathematical model gives the
dynamics of the batch reactor:

dTr

dt
=
−UA(Tr − T j)

MCp
−

∆HV
MCp

ko exp (−E/RT )C2
A

dCA

dt
= −ko exp (−E/RT )C2

A

The mathematical model and the parameters are taken from
[48]. It is assumed that the reactor has a cooling jacket where
the jacket temperature can be directly manipulated. The goal
is to control the temperature of the batch reactor (Tr) using the
coolant temperature as the manipulated variable. The action
space has minimum and maximum constraint i.e., 290 < T j <
318 and the setpoint value Tre f is 303K

The neural network architecture, activation function, and the
actor and critic networks optimiser are the same as described in
the batch transesterification process. The implementation of the
algorithm was done in Python, and the neural network frame-
work is constructed in PyTorch API. The mathematical model
of the exothermic batch process was simulated in Matlab and
integrated into Python via the Matlab engine.

Table 5 compares the tracking error (in terms of RMSE val-
ues) for three different algorithms for continuous action space,
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Figure 4: Comparison of (a) control inputs of all approaches for PID reward (b)
penalty for TATD3, TD3 and DDPG for PID reward for batch transesterification
process

Table 5: Tracking error (in terms of RMSE values) of three different RL algo-
rithms for exothermic batch process

Reward Continuous Action
TATD3 TD3 DDPG

PI 0.7289 0.7400 0.7782
PID 0.7022 0.7324 0.7732

namely, TATD3, TD3, DDPG. Further, the results are compared
for the PI and PID reward functions. Here, the RMSE values re-
ported are the average of the last four batches for a total of 10
batches. It can be seen that the TATD3 based controller has the
lowest RMSE of 0.7022 and 0.7289 for PID and PI reward func-
tions, respectively, as compared to TD3, DDPG. Additionally,
it can be seen that the PID reward function is a better choice for
reward function due to their low RMSE among all three algo-
rithms.

Figure 7 shows the control action plots for all the three algo-
rithms for the PID reward showing TATD3 has less variability
in control action as compared to TD3 and DDPG. Further, the
control effort is calculated and compared for TATD3, TD3 and
DDPG by taking the average of integral of the square of the
control actions and the obtained values are reported in Table 6.

4.3. Effect of batch-to-batch variation
Further, to test the efficacy of the TATD3 controller, we have

introduced batch-to-batch variations in the simulations. Batch-
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Figure 5: Comparison of controller performance of TATD3 offline and online
learning(for batch transesterification process )

Table 6: Comparison of control effort for continuous action space algorithms-
batch exothermic process

Algorithm Control Effort
TATD3 92532.72
TD3 92720.78
DDPG 92614.60

to-batch variation may occur due to slight perturbations in the
process parameters and changes in the environmental condi-
tions during a batch run. We have introduced batch-to-variation
for the batch transesterification process by randomly changing
the rate constant, kc, by changing the pre-exponential factor (ko)
having a variance of 10% in each batch. The tracking trajec-
tory plot presented in Figure 8 clearly shows that the TATD3
based controller is able to reach the set-point in the presence
of batch-to-batch variations, and thus, we achieve the desired
control performance. The average tracking error (in terms of
RMSE) is 1.1564, 1.1732 and 1.2448 for TATD3, TD3, and
DDPG, respectively, for batch-to-batch variations. This once
again indicating the advantages of TATD3 over TD3 & DDPG.

5. Conclusion

This paper proposed a control strategy of batch processes
based on the TATD3 RL algorithm. The proposed algorithm
is tested on two batch process case studies: (i) batch transester-
ification process and (ii) exothermic batch process. The reactor
temperature is considered the state (control variable) to be con-
trolled, and the jacket inlet temperature is taken as action (con-
trol input). It was observed that the controller is able to learn the
optimal policy and achieve the desired reactor temperature by
implementing appropriate control actions. We also formulated
reward functions taking inspiration from the functional struc-
ture of PI and PID controller by incorporating the historical er-
rors and showed that it helps the agent to better learn about the
process. The results indicate that TATD3 shows better conver-
gence than continuous action-space algorithms such as TD3,
DDPG, and discrete action algorithms such as DQN and GP.
In summary, TATD3 based RL controller is able to learn and
intervene the process operation and control the process oper-
ation efficiently and can be used as a potential framework for
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Figure 6: Comparison of tracking performance of a) TATD3, TD3, and DDPG
for PID reward and b) TATD3, TD3, and DDPG for PI reward for exothermic
batch process
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Figure 7: Control input profiles : TATD3, TD3, and DDPG for exothermic
batch process
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Figure 8: Comparison of tracking performance of TATD3 vs.TD3 vs. DDPG
for PID reward(for batch-to-batch variation in batch transesterification process)

complex non-linear systems where both the state and the action
space are continuous. The results indicate that the TATD3 algo-
rithm can be a promising direction towards the goal of artificial
intelligence-based control in process industries.
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