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Abstract

This paper presents a general energy management system for High Performance Comput-
ing (HPC) clusters and cloud infrastructures that powers off cluster nodes when they are
not being used, and conversely powers them on when they are needed. This system can
be integrated with different HPC cluster middleware, such as Batch-Queuing Systems or
Cloud Management Systems, and can also use different mechanisms for powering on and
off the computing nodes. The presented system makes it possible to implement different
energy-saving policies depending on the priorities and particularities of the cluster. It
also provides a hook system to extend the functionality, and a sensor system in order to
take into account environmental information.

The paper describes the successful integration of the system proposed with some
popular Batch-Queuing Systems, and also with some Cloud Management middlewares,
presenting two real use-cases that show significant energy/costs savings of 27% and 17%.

Keywords: HPC, green computing, dynamic power management, cloud management
systems, batch-queuing systems

1. Introduction

One of the challenges arising from the use of HPC clusters is reducing their power
consumption. This problem is especially important in clusters that are underutilized,
either because they form part of large scale distributed systems (grids or clouds) [1],
where load can have important variations, or because the clusters have been in pro-
duction for several years and their usage has decreased in favour of other more modern
systems. However, in the last years there have been advances in the energetic efficiency
of HPC clusters, which have come as a result of two different approaches: Static Power
Management (SPM) techniques that use low-power energy-efficient hardware to reduce
energy usage, and Dynamic Power Management (DPM) techniques that are based on the
knowledge of resource utilization and application workloads to reduce energy usage [2].

In the case of SPM there are efforts pursuing higher efficiency for power sources [3],
[4], which is usually lower than 80%. The hardware designers are also introducing new
types of memory to increase the efficiency and reduce consumption. New technologies,
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such as Solid State Drives (SSD), are also being adopted for disks in order to reduce the
energy consumed by mechanical parts, which accounts for up to 65% of the total amount
of energy consumed by a computer [5]. Dynamic Voltage and Frequency Scaling (DVFS)
is an efficient technology to control the processor power consumption [6].

The DPM approach takes advantage of the fact that many computing nodes that
are part of infrastructures such as clusters are usually powered on even when they are
not being used (e.g. the workload is low, some computing nodes are not suitable for
current calculations, there are reserved nodes for priority users, etc.). These clusters
are usually dimensioned for peaks of workload that are not the most common situation.
Therefore, energy can be saved by putting the idle nodes into power-saving mode (e.g.
turning nodes off). There are different mechanisms that may be used to power on or
off the nodes depending on the workload, that go from managing power by hand (e.g.
powering off part of the nodes when they are not going to be used for a period of time)
to introducing automated mechanisms into the job submission tools (e.g. monitoring a
queue of jobs and powering off the computing nodes when the queue is empty).

A further step in automating the power management of nodes is to use energy-aware
scheduling/allocation algorithms for assigning resources to jobs. For instance, schedulers
may try to use the minimum number of computing nodes, in order to enable energy reduc-
tion by powering off the idle nodes. However, implementing an energy-aware allocation
method in existing clusters of an organization is a difficult task, since it is necessary to
modify the scheduling code of the resource management middleware. Even if the source
code is available, modifying it can be a complex task, and maintaining modification
through new releases of the middleware makes it even worse.

In this context, this paper presents CLUES (Cluster Energy Saving System), which
is a general power management tool for computer clusters that can work in connection
with different resource management middleware by means of easy-to-develop connectors.
Thus, the tool is an effective way to implement power management policies in existing
clusters, without having to modify the underlying control middleware. It could even
be used in multipurpose clusters where different management middlewares coexist, thus
enabling cluster-wide energy management policies for those situations. While CLUES
was previously introduced in [7], this paper describes the tool in more depth, and provides
details about the connectors that are currently available for the interaction with existing
cluster management systems. It also presents some other features such as a hook system
and a sensor system. A discussion is provided about the algorithm that is considered in
CLUES for the power management of the nodes, and how it behaves when it is applied
to real computing infrastructures that are currently under production.

The remainder of the paper is structured as follows. First, section 2 presents the
general power management approach followed, and section 3 analyzes related work. Then,
section 4 presents the architecture of CLUES and describes all its components. Section
5 discusses the features of CLUES to support more than one LRMS coexisting in the
same cluster. Section 6 presents an extended analysis of results to demonstrate the
proper interaction of CLUES with the underlying system. Finally, section 7 provides
conclusions and points to future work.
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2. Power management approach

Current clusters are usually managed by a Batch-Queuing System (BQS) or, in the
case of Cloud Computing, a Cloud Management System (CMS). From now on this mid-
dleware will be referred in general as Local Resource Management System (LRMS) or
resource manager. Examples of BQS are Torque/PBS1, SLURM2, Son of GE3. Examples
of CMS are OpenNebula4, OpenStack5 or CloudStack6.

There are two alternatives to provide an energy saving mechanism based on powering
off idle nodes: (a) modify the LRMS scheduler, or (b) treat the scheduler as a black box
(BB) and connect it to some energy saving system that powers nodes on/off as needed.

Modifying the scheduler may achieve better results, but presents the disadvantage
that it requires the creation of a modified version of the original scheduler, and the
new versions released by the developers of the LRMS will also need new modifications.
Moreover, the power schedule mechanism would be tied to the specific LRMS.

On the other side, a BB approach implies that the LRMS must contact the energy
saving system to provision the resources needed by the jobs. It requires some degree of
coordination between the job scheduler and the energy saving system, i.e. the energy
saving system should not power off a node if that node is useful from the point of view
of the scheduler, and conversely, a node that is not useful from the point of view of
the scheduler should be powered off to save energy. A BB approach may not provide
the best results because the energy saving system does not have the whole information
about the workload, and does not control in which nodes the jobs are allocated. However,
decoupling the scheduling of jobs and the decision of suspending or restoring nodes eases
the incorporation of energy-saving policies in production clusters, since there is no need
to modify the resource manager.

This paper considers a BB approach, where the resource manager scheduler is con-
nected to an external energy saving system that powers nodes on/off.

3. Related Work

In the last years, many efforts have focused on energy-aware allocation of tasks in
clusters, both for virtualized and non-virtualized environments. For instance, [1] presents
a method to reduce power in large-scale distributed systems by switching nodes on and
off according to the load. The approach considers the possibility of reserving resources
in advance, and assumes that the duration of a job (or an estimate of it) is provided by
the user when submitting the job. The system interacts with the user that submits a
job, suggesting job starting times that are most suitable for energy reduction. This work
is actually a booking system for computing nodes but not an energy saver. It decides
whether a cluster can be powered off because it is not reserved. It does not integrate
with the LRMS and therefore it is not suitable for interactive systems.

1http://www.clusterresources.com/products/torque
2https://computing.llnl.gov/linux/slurm
3https://arc.liv.ac.uk/trac/SGE
4http://www.opennebula.org
5http://www.openstack.org
6http://cloudstack.org
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[8] presents an approach for virtualized data centres which is based on workload con-
solidation using virtualization, combined with turning off idle servers. The system uses
machine learning in order to predict the consequences of different possible allocations
for each job, in terms of performance and energy. It then decides task placing and re-
allocation in order to concentrate jobs in a reduced number of nodes without degrading
performance. The paper deals with task placement but not with infrastructure manage-
ment. It does not consider integration with the LRMS, and it also assumes that the user
provides information on the job duration.

[9] and [10] also deal with the problem of resource allocation in virtualized clusters,
considering workload consolidation in order to be able to switch off idle machines, while
at the same time reducing the impact on the system performance. The approach uses
heuristics based on multicapacity bin packing over memory and CPU load. [6] con-
siders a power-aware scheduling algorithm for DVFS-enabled clusters, where processor
frequencies are scaled down in order to minimize power consumed without substantially
increasing execution times. [11] describes an approach to load balance Virtual Machine
(VM) provisioning across different servers to save energy and to maintain the perfor-
mance of the system. The underlying idea of such technique is to try to reduce energy
consumption even if nodes cannot be idle. [12] explores the combination of using DVFS
and putting idle servers into low-power mode, but a workload profiling phase is needed
in order to determine the optimal power configuration.

All of the reviewed results are related to the placement of the jobs and virtual ma-
chines (VMs), with the idea of either packing the jobs to get some idle nodes, or altering
processor voltage to get less power consumption. However, they do not describe how to
manage the idle computing elements. According to [13], one important research topic
for getting energy efficiency by applying DPM techniques is to schedule powering on and
off computer’s components (the whole server in most cases) to adapt to the workload.
The survey [2] also explains some DPM works from other authors that would get idle re-
sources, but the reviewed works usually assume that those idle resources are powered on
or off automatically and do not consider any scheduling strategy. Most of them are basi-
cally job schedulers that would substitute the existing schedulers or cluster management
middlewares and would obviously modify the way that users interact with them.

There are many other scientific works exploring this area. However, from the point
of view of system administrators, there are not many available tools to implement green
policies in clusters. In the case of BQS schedulers, MOAB (which is the Enterprise
version of Maui) introduces some features to pack workload and to place idle servers
in power-saving modes [14]. The latest versions of SLURM introduced the ability to
change CPU frequency and voltage in order to save energy. However, these solutions
are of course tied to a particular BQS. Since the choice of BQS is conditioned by many
factors, administrators may find that the most suitable BQS does not take into account
energy saving mechanisms. In the case of cloud middleware, Convirt 2.0 Enterprise
Edition introduces scheduling policies to consolidate VMs to enable the operation of the
datacenter in power saving mode, but it does not provide tools to automatically power
off idle nodes. VMWare vCenter includes tools to power off hosts when they are not
needed. Other cloud middleware do not take into account power consumption.
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Figure 1: Architecture of the CLUES system.

4. System description

The purpose of the system proposed in this paper is to provide energy saving mech-
anisms for a computer cluster, by powering off idle nodes, and conversely powering on
nodes when required. The system is able to interoperate with different resource manage-
ment middleware by means of a plug-in based architecture. Using this approach, energy
saving can be easily integrated with LRMS, and also with clusters of generic applications
such as Web Servers or emerging Platform as a Service cloud systems. The design goals
of the system are:

• It must be unobtrusive. From the point of view of the user, the way job submission
or VM launching is done should not be altered by the use of CLUES.

• No changes to the underlying LRMS should be necessary to use the system, unless
the developer wants to implement specific features or tighten the coordination
between the job scheduling and the power management.

• It should be possible to use different mechanisms for switching on/off the nodes, e.g.
mechanisms such as Wake-on-Lan (WOL), Power Device Units (PDU), Intelligent
Platform Management Interface (IPMI) or infrastructure-specific mechanisms.

• The system should be easy to extend, e.g. adding the capability to use another
LRMS, or adding another mechanism to switch on/off nodes.

As depicted in Figure 1, the system consists of a scheduling component, a set of one or
more resource manager connectors, a set of node management connectors, and the hook
and sensor subsystems.

The CLUES scheduler uses a connector to periodically ask the resource manager for
information on the cluster state (label 1 in the figure). Based on this information, the
scheduler determines if new nodes must be switched on, or if there are nodes that can
be switched off, and acts consequently (2). When a job is submitted to the resource
manager (3), a request for nodes is made to CLUES by means of the resource manager
connector (4). When CLUES finishes processing this request, the job is actually submit-
ted to the resource manager (5), where it will be processed by the scheduler and finally
sent to the cluster for execution (6). There are two more components that are called
periodically by the CLUES scheduler: the hook system, that enables to perform user
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defined actions when an event happens (7), and the sensor system, that enables access
to a set of environmental values to be stored in the scheduler (8).

The CLUES scheduler is the main component, and is described in the following sec-
tion. The resource manager connectors provide a uniform way to interact with different
LRMS. This mechanism makes it easy to extend the system so as to consider additional
resource managers, by writing the corresponding connectors.

The node management connectors are responsible for switching on/off the cluster
nodes. The method to switch nodes on and off will be different depending on the partic-
ular cluster, e.g. WOL can be used for switching on, and a remote “poweroff” command
can be used for ordered switching off, or PDUs can be used for both switching on and off.
Additionally, in some cases the underlying middleware must be informed when a node is
powered on/off, to activate or deactivate the node in the resource manager. By providing
several node management connectors, these different situations can be accommodated.
Currently, connectors have been developed for three different mechanisms: WOL, IPMI
and a proprietary software to manage PDUs used in IBM clusters.

Note that CLUES intercepts any incoming job and retains it while trying to provide
resources for it. Once this has been done, the job is released to the LRMS. Importantly,
the jobs are released following a FIFO (First In First Out) strategy, therefore preserving
the order in which they are taken into account for its execution. Another possible ap-
proach would be not to intercept the jobs at all, but instead make periodic inspections
of the LRMS queue in order to detect if there is a need to power on additional nodes.

The approach of intercepting the job enables to prepare the context for the LRMS,
instead of modifying it once the job has been scheduled under a state that is going to be
changed by CLUES. The idea is that when the jobs arrives to the LRMS all the resources
needed are already powered on. It also presents the advantage that it provides a faster
response, because the need for resources is detected at the moment the job arrives. A
disadvantage is that it can introduce small delays in the start of some jobs, if they are
submitted shortly after other less-priority jobs which require nodes to be powered on.

In any of the two approaches, CLUES might try to bootstrap a node for a job that,
according to the LRMS policies, does not have the right to execute, e.g. because the
user has exceeded the execution quota. This can reduce the effectiveness of the power
saving strategy, since there might be more powered-on nodes than necessary. However,
this cannot be avoided with a BB approach because it is unaware of the LRMS policies.

4.1. CLUES Scheduler

The CLUES scheduler is the component in charge of: (i) processing requests for
available resources and powering-on nodes if necessary; and (ii) powering-off idle nodes.
To carry out these tasks it performs the following procedure:

1. When a new request for nodes arrives, the request is evaluated in order to determine
if new nodes must be powered on for the request. If this is the case, the appropriate
actions are taken. CLUES has a synchronous behavior, blocking the request and
appending it to a list of pending requests while the necessary nodes become ready.

2. Periodically, the state of nodes is updated according to the information provided by
the resource manager connectors. After each update, the queue of pending requests
is examined. Each request is evaluated again and the necessary power-on actions
are taken. If the request is at the head of the queue and the corresponding nodes
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are ready, it is removed from the queue and released so that the associated job can
proceed to its execution. Note that a request can be released either because there
are enough free nodes, or because there are no more nodes that can be switched
on. In both cases, no further action can be done for the request.
In addition to examine the queue of pending requests, idle nodes are detected and
they are powered off if the inactivity time is larger than a predefined value.

Different policies can be used in order to determine if new nodes must be powered
on to serve a request, each of them producing a different effect on desirable objectives:
minimizing the power consumption, minimizing the impact on the users, minimizing the
heat dissipation, etc. The selection of the policy is an important decision to obtain the
desired behavior of the cluster. CLUES implements a set of basic policies:

• The most simple one is to switch on all the nodes of the cluster when a job arrives
to the system. This is a coarse strategy but it is very simple to implement and can
obtain good results with some specific workloads (e.g. large waves of jobs and long
inactivity periods) and with clusters where powering off some nodes may affect the
network topology and the connectivity of the remaining nodes.

• Switch on the minimum number of nodes to fulfill the request needs. This strat-
egy enables minimum power consumption, but may increase the waiting time of
incoming jobs.

• Switch on the nodes using a block size: instead of powering on the exact number
of needed nodes, this strategy powers on an extra number of nodes, thus providing
extra spare idle nodes that may prevent subsequent requests from waiting.

Obtaining the number of nodes available for a request

In order to apply any of the last two strategies, the scheduler must obtain the number
of nodes available for a request, taking into account the following considerations:

• The process of booting up a node takes some time, during which the request will
be queued until the nodes are ready. This means that when a new request arrives,
there can be previous pending requests, and there can be nodes booting up.

• A node can be shared by more than one job, e.g. a node typically contains several
cores, so it is possible to assign some of the cores to a job and other cores to another
job. Consequently, a node is considered to contain a number of processing units
or “slots” (e.g. cores), and a request asks for “virtual nodes”, which are groups of
slots in the same physical node.

• Requests can be made for nodes meeting certain conditions, e.g. nodes belonging to
a particular batch queue, nodes with a given minimum amount of memory, installed
software or configuration.

In order to determine the number of available nodes, the scheduler needs to use
information about the current request, such as the number of requested virtual nodes
(rv), number of slots per virtual node (sv), and possible conditions on the nodes. It
also needs information about previous requests that are waiting for resources to become
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available, such as the total number of requested slots (trs). Finally, information on the
cluster nodes is also necessary. For each node i, the scheduler needs to know its state
(e.g. on, off, booting, failed...), number of free slots (fsi) and total slots (si), and other
information (e.g. amount of free memory, administrator-defined tags...).

Based on this information, the scheduler performs two steps:

1. Determine the number of virtual nodes that are usable by the current request,
without taking into account previous requests. A virtual node is considered usable
if it is located in a node that satisfies the conditions of the request, and its slots
are not in use. The process followed can be seen in algorithm 1, which obtains the
number of usable virtual nodes in powered-on nodes (uvon) and in booting nodes
(uvbt). The algorithm goes through all the nodes that satisfy the conditions of the
request, and for each of them the number of virtual nodes provided is obtained and
accumulated (e.g. if a node has 5 free slots and the request asks for virtual nodes
of 2 slots, 2 virtual nodes are provided).

Algorithm 1 Computing the number of usable virtual nodes.

// uvon: number of usable virtual nodes in powered-on nodes.
// uvbt: number of usable virtual nodes in booting nodes.
// si: total number of slots in node i
// fsi: number of free slots in node i
// sv : number of slots per virtual node of current request
uvon ← 0; uvbt ← 0
for all node i that matches current request do
if statei = on then

uvon ← uvon + bfsi/svc
else if statei = booting then

uvbt ← uvbt + bsi/svc
end if

end for

2. Correct these numbers of usable virtual nodes, by taking into account previous
requests, that may take some of the slots of the usable virtual nodes. Since the
allocation of the requests to particular nodes/slots is decided later at the LRMS
level, the corrections are based only on estimations. The resulting numbers are
referred to as uv′on for powered-on nodes and uv′bt for booting nodes. Best-case
estimates are derived, based on simplifying assumptions. First, the details of pre-
vious requests are not taken into account, and only the total number of previously
requested slots (trs) is used. Second, it is assumed that these slots will be placed
preferably in nodes that do not satisfy the conditions of the request. Thus, previous
requests will produce minimum disturbance. According to this, uv ′

on is:

uv ′
on = min(max(0, b tfs − trs

sv
c), uvon) (1)

where tfs is the total number of free slots.
If tfs ≥ trs, uvbt is not corrected (uv ′

bt = uvbt). Otherwise, the previous requests
may also use booting nodes, and uv bt is corrected accordingly:
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uv ′
bt = min(max(0, b tfs + tbs − trs

sv
c), uv bt) (2)

where tbs is the total number of slots in booting nodes. Once uv ′
on and uv ′

bt have
been obtained, the sum of them is computed to get the estimated number of virtual
nodes available for the request.

An example. In order to illustrate the procedure described above, a cluster is considered
with 20 nodes of 4 slots each. There are 2 completely free nodes, a node with one free
slot and a node with 3 free slots. 2 other nodes are booting and the rest are switched
off. There is a pending request which asked for 7 virtual nodes of 2 slots each, and
in this context a new request arrives for 4 virtual nodes of 2 slots each. According to
algorithm 1, the number of usable virtual nodes are computed, obtaining uvon = 5 and
uvbt = 4. Then, pending requests are taken into account as explained in step 2. Taking
into account that tfs = 12, trs = 14 and tbs = 8, equations (1) and (2) yield:

uv ′
on = min(max(0, (12− 14)/2), 5) = 0

uv ′
bt = min(max(0, (12 + 8− 14)/2), 4) = 3

This shows that the current request can get only 3 virtual nodes from currently booting
nodes. Since it needs 4 virtual nodes, more nodes have to be powered on.

Selecting the nodes to be powered on

The next step is to select which nodes, of the list of nodes that match the request,
will be switched on. There are also different strategies:

• Homogeneous Clusters: In this case, basic strategies such as selecting the nodes
using a fixed order or a random algorithm are good solutions, as all the nodes
provide the same features to all the jobs.

• Heterogeneous Clusters: In this case, more advanced strategies can provide ad-
vantages by selecting the nodes according to different node features: performance,
power consumption, heat dissipation, etc. It is also possible to use a combination
of some factors, e.g. selecting the nodes with the best ratio of performance / power
consumption. In order to realize these strategies, CLUES must obtain additional
information about the nodes (e.g. performance or power consumption). Currently,
the information must be provided by the system administrator using a set of static
files, but CLUES is prepared to use in the future some sensors or systems such as
IPMI that can provide the information automatically.

Powering off idle nodes

Another task to be done after each state update is to detect idle nodes that can be
switched off. The time of inactivity used to power off the nodes must be specified by the
system administrator. It is important to correctly select this time to obtain good results
with CLUES. Using a short time may reduce the power consumption, but it can also
increase the number of jobs having to wait, and the number of power on/off operations.
On the other hand, using a long time will produce opposite results.
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Some other factors are also considered when powering off nodes. In some cases,
because of the particularities of the hardware or the network topology, it is required
that some of the nodes (or all of them) remain powered in order for the cluster to work
properly (such as in the first cluster shown in the results evaluation section).

Re-evaluation of Jobs

A re-evaluation mechanism has been implemented, by means of which the queue
of the LRMS is periodically inspected, identifying jobs that have remained queued for
a specified amount of time. For each of those jobs, a request for nodes is sent again
to be re-evaluated by CLUES. This mechanism is introduced to correct some possible
undesirable conditions that arise when following a black-box approach (e.g. a node may
be powered off while a job that has not enough nodes is in the queue). CLUES processes
re-evaluation requests just like ordinary requests, checking the resources needed by the
job and switching on nodes if necessary.

4.2. Resource Manager Connectors

The resource manager connectors provide a uniform way to interact with different
LRMS. Each connector consists of two parts.

The first one is a monitoring system, that obtains information about the nodes of
the LRMS and presents it in a uniform way. The monitoring system connectors are
implemented as external executable files, which can be created using any programming
language. The connectors get the information directly from the LRMS and publish it as
a list of key-value pairs separated by semicolons, with one line for each node, e.g.

host=node1;state=down;total_slots=2;free_slots=2;keywords=ok;queues=sci

host=node2;state=free;total_slots=2;free_slots=1;keywords=ok;queues=sec,sci

...

There are only four mandatory fields: host, state, total slots and free slots. The
rest of fields depend on the type of LRMS used. For example the queues field is used in
the batch systems but not in the cloud ones.

The second part is a job interceptor, that comes into action whenever a new job is to
be submitted to a LRMS. Before the job is actually submitted, the connector requests
the necessary resources to the CLUES scheduler. When a response to the request is
received, the job is submitted to the LRMS.

4.2.1. Batch system connectors

Torque/PBS and SGE, two of the most popular queue systems, have been considered
here and a connector has been implemented for each of them.

As mentioned above, one of the functions of a connector is to provide information
about the node states. In the case of PBS, this information is extracted by using the
command pbsnodes, and in the case of SGE with the qhost command. In both cases,
an option of the command is used in order to get the output in XML format, which can
be parsed more easily.

The other function of the connector is to catch incoming job submissions, in order
to request the corresponding resources to the CLUES scheduler. PBS provides a feature
known as “job submission filter” (or “qsub wrapper”) which is useful to intercept the
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Hook Name Description
poweredon, poweredoff Before powering on/off a node
poweredon unexpected,
poweredoff unexpected

When CLUES detects that a node has been pow-
ered on/off unexpectedly

monitoring, monitored Before or after the monitoring procedure
enabled, disabled Once a node has been enabled or disabled
sensorover, sensorbelow The value of a sensor is over or below a threshold

Table 1: Hook types

submission of jobs. A similar feature called “job submission verifier” has been used in
the case of SGE. By means of these features, a script can be specified to be run before
the effective submission of a job into the queue system. In this case, the script must
first determine relevant information of the job being submitted (such as the number of
required virtual nodes, the number of slots per virtual node or the queue name), then
send a request for nodes to CLUES, and wait for a response. When a response is obtained,
job submission can proceed.

4.2.2. Cloud system connectors

In the case of CMS, OpenNebula and OpenStack connectors have been developed.
The OpenNebula connector intercepts the creation of VMs by a mechanism provided by
the middleware called “hooks”. Such mechanism enables the execution of an application
whenever a VM is created, and it is used to ask CLUES for working nodes. The Open-
Stack connector does not provide any similar feature, and it was necessary to modify one
file of the middleware API to connect to CLUES.

The result is that each newly created VM is held while CLUES decides whether extra
nodes should be powered on, and in such case, while the nodes are booted. If the VM
were released before the node being ready to accept VMs, the scheduler might try to
assign it to a working node that does not have enough resources. While the VM is
retained, CLUES tries to make its best for provisioning resources.

The information about the hosts is extracted in both cases using the corresponding
internal API for direct access. The main issue in the OpenNebula case is that the
information provided about the hosts is not enough for the CLUES scheduler, regarding
both the memory and the virtual CPUs booked: the internal information system tracks
the number of VMs that are running in a particular host (but not the virtual CPUs),
and the remaining free memory that is reported by the operating system (that considers
swap memory as real memory). The workaround has been to extract the information
from the description of the VMs.

4.3. Hook system

The hook system enables the extension of the functionality of CLUES without the
need to modify the source code. It specifies user defined actions (e.g. custom scripts) to
be executed before or after some event happens (eg. a node is being powered on). The
user must provide an executable file that receives as a parameter some value related with
the hook event. The events considered in the hook system are shown in table 1.
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This system also covers the CLUES monitoring system, to enable tasks to be per-
formed each time the CLUES scheduler monitors the system, or some measures to be
taken when a particular state is detected, e.g a message can be sent to the system ad-
ministrator when a node does not power on correctly or when it powers off unexpectedly.

4.4. Sensor System

Nowadays it is quite common for the clusters to be monitored using some kind of
sensors to know some environmental parameters. Typical examples are the temperature
or the humidity. In some cases these sensors are managed by a piece of software (e.g.
Nagios) that can send notifications to the administrators to take corrective measures.

A sensor system has been included in CLUES, enabling access to environmental in-
formation, which can be used by the hook system to take automatic corrective measures.
CLUES can call periodically a set of sensor plugins (typically scripts) that return a set
of key-value pairs with the name of the parameter and the value measured by the sensor.
These values are stored and it is possible to configure the system so that actions are
taken whenever the value of any parameter is over or below a given threshold.

In particular, the hook system can be used in order to take an action when the
parameter values are out of the specified limits. To implement this feature a new type of
hooks has been added to the scheduler where the user must define an upper and/or lower
limit for a measured value in the sensor system, and a command that must be executed
when the “exception” happens. The executed command will receive as a parameter the
string with the key-value pair obtained by the sensor system. Corrective measures could
be e.g. powering off the idle nodes, or even powering off all the nodes, or, if a software
provides the functionality, sending a signal to switch on or off the air cooling system.

5. Mixed cluster

It is not very frequent to have more than one LRMS coexisting in the same cluster.
However, with the advent of cloud management systems, this option is not unreasonable.
Additionally, in some clusters used for testing purposes, it makes sense to have two
LRMSs installed, such as PBS and SGE. CLUES has been designed to support this kind
of mixed clusters, making it possible to manage nodes shared by two or more LRMSs.

Although one node can be shared by different LRMSs, the number of slots must be
divided among them. For example, if a node has 6 slots, one LRMS could be using 2 of
them and another one could use 4. It is a task of the system administrator to configure
the LRMSs properly.

The CLUES scheduler can manage a list of nodes included in each of the configured
LRMSs, storing the state and the features provided by the different connectors. When
processing an incoming request, the scheduler checks for available nodes only within the
list of nodes of the LRMS corresponding to the request. When selecting the nodes to
switch off, the scheduler must check the combined information about all the nodes to
select only the nodes that are considered idle in all the LRMSs.

6. Results Evaluation

In a previous work [15] of the authors, an analysis was made of the jobs launched to
the Torque/PBS LRMS of a HPC cluster, in order to have an estimate of the benefits
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Using CLUES Not using CLUES (est.) Consumption
per node

PCT kWh e7 PCT kWh e W
N. Off 45.6% 350 32 0.0% 0 0 3
N. Idle 4.9% 1,624 148 50.4% 16,234 1,477 130.9
N. Used 49.6% 26,051 2,371 49.6% 26,051 2,371 205.4
Other 100% 10,296 973 100% 10,296 973 2,012

TOTAL 38,321 3,487 52,581 4,785

Table 2: Cluster 1 power consumption and cost

of applying green computing techniques to that cluster. Now the first version of CLUES
has been developed and it has been installed and working during seven months in two
different clusters. During this time period an evaluation, using the current real workload
of the clusters, has been made of the software behaviour, and of the real impact on the
power consumption and on the cluster users. This evaluation was also useful to detect
some aspects that were not initially considered but are important in a production version.

6.1. Cluster 1

The tests have been performed in a cluster composed of 51 bi-processor nodes with
Intel Xeon CPUs at 2.80GHz, interconnected by a SCI network in a 10x5 2D torus
topology. Each node has 2 GB of RAM memory. The front-end node is the access
point to the cluster, and the other (50) are used as the working nodes. This cluster is
configured with a NFS system that is exported by the front-end node and accessed by
the computing nodes.

This cluster is used as a development and private testbed platform for parallel and
sequential high performance applications . The cluster is typically used to execute both
sequential and parallel CPU-intensive applications. During the seven months considered
for the evaluation, the system was used normally, with a total of 20,497 jobs submitted.
41% of the jobs were parallel and used an average of 14 nodes. The average time per job
was 14 hours, 41 minutes and 14 seconds.

A clamp meter was used to get the power consumption of each component of the
whole rack, and the corresponding data are shown in the rightmost column of table 2.
In particular, power consumption has been obtained for three different states of a cluster
node: switched off (“N. off”), switched on but idle (“N. idle”), and fully used (“N. used”).
Finally, the entry “Other” refers to the power consumption of the essential components
of the cluster (front-end node, switches, KVMs) that are always on.

Based on the analysis made in [15], a period of inactivity of 2 hours was considered in
order to switch off idle nodes. This period of time is the appropriate for the deployment of
the use-case, but it should be adjusted according to the features of the actual deployment
in which CLUES is used (the usage pattern of the cluster, the power consumption for
the nodes, etc.). The fact that the SCI network has a 2D torus topology implies that
a message from a node A to another node B can be routed through other intermediate

7Cost: 0.091 e/kWh. Data obtained from the Ministerio de Industria, Turismo y Comercio del
Gobierno de España
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Figure 2: Evolution of the number of used, idle and requested slots in cluster 1

nodes. Thus, these intermediate nodes should not be powered off even if they are idle.
In order to tackle this problem, the whole cluster is kept switched on whenever a parallel
job (using more than one node) is running.

Figure 2 shows an evolution over the time of the number of requested slots in the
LRMS, and of the number of used and idle slots in the cluster. In the figure, a slot is
marked as used not only when a job is using it, but also when the slot is part of a node
that has at least one used slot. In this case, “used” means the slot cannot be switched
off. The vertical axis has been truncated to 100 to remove peaks of requested slots that
would make it difficult to see the figure. The period of time considered in the figure has
been reduced to the first two months, also for the sake of clarity. In this first case there is
a clear correlation between the number of requested slots in the system and the number
of nodes switched on by CLUES. The figure shows that one node is always powered on,
because this node had some problems with the WOL configuration. Near the end of
the two-month period (about days 47 - 50) there is a peak where the whole cluster is
switched on with a reduced number of requested slots. This is produced by some parallel
jobs requiring all the cluster to be switched on due to the commented network topology
restrictions.

Table 2 shows the results of energy and money spent during the considered period,
in both the cases of using CLUES and not using it. The left part of the table contains
the data for the case of using CLUES. The first column (titled “PCT”) represents the
percentage of time a node spent on average in each state. The second column (titled
“kWh”) represents the total amount of energy consumed by the specified components of
the cluster, expressed in kilowatt hours. Last column (titled “e”) contains the amount
of money dedicated to those components. The center part of the table corresponds to
the estimation of the energy and money spent if the CLUES system had not been used,
presenting the same columns as the left half. The energy consumption without CLUES
has been estimated by changing all the accumulated time of nodes in “Off” state to the
“Idle” state, because without CLUES these nodes would have never been switched off.

Table 2 shows that the total amount of energy saved is 14,260 kWh, which represents
27.1% of the total amount of energy, but also means saving 1,297 e.

On the user impact side, an analysis has been made of the number of jobs that needed
to wait to access the resources. During all the period, 268 jobs had to wait for some node
to be switched on (1.31% of total jobs). The average waiting time for these jobs was 1
minute and 40 seconds. This is a short enough waiting time, considering that the average
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Using CLUES Not using CLUES (est.) Consumption
per node

PCT kWh e PCT kWh e W
N. Off 39.3% 181 16 0.0% 0 0 9
N. Idle 7.8% 363 33 47.1% 2,853 260 65
N. Used 52.9% 7,407 674 52.9% 7,407 674 187
Other 100% 3,070 279 100% 3,070 279 600

TOTAL 11,021 1,003 13,331 1,213

Table 3: Cluster 2 power consumption and cost

time per job exceeded 14 hours.
Another important issue is related with the number of switch-on/off cycles performed

in the cluster nodes. These operations can damage the hardware (mainly the disk drives)
and may cause consumption peaks that could increase the total power consumption.
During the evaluated period, an average of 38 switch-on/off cycles were performed for
each node, with a maximum of 54 cycles. This means that a node completes a switch-
on/off cycle once every 6 days on average, with a maximum of once every 4 days.

6.2. Cluster 2

The CLUES system has also been tested in a cluster composed of an M1000e blade
server chassis with 6 Dell M610 and 3 Dell M910 nodes. Each M610 node has two quad-
core Intel Xeon E5620 processors, making a total of 8 cores and 16 GB of RAM per
node. The M910 node has four quad-core Intel Xeon E7520 processors, with a total of
16 cores and 64 GB of RAM per node. The cluster uses Torque/PBS and a NFS system
is exported by the front-end node and accessed by the computing nodes.

This cluster is used in a production grid environment, as one of the computing nodes of
the Spanish National Grid Initiative8 in the European Grid Infrastructure9. The cluster is
typically used to execute high throughput applications launching sequential jobs. There is
a wide range of different applications with different behavior and requirements in terms
of CPU, memory and I/O access patterns. In particular, the workload of the system
during the evaluation period was composed of a total of 107,197 jobs, 13% of which were
parallel and used an average of 2.28 nodes. The average time per job was 2 hours, 39
minutes and 20 seconds. In contrast to the previous case, this cluster has no network
restriction and the nodes can be switched on individually. A time of 30 minutes has been
selected as the time of inactivity to power off the nodes.

Figure 3 shows an evolution over the time of the number of requested slots and the
number of used and idle slots in the cluster. As in the previous case, the “used” state
represents the slots that cannot be switched off. The vertical axis has been truncated
to 200 to remove peaks of requested slots that would make it difficult to see the figure.
As in the previous case, the period of time for the figure is two months. The correlation
between the number of requested slots and the number of switched-on nodes is not as
clear as in the previous case. The main reason is that there are heterogeneous multicore

8http://www.es-ngi.es
9http://www.egi.eu
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Figure 3: Evolution of the number of used, idle and requested slots in cluster 2

nodes (with 16 or 32 slots per node), and the job distribution among all the nodes
depends on many factors: the LRMS scheduler, the finalization of the jobs, the arrival
of new jobs, etc. The LRMS can be configured to pack the jobs in the minimum number
of nodes, but other factors cannot be controlled. It is possible, for instance, that only 9
jobs requesting 1 slot each, end up keeping all the nodes switched on.

There are also some restrictions in the LRMS such as a maximum of 40 running slots
for each user group. This issue explains the behavior of the system about the days 3 - 5
and 55 - 59, where the number of requested slots is bigger than the number of used slots
and no new nodes are switched on.

Table 3 shows the economic and energetic saving obtained by using the green com-
puting software. The left part of the table shows the power consumption using CLUES,
and the center part shows an estimation of the power consumption without CLUES. The
M1000e chassis has a complete set of energy management tools to monitor the power
consumption of the whole system and the individual blades. These tools have been used
to obtain the power consumption to perform this study. The rightmost column of the
table shows the power consumption of one blade system in different states: switched off,
switched on but idle, and fully used, with the maximum number of jobs running. In this
case the “Other” row corresponds to the chassis.

The estimated economic saving is 210e, which means a reduction of 17.3% of the
total expenses. Unsurprisingly, the impact of the application of green measures in this
cluster is lower than in the previous case. The main reason is that, as a production node
of the EGI infrastructure, the cluster is periodically receiving jobs in order to monitor
the status of the system. These monitoring jobs cause that at least 2 of the 9 nodes are
always on. Other reasons are the important power consumption of the chassis compared
to that of the 9 nodes, and the fact that the number of cores per node in this case is
larger, which makes it easier for the nodes to be only partially used.

On the user impact side, 2.9% of the jobs had to wait for some node to be switched
on, with an average waiting time of 1’54”. These are short enough values, considering
that the average time per job exceeded 2 hours.

The average number of switch-on/off cycles for a node was 38, and 62 for the node
with the maximum number of these operations. It means that a node completes a cycle
once every 6 days, with a maximum of once every 4 days, that are very low ratios.
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7. Conclusion and Future Jobs

The proposed CLUES tool is an energy manager for both HPC clusters and cloud
infrastructures, that is able to power off the nodes when they are not being used, and
power them on when they are needed. CLUES considers the underlying LRMS as a BB.
The advantage of this approach is that it can be integrated with different resource man-
agement middleware, without needing any modification of that middleware. Because of
this flexibility, it can be used both for HPC clusters and for cloud infrastructures. It can
also be used with multipurpose clusters where different management middleware coexist,
thus enabling cluster-wide energy management policies. Additionally, it considers differ-
ent mechanisms for powering on and off the cluster nodes. The performance of CLUES
is shown with two real use-cases that show significant energy and cost savings of 27%
and 17%.

Future directions of work include the introduction of modifications to the CLUES
scheduler, the use of alternative energy saving mechanisms such as DVFS, or the use
of other heuristic methods which may take into account prediction of performance and
energy consumption. At the same time, the integration with other middlewares such as
Eucalyptus or CloudStack is an ongoing work.

Another important issue to be considered in the future is the impact of CLUES in
systems using some kind of parallel file system like Lustre, GFS, GlusterFS, etc. This
kind of systems supports data replication, making it possible to switch off some nodes
of the infrastructure without losing access to the data. Configuration issues imposed by
this kind of systems must be analyzed, as well as the impact of switching off nodes on
the data access performance.

Finally, CLUES also opens possibilities for research in the field of scheduling policies
for powering on and off the working nodes in multi-purpose clusters governed by several
coexisting middleware, with the aim of reducing energy consumption.
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aware scheduling in data centers using machine learning, in: Proceedings of the 1st International
Conference on Energy-Efficient Computing and Networking, e-Energy ’10, ACM, New York, NY,
USA, 2010, pp. 215–224.

[9] M. Stillwell, D. Schanzenbach, F. Vivien, H. Casanova, Resource allocation using virtual clusters,
in: Cluster Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM International Symposium
on, 2009, pp. 260 –267.

[10] D. Borgetto, G. Da Costa, J.-M. Pierson, A. Sayah, Energy-aware resource allocation, in: Grid
Computing, 2009 10th IEEE/ACM International Conference on, 2009, pp. 183 –188.

[11] H. N. Van, F. Tran, J.-M. Menaud, Performance and power management for cloud infrastructures,
in: Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on, 2010, pp. 329 –336.

[12] M. M. Rafique, N. Ravi, S. Cadambi, A. R. Butt, S. Chakradhar, Power management for heteroge-
neous clusters: An experimental study, 2012 International Green Computing Conference (IGCC) 0
(2011) 1–8.

[13] A. Beloglazov, R. Buyya, Y. Lee, A. Zomaya, A taxonomy and survey of energy-efficient data
centers and cloud computing systems, Advances in Computers 82 (2011) 47–111.

[14] Cluster Resources Inc, Green Computing Powered by Moab.
URL http://www.clusterresources.com/solutions/green-computing.php

[15] C. De Alfonso, M. Caballer, V. Hernandez, Efficient power management in high performance com-
puter clusters, in: Proceedings of the 1st International Multi-Conference on Innovative Develop-
ments in ICT, INNOV 2010, 2010, pp. 39–44.

Carlos de Alfonso obtained the B.Sc. degree in Computer Science in 2000. Then
he joined the Grid and High Performance Computing research group, at Universitat
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