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Peak to Average Power Ratio Based Spatial
Spectrum Sensing for Cognitive Radio Systems

Muhammad Shahid Igbal, Sajjad Hussain, Abdul Ghafoor

Abstract

The recent convergence of wireless standards for incorporation of spatial dimension in wireless systems has made spatial
spectrum sensing based on Peak to Average Power Ratio (PAPR) of the received signal, a promising approach. This added
dimension is principally exploited for stream multiplexing, user multiplexing and spatial diversity. Considering such a wireless
environment for primary users, we propose an algorithm for spectrum sensing by secondary users which are also equipped with
multiple antennas. The proposed spatial spectrum sensing algorithm is based on the PAPR of the spatially received signals.
Simulation results show the improved performance once the information regarding spatial diversity of the primary users is
incorporated in the proposed algorithm. Moreover, through simulations a better performance is achieved by using different diversity
schemes and different parameters like sensing time and scanning interval.

Index Terms
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I. INTRODUCTION

Ever increasing demand of higher data rates and the emergence of new wireless technologies combined with the static
allocation of spectrum are leading to the scarcity of spectrum resources. However, empirical studies have shown 5.2% utilization
of the spectrum (30-300MHz) on different locations [1], which has lead to the concept of “spectrum holes”. To overcome
the spectrum scarcity, an adaptive assignment of spectrum is desirable. Cognitive Radio (CR) [2] is a promising technology
proposed to overcome this scarcity. CR is an intelligent system which is aware of its surroundings and can change its operating
parameters according to the conditions of its environment. It enables the cognitive users (secondary users) to opportunistically
access the already licensed bands.

It has the capability of environmental adaptation at a large scale. Further they have to vacate the channel as early as possible
when primary user needs it. Because of these characteristics, CRs are also called ‘spectrum-agile radios’. Probability of false
alarm (Py, if the licensed user is absent and the cognitive receiver declares it on) and probability of missed detection (licensed
user is on and cognitive receiver declares it off) are the two important performance metrics in CR. Lower probability of false
alarm for spectral efficiency and lower probability of missed detection for primary protection is desired.

The demand of ubiquitous communication and the requirement of exploding data rates has forced the convergence of almost
all the wireless standards to the incorporation of spatial dimension which has fundamentally transformed the communication
paradigm. This appended spatial dimension in the form of Multiple-Input Multiple-Output (MIMO) [3] has been included in
almost all the ongoing standardization activities in the wireless industry as Long Term Evolution (LTE) [4], LTE-Advanced [5],
WiMAX, Wi-Fi etc. This added spatial dimension has evolved new communication scenarios as stream multiplexing (single-
user MIMO), user multiplexing (multi-user MIMO) and transmit diversity (space-time codes) [6]. Also, with antenna array,
the transmit and receive beam orientation in order to achieve improved transmit and receive gains has lead to beamforming
concept. This paradigm shift in the wireless environment demands transformed and efficient spectrum sensing techniques for
the secondary users.

Many spectrum sensing schemes like matched filter detection [7], energy detection (ED) [8], cyclostationary based detection
[9], Random Matrix Theory (RMT) based detection [10], eigenvalue value based detection [11] and Peak to Average Power
Ratio (PAPR) based spectrum sensing [12] have been proposed. Spectrum sensing based on matched filtering is only valid
for pre-known signals as it requires the complete information of the signal for detection [13]. Due to low computational cost,
simplicity and general applicability to a wide variety of signals, ED has attained a wide acceptance. However, the determination
of an optimal threshold is a dilemma of ED [14]. Moreover, the degraded performance for deep faded signals also limits its
use under weak channel conditions. On the other hand, cyclostationary detection, RMT and eigenvalue based detection have
improved performance but are computationally very complex [15]. Collaborative spectrum sensing is proposed in [16]. Where
as multi-antenna based spectrum sensing by using generalized likelihood ratio test was explored in [17]. Spectrum sensing by
using multiple antennas for Orthogonal Frequency Division Multiplexing (OFDM) signals are proposed in [18] and [19]. PAPR
based spatial spectrum sensing has very good results even under low signal to noise ratio (SNR) [12]. In [12], the authors
have proposed spectrum sensing model for Single Input Multi-Output (SIMO) systems. But in our view, there is a need of low
complexity, reliable spectrum sensing algorithms which not only perform well under all SNR conditions but also incorporate
the advanced features of modern wireless systems like beamforming and MIMO.

We have already proposed a channel state dependent adaptive spatial spectrum sensing algorithm in [20]. But we only used
multiple antennas at the receiver and an adaptive scheme was proposed which selects an appropriate spectrum sensing technique



at the receiver depending on the channel conditions. Recently, in [21], the authors describe a system for spectrum sensing using
PAPR as signal feature. But this patent only considers multiple antennas at receiver. Also, no analysis regarding beam-forming
is provided. Whereas, We propose to use beamforming by estimating angle of arrival and making the peak power function of
angle of arrival. MIMO system for correlated noise environment has been explored in [22]. Received covariance matrix and
estimate of noise is obtained by exploiting low rank matrix decomposition algorithms. In our case the noise is uncorrelated. The
authors have proposed a wideband spectrum sensing technique for cooperative cognitive radio systems in [23]. A multiband
spectrum scanning technique is proposed to exploit scheduling diversity in an efficient way for spatial diversity based spectrum
sensing. When the number of sensors and the scanning channels is large, a scheduling scheme is proposed to outperform
the conventional non scheduled sensing process. The interference effect on primary network is studied due to cognitive radio
communications when k-user MIMO interference model is considered [24]. The effect of secondary antenna is used to mitigate
the interference at primary receivers. The authors in [25] have analyzed the effect of PAPR reduction in primary signal for
the performance of multiband joint detection based wideband spectrum sensing. The multi-band joint detection method is also
optimized for both cooperative and non-cooperative spectrum sensing schemes. The signal detection is also improved, when
the primary users PAPR is reduced in the cooperative spectrum sensing scenario. In our work, we are taking the PAPR of the
received primary signal as measure to perform spectrum sensing.

Thus, we have extended the work in [20] and we have proposed a MIMO based spectrum sensing algorithm for advanced
wireless communication systems and specially transmission mode 3, transmission mode 4, transmission mode 5, transmission
mode 8 and transmission mode 9 of LTE and LTE-Advanced are addressed in the context of cognitive radios. A scheme for
opportunistic use of spectrum is suggested when a system is using the above said transmission modes.

In this work, we focus on such a CR system where the primary users are equipped with multiple antennas and resort to
one of the above stated transmission modes. We propose a spectrum sensing algorithm for the secondary users equipped with
multiple antennas. The proposed algorithm is based on the PAPR of the spatially received signal and the primary users are using
multiple antennas for transmission. Simulation results show that the incorporation of this information in the algorithm of spatial
spectrum sensing significantly improves the probability of detection and lowers the probability of false alarm. Furthermore,
using beamforming, the effect of angular resolution and orientation is examined and shown that as we increase the angular
resolution we achieve a better performance. The effect of number of received samples is also examined.

The paper is organized into five sections. Section 2 considers the system models for the proposed schemes. Section 3 discusses
the PAPR based spatial spectrum sensing for the MIMO systems. Whereas, Simulation results are presented in Section 4 while
Section 5 concludes the paper.

II. SYSTEM MODEL

In this section we shall present system model for both SIMO and MIMO systems.

A. SIMO Systems

Consider the conventional primary system where the primary users are equipped with single antennas. For secondary users,
we consider them to be equipped with spatial diversity, i.e., M receive antennas as shown in the Fig. 1. The considered model
makes sense as the secondary users need to have additional features as compared to the primary users so as to make them able
to survive in the environment cluttered with primary users. Hypothesis Hy represents that there is no licensed user signal and
only noise is present whereas, H| represents that signals of the licensed users exist along with noise. There are two parameters
based on which the sensing performance of any spectrum sensing algorithm is evaluated. These are probability of detection P,
and probability of false alarm Py,. The probability of detection P, is the probability of cognitive user predicting the presence
of primary user given the hypothesis H; where as probability of false alarm Py, is the probability of cognitive user predicting
the presence of primary user given the hypothesis Hy.

Binary hypothesis model for the received signal at CR receiver can be written as:

w(l), H
=1 e, ®

where, [ =1,2,.....5, is the sample number, S is number of samples over which sensing is performed, (/) is the received
signal, s(I) is the licensed user signal, w(l) is Additive White Gaussian Noise (AWGN) with zero mean and 62 variance.
Throughout the document, the term SNR would mean the SNR of the signal (/). Therefore, intuitively, a high value of SNR
would indicate the presence of primary signal and vice versa. For the considered system model, the /' snapshot at the cognitive
receiver is:

r(l) =m(0)s(l)+w(l) (2)

where r is the vector received at M antennas of the cognitive receiver, m(0) = [I, e2mdsin®)/L ...

= )
e/2M=1)rdsin(0)/L1T jg the steering vector at the receiver and w(l) = [wy(I) wa(I) --- war(1)]7 is the noise vector at M receive
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Fig. 1. SIMO System Model

antennas. Note that 0 is the angle of incident, L is the wavelength of the signal and d is the distance between two adjacent
antennas. In order to perform beamforming we change 6 from —x/2 to @/2 to achieve the maximum received signal power.
The output at the /'* snapshot is:

(1) =u"r(l) 3)

where u = [u,uy, -+ ,upy]| is the vector of weights which takes on the values such that the received signal power is maximized
and y is the output at receiver.

B. MIMO Systems

Consider the system where primary and secondary users are equipped with multiple antennas. This model is in line with
spatial diversity based systems, i.e., MIMO systems. The spatial dimension is exploited to enhance the spectral efficiency
in the form of stream or user multiplexing. It is exploited to increase the reliability of the system by employing space-time
codes. This transition is stimulated by the demand of exploding data rates and enhanced coverage. Getting motivated by such
a forthcoming wireless environment, we propose spectrum sensing algorithms once primary users employ multiple antenna
transmission/reception modes. These proposed algorithms are based on beamforming for the directional reception of the signal
at the secondary users. The system model of the previous section is modified for the case when primary users also incorporate
the multiple antennas. In this scenario, two principal approaches are considered, i.e., stream multiplexing and space time
coding based systems. Note that the case of stream multiplexing also incorporates the scenario of user multiplexing where the
transmitter transmits to multiple users on same time-frequency resources by exploiting the channel state information at the
transmitter. As primary transmitters will be resorting to this strategy which will be oblivious to the secondary users, so the
system will look like as a spatially multiplexed system for the secondary users.

1) Stream Multiplexing: Owing to ever-increasing demand of higher data rates, the most important mode of transmission
in the presence of spatial diversity is stream multiplexing. Baseline configuration of LTE systems, i.e., a primary user with
2 antennas employs spatial multiplexing for the transmission while for the secondary user, a linear uniform antenna array
comprising of two antenna elements is assumed. From the perspective of the secondary user, this type of transmission by the
primary user represents transmission mode 3 (cyclic delay diversity), transmission mode 4 (closed loop spatial multiplexing),
transmission mode 5 (multi-user MIMO), transmission mode 8§ (dual-layer beamforming) and transmission mode 9 (seamless
switching between single-user and multi-user MIMO) in LTE and LTE-Advanced. Fig. 2 shows the system model where the
data stream is partitioned into two sub-streams at the primary user for the purpose of transmission through two independent
transmitting antennas. Each sub-stream is processed independently and transmitted through independent transmitting antenna.
This signal is received by the secondary user who needs to sense the spectrum based on this received signal. The signal at the
receiving antenna Ry is the result of both symbols sy and s; combined with the channel effects. After the addition of receiver
thermal noise, both the received signals are combined. The /" snapshot at the secondary user is:

r(l) =H()s(l) +w(l), )

where, H(/) is the channel matrix containing the coefficients of each channel from the transmitter to the receiver. Note that
s(0) = [so s1]7. Ignoring the time index, the matrix H is defined as:

| ho M
H—[hz h3] 5)

The definition of the channel coefficients is given in Table 1. The coefficient of channel between the transmitter 0 and the
receiver 0,1 are denoted by kg and h; respectively. Whereas, the coefficients of the channel between transmitter 1 and receiver



TABLE I
CHANNEL COEFFICIENTS NOTATIONS

Receive Antenna 0 | Receive Antenna 1
Transmit Antenna 0 ho hy
Transmit Antenna 1 hy h3

0,1 are denoted by h; and &3 respectively. Ignoring the time index, the received signal at each receiver branch of the secondary
user is written as:

ro = hoso +his1+wo

ri = haso+ hzsi +wi (6)
The output at the /'" snapshot is:
H
y(1) =ur(l). (7)
Data Stream Txo ho Ryo W
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Fig. 2. MIMO System Model for Spatial Diversity

2) Space-Time Coding: To improve the reliability of the system, the extension towards the space-time codes is a good
choice, where both the time and space dimensions are exploited to enhance the system diversity. To achieve full diversity, the
data stream is encoded both in time and space. For the case of two transmit antennas, Alamouti scheme achieves full diversity
of the system. This scheme, due to its improved performance, has been included as transmission mode 2 (transmit diversity) in
the standardization of LTE and LTE-Advanced. System model is shown in Fig. 3 where the primary user employs the Alamouti
space-time code. The data stream is further encoded in time and antenna O transmits so at time r =0 and —s} at time ¢ = 1.
Similarly antenna 1 transmits s1 and s; at time ¢ = 0 and ¢ = 1 respectively. The received signals at different time intervals are
written as:

ro(l) = hoso + his1 +wo

ro(l+1) = —hosT +hisy+wi

ri(l) = haso+h3si +ws

ri(l+1) = —hasi + h3sg+ws3 (8)
Channel definition is same in both models as shown in Table 1. Here ry and r; are the received signals at receive antenna Ry
and Ry respectively.

The output at the /'* snapshot is:
y(I) =uf’r(1). 9)

III. PAPR BASED SPATIAL SPECTRUM SENSING FOR MIMO SYSTEMS

In [12], authors have discussed the spatial spectrum sensing based on PAPR for SIMO systems. Continuing on for MIMO
systems, the power of y(I) (Eq. 7 or Eq. 9) can be evaluated as

p(u) = E(y(1)) = E[lur() )] = u"R,u (10)

where R,, is autocorrelation matrix defined as:

R,/(S) = ir(l)r’*(l) (11)
=1

| —
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Fig. 3. MIMO System Model for Space Time Diversity

To make the received power dependent on the angle of arrival, the weighting vector u is assumed to be same as m(6). The
power dependent on the angle of arrival is:

p(6) =m" (8)R,;m(6) (12)
Now if the primary user is present and its direction of arrival is 6,, then

() E[u” (m(8,)s(1) +w(]))[’]
[ fm(,)s(D)s(1)ym" (6,)u] + E[u'm(8,)s(1)w" (1)u]+E[u w(l)m" (6,)s(/)u] +
[ w(l)w (Du] (13)

Zero mean noise and signal being independent of each other make the middle two terms zero whereas, the remaining two
terms are summarized as:

p(8) = E[|s(D)*)lm" (0)m(8,) > + E[|w(1)|*}M (14)

When 6 = 6, (while scanning the interval [—7/2,7/2]) the term m”(6)m(6,)= M and we get the maximum power under
hypothesis H; as:

Poax = p(6,) = E[|s()) PJM* +E[|w(D) P}M 15
Similarly the maximum power under hypothesis Hy is:
Poax = E[|w(1)|*IM (16)

Based on this analysis the power of PAPR based spatial spectrum under H; and Hj is evaluated by using Eq. 14. Clearly,
under Hj the power is constant under the assumption that noise expectation is invariant in the sensing time. This difference in
powers under H; and Hy may lead to the following test metric for spectrum sensing.

max p(0)
PAPR= ——— 17)
E[p(6)]
Under hypothesis Hy, PAPR is 1 in ideal case (exact correlation matrix is obtained) and under the hypothesis Hj, it is greater
than 1, that is
E[|s() 1M + E[Jw(1)]]M
E[Jm" (6)m(6,)[*|s(1)*] + [w(1)[?M

Therefore it may be used as a test metric in spectrum sensing. The detecting rule based on PAPR of spatial spectrum is
described as:

PAPR =

(18)

H,
PAPR > 1 (19)
Hy

The power of signal in Eq. 10 is dependent on the angle of incident since we have related angle 8 with weighting vector u.
To evaluate the PAPR of the received signal, scanning is performed over the interval [—7/2,7/2] and we achieve a power
corresponding to each angle where maximum power is achieved when scanning angle and incident angle become equal. Thus
PAPR is calculated over all the possible values of scanning vector and if the primary user is absent, i.e., only noise exists, the
maximum power and the average power will be approximately equal and the resultant PAPR will be close to 1. Similarly if
the primary user is present the maximum power will be greater than the average power resulting in PAPR much greater than
1. This difference in the powers under H; and Hy leads to the Eq. 17 of test metric for the spectrum sensing. The detection
rule based on PAPR of spatial spectrum is same as in Eq. 19.



A. Spectrum Sensing for Spatially Multiplexed Systems

For the system model in Fig. 2, the received signal in Eq. 6 can be rewritten as:

hoso +h1s1 +wo

= 20
r hpso + h3s +wq (20)

Combining the received signal at two antennas, the combined output y(I) is written as:
y(1) = uo(hoso +hisi +wo) +ui (haso + hs1 +w1) (1)

The PAPR of signal in Eq. 21 is evaluated by using Eq. 17 to take final decision based on Eq. 19.

B. Spectrum Sensing for Space-Time Diversity based Systems

As the primary user employs Alamouti encoding as shown in Fig. 3, the received signal at the secondary user on /-th time
slot is given as:

0= o L o |
whereas, the received signal at the (I + 1)-th time slot is:
=] et | @
The combined output y(/) is written as:
(1) = uo(hoso + his1 +wo) + ui (haso + hzsy +wr) (24)
The combined output y(I+1) at time 7 = 1 is written as:
Y(41) = uo(—hosy +hisg +wi) +uy (—hasy + hasg +w3) (25)

The PAPR of signal in Eq. 24 and Eq. 25 are evaluated using Eq. 17 and the decisions are taken using Eq. 19. These decisions
are combined by using ANDing technique to take a final decision.

IV. SIMULATIONS AND RESULTS
A. Simulation Settings

For simulation purposes, we have used a Quadrature Phase Shift Keying (QPSK) modulated signal with a raised cosine
filter for pulse shaping. For a SIMO based spatial spectrum sensing four antennas are used at the cognitive receiver: Whereas,
for MIMO case a 2 x 2 system is used. Please note that the scheme works fine for any higher order modulation schemes and
QPSK is selected only for the purpose of simplicity.

B. SIMO Systems

In the simulation we have implemented ED using by using a Single Input Single Output (SISO) and SIMO so that the
results can be compared with the proposed method in a more realistic way. Fig. 4 compares ED by using single antenna, ED
with multiple antennas and PAPR based spatial spectrum sensing using SIMO system. Improvement due to the diversity in
both terms of probability of detection and probability of false alarm are clear. It can be seen that the PAPR based sensing has
quite better results under most of the values of SNR. It could be noticed that ED outperforms PAPR above —3 dB SNR in
terms of Pg,. This is due to the fact that we have performed these PAPR simulations with the parameters that support reduced
computational complexity. By increasing the number of samples (N) or decreasing the scanning interval (1) would improve
the performance of PAPR. The detailed discussion about the effect of these parameters is given in next section.

C. MIMO Systems

To evaluate the performance of proposed spatial spectrum sensing algorithm, we have considered a two branch primary
user and a two branch secondary user. The data stream is passed to a de-multiplexer which divides this data stream into
two sub-streams that are processed individually. Each stream is QPSK modulated and then the modulated signal is passed
through a raised cosine filter for the purpose of pulse shaping. These pulse shaped signals are transmitted though independent
transmitting antennas. After the corruption by channel noise, this noisy signal is received at two independent antennas of the
secondary user. These received signals at both the antennas are individually multiplied by weights and then integrated to achieve
a combined signal from both antennas. The weights can be calculated using Maximal Ratio Combining (MRC) scheme where
the weighting factor is made proportional to rms value of the signal level and inversely proportional to the mean square noise
level in that channel. The signal is scanned for each angle to achieve a different signal for every direction of arrival. Then the
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power of every signal is evaluated to derive a test metric. PAPR is evaluated for the purpose of comparison. We compare the
performance of the proposed algorithm with that of the system with single-antenna primary users. For fair comparison, we still
consider multiple-antenna secondary users thereby resulting into a SIMO system and focus on the performance improvement
once primary users have multiple antennas. Note that we ensure that the same power is transmitted both in the case of SIMO
and MIMO systems. The results of PAPR based spatial spectrum sensing are shown in Fig. 5. Fig. 5 shows that the performance
of the proposed algorithm is quite better for almost all the SNR values even if the SNR is as low as —19 dB the P; is still 0.9
which approaches the requirement of IEEE standard for WRAN. On the other hand, Py, is always below 0.1. Fig. 5 shows
a comparison of the proposed algorithm with PAPR based sensing using SIMO system on the basis of P;. The performance
of both algorithms is very good under low SNR conditions, which is a challenge in this area of wireless communication.
Particularly in the case of PAPR based spatial spectrum sensing by assuming that the primary user is equipped with multiple
antennas, the detecting probability is very attractive even at very low SNR values.

Spectrum Sensing based on PAPR
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Fig. 5. Spectrum Sensing Performance Comparison of PAPR based Sensing

Fig. 5 also shows plot of simulation for Py, which compares the probability of false alarming of the proposed algorithm by
considering that the primary users have single antennas (SIMO) and have dual antennas (MIMO). As clear from simulation
results, the probability of alarming the presence of primary user signal in his absence is very less even under very low SNR.
Moreover the improvement due to deployment of multiple antennas at the primary user can also be observed. Fig. 6 concludes
the results and it contains the curves of both proposed models and spectrum sensing performance is compared. For the system
model shown in Fig. 3, the stream is encoded by using Alamouti coding and at the receiver PAPR is evaluated for every
time slot. This PAPR is compared with a threshold to take a decision. At the end, these two decisions are combined by using
ANDing technique for the final decision. The improvement due to Alamouti coding is clear in Fig. 6. In Fig. 7 we have shown
the effects of scanning interval n where 1 is the difference between two adjacent angles on which the received power is
measured during the scanning process. We can observe that the values of 1 control the sensing performance. Smaller the 7,
greater the number of observations of the received signal and consequently better the performance. Whereas, when the value
of 1 is large, the number of received signal power measurements are small and therefore the sensing performance is poor.
Fig. 8 shows the impact of number of samples N over the performance and we observed that lesser samples cause higher rates
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of false alarms and reduced detection probability. Increasing the value of N, would give better signal view at the cognitive
receiver end and consequently better sensing performance shall be achieved.

V. CONCLUSION

Owing to multiple antenna feature of concurrent wireless systems, improved spectrum sensing schemes are proposed. Spatial
spectrum sensing is considered and an algorithm based on PAPR in MIMO context is proposed. It is shown that the proposed
algorithm performs very well in terms of both probability of detection and probability of false alarm as compared to the legacy
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systems under all SNR conditions. Through simulations it is concluded that the performance can be improved by incorporating
the Almouti coding. It is also shown that smaller scanning interval brings the benefit in terms of both detection and false alarm
probabilities. It is further observed that the number of samples also have a significant impact on the performance of the system
and performance can be enhanced by increasing the number of samples of the received signal.

REFERENCES

[1] Z. Ye, G. Memik, and J. Grosspietsch, Energy detection using estimated noise variance for spectrum sensing in cognitive
radio networks, IEEE Wireless Communications and Networking Conference, Las Vegas (2008), pp. 711-716.
[2] J. Mitola, Cognitive radio: an integrated agent architecture for software defined radio, IDiss., Comp. Commun. Sys. Lab.,
Depatment of Teleinformatics, Royal Inst. of Tech., stockholm, Sweden (2000), pp. 2248-2251.
[3] S. M. Alamouti, A simple transmit diversity technique for wireless communication, IEEE Journal on Selected Areas in
Communications 16 (8) (1998), pp. 1451-1458.
[4] D. Astely, E. Dahlman, A. Furuskar, Y. Jading, M. Lindstrom, and S. Parkvall, LTE: the evolution of mobile broadband,
IEEE Communications Magazine 47 (4) (2009), pp. 44-51.
[5] S. Parkvall, A. Furuskar, and E. Dahlman, Evolution of LTE toward IMT-Advanced, IEEE Communications Magazine
49 (2) (2011), pp. 84-91.
[6] B. D. V. Veen, and K. M. Buckley, Beam forming: A verstile approach to spatial filtering, [IEEE ASSP Magzine (1988),
pp. 4-24.
[7] A. Sahai, and D. Cabric, Spectrum sensing fundamental limits and practical challenges, IEEE International Symposium
on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA (2005), pp. 8-11.
[8] H. Urkowitz, Energy detection of unknown deterministic signals, Proceedings of IEEE 55 (4) (1967), pp. 523-531.
[9] D. Noguet, L. Biard, and M. Laugeois, Cyclostationarity detectors for cognitive radio: Architectural trade offs, EURASIP
Journal on Wireless Communications and Networking 5 (2010).
[10] L. S. Cardoso, M. Debbah, P Bianchi, and J. Najim, Cooperative spectrum sensing using random matrix theory,
International Symposium on Wireless Pervasive Computing, Fira, Santorini (2008), pp. 334-338.
[11] M. Hamid, and N. Bjorsell, Maximum and minimum eigenvalue based spectrum scanner for cognitive radios, /IEEE
Instrumentation and Measurement Technology Conference, Graz, Austria (2012), pp. 2248-2251.
[12] L. Guangyue, W. Yingxi, X. Kai, and Y. Xiaoni, Novel spectrum sensing method based on the spatial spectrum for
cognitive radio systems, Journal of Electronics, China 27 (5) (2010), pp. 625-629.
[13] V. Kuppusamy, and R. Mahapatra, Primary user detection in OFDM based MIMO cognitive radio, 3rd International
Conference on Cognitive Radio Oriented Wireless Networks and Communications, Singapore (2008), pp. 1-5.
[14] T. Yucek, and H. Arslan, A survey of spectrum sensing algorithm for cognitive radio applications, IEEE Communications
Surveys and Tutorials 11 (1) (2009), pp. 116-130.
[15] Y. Zeng, Y. C. Liang, A. T. Hoang, and R. Zhang, A review on spectrum sensing for cognitive radio: challenges and
solutions, EURASIP Journal on Advances in Signal Processing 2 (2010).
[16] A. Ghasemi, , Collobrative spectrum sensing for oppertunistic access in fading enviornment, First IEEE International
Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland,USA (2005), pp. 131-136.
[17] R. Zhang, T. Lim, Y. C. Liang, and Y. Zeng, Multi antenna based spectrum sensing for cognitive radios: A GLRT
approach, IEEE Transactions on Communications 58 (1) (2010), pp. 84-88.
[18] W. Ma, M. Wu, D. Liu, and M. L. Wang, User sensing based in MIMO cognitive radio sensor networks, 2nd IEEE
International Conference on Computer Science and Information Technology, Beijing, China (2009), pp. 205-208.
[19] V. Kuppusamy, and R. Mahapatra, Primary user detection in OFDM based MIMO cognitive radio, 3rd International
Cognitive Radio Oriented Wireless Networks and Communications, Singapore (2008), pp. 1-5.
[20] M. S. Igbal, A. Ghafoor, S. Hussain and R. Ghaffar, Channel state dependent adaptive spatial spectrum sensing algorithm
for cognitive radios, The 10th IEEE consumer communication and networking conference, Las vegas, (2013), pp-613-616.
[21] S. S. Thakur, S. Amuru, S. R. C. Vollala, Cognitive radio spectrum sensor employing peak to average ratio as a signal
feature, Patent No., US 8594121 B2, (2013).
[22] A. Koochakzadeh, M. M. Mohammadi, M. B. Zadeh and M. Skoglund, Multi antenna assisted spectrum sensing in
spatially correlated noise environments, Elsevier Signal processing journal 108 (2015), pp. 69-76.
[23] Y. J. Cho, J. H. Ko, H. G. Yu, and D. J. Park, Scheduling diversity outperforms spatial diversity for cooperative multiband
spectrum scanning, IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV (2015), pp 517-518.
[24] A. Alizadeh, H. R. Bahrami, M. Maleki, and S. Sastry, Spatial sensing and cognitive radio communication in the presence
of a k-user interference primary network, IEEE Journal on Selected Areas in Communications (2015), pp 741 754.
[25] H. Sakran, M. Shokair, E. S. E. Rabaie, and O. Nasr, Study the effect of PAPR on wideband cognitive OFDM radio
networks, Journal of Telecommunications Systems (2013), pp 469-478.



AUTHORS

Muhammad Shahid Igbal received his B.Sc. degree in telecommunication from Government College University,
Faisalabad, Pakistan in 2009 and M.Sc. degree in electrical engineering from National University of sciences and
technology Islamabad, Pakistan in 2013. Currently he is a PhD student in Electrical and electronic engineering, KOC
university, Istanbul, Turkey. His research interests are wireless communication and wireless sensor networks.
Sajjad Hussain is lecturer at School of Engineering, University of Glasgow. He did his PhD in 2009 from University
of Rennes 1, Rennes in Electrical Engineering. He is focused to research in sensing algorithms for Cognitive Radios,
cross layer optimization in Cognitive Radio networks along with demand response of Smart Grids.

Abdul Ghafoor is Associate Professor at Electrical Engineering Department, National University of Sciences and
Technology (NUST), Islamabad. He did his PhD in Model Reduction research area from the University of Western
Australia in 2007. His current research interests include Model Reduction, Controller Reduction, Image Enhancement,
Image Fusion, Through-Wall Imaging and Cognitive Radios.



