
Ransomware Detection and Mitigation using
Software-Defined Networking: The Case of WannaCry

Maxat Akbanova, Vassilios G. Vassilakisa,∗, Michael D. Logothetisb

aDept. of Computer Science, University of York, York, United Kingdom
bDept. of Electrical & Computer Engineering, University of Patras, Patras, Greece

Abstract

Modern day ransomware families implement sophisticated encryption and prop-
agation schemes, thus limiting chances to recover the data almost to zero. We
investigate the use of software-defined networking (SDN) to detect and mitigate
advanced ransomware threat. We present our ransomware analysis results and
our developed SDN-based security framework. For the proof of concept, the
infamous WannaCry ransomware was used. Based on the obtained results, we
design an SDN detection and mitigation framework and develop a solution based
on OpenFlow. The developed solution detects suspicious activities through net-
work traffic monitoring and blocks infected hosts by adding flow table entries
into OpenFlow switches in a real-time manner. Finally, our experiments with
multiple samples of WannaCry show that the developed mechanism in all cases
is able to promptly detect the infected machines and prevent WannaCry from
spreading.

Keywords: WannaCry, ransomware, software-defined networking, OpenFlow,
malware analysis

1. Introduction

Nowadays ransomware presents a huge and the fastest growing problem for
all types of users from small households to large corporations and government
bodies [1]. Starting from relatively simple fake antivirus applications in 2008,
ransomware has evolved during the time and emerged into sophisticated forms5

such as crypto type ransomware. The apotheosis of this evolution is the occur-
rence of a new type of ransomware which combines the usage of exploits with
worm-like spreading mechanisms to propagate itself in both internal and exter-
nal networks. Moreover, the emergence of new ransomware families, such as
WannaCry [2], showed that ransomware keeps evolving and cyber criminals are10

upgrading the ransomware code with more sophisticated features, such as worm

∗Corresponding author
Email address: vv573@york.ac.uk (Vassilios G. Vassilakis)

Preprint submitted to Computers and Electrical Engineering March 27, 2019

propagation components and public-key encryption mechanisms. Therefore,
from the research perspective, the design and development of new countermea-
sures is considered as an important task.

At the same time, a new emerging technology, known as software-defined15

networking (SDN) [3, 4], presents an important step towards completely pro-
grammable networks. This results in improved network resilience [5], perfor-
mance [6, 7], and security [8]. SDN has also the potential to be used in different
types of networks, including wireless [9], optical [10], smart grid [11], and In-
ternet of things [12]. However, not many works have investigated the potential20

of SDN for ransomware threat detection and mitigation. Most of the existing
studies focus on the security of the SDN itself, rather than considering working
prototypes of security systems based on SDN properties. Only a few published
papers investigate SDN-based malware detection and mitigation. Jin et al. [13]
consider a mobile malware detection system based on SDN architecture. Several25

detection algorithms are examined, including IP blacklisting and a connection
success ratio algorithm, and implemented using the Floodlight SDN controller.
The developed system is able to detect malicious activities using real-time traffic
analysis. Ceron et al. [14] design and develop an SDN-based malware analysis
system which is capable to dynamically modify the network environment based30

on malicious activities. It has been demonstrated that the developed solution
could trigger more malware events than traditional solutions.

With regard to current SDN-based solutions for ransomware threat, Cabaj
et al. [15, 16] investigate several proposed methods. In particular, the SDN-
based solution of [15] aims at improving the protection against the CryptoWall35

ransomware. Two approaches are introduced that try to block CryptoWall’s
connections with the command and control (C&C) server from infected hosts
by using dynamic IP blacklisting. This solution utilizes an application written
for the POX controller, which connects to a blacklist database and performs
dynamic checks on IP addresses. The main drawback of these approaches is the40

requirement to pre-define the ransomware proxy servers used in the blacklisting.
In [16], the network communication of the CryptoWall and Locky ransomware
families is investigated. The proposed detection approach is based on an analy-
sis of HTTP message sequences used during the communication with the C&C
server. The feasibility of the proposed approaches has been confirmed by imple-45

menting and obtaining experimental results based on OpenvSwitch and POX.
In particular, simulation results show a detection rate of 97-98% with only 4-5%
false positives when relying on blacklisted domains. However, CryptoWall does
not have a worm component, which makes its mitigation simpler. Our work
extends the works of Cabaj et al. and presents a first attempt to investigate the50

feasibility of SDN techniques to detect and mitigate crypto ransomware with
worm-spreading capabilities, such as WannaCry. Ransomware families which do
not necessarily require communication with C&C servers in order to propagate
are of particular interest.

In this work, we present our ransomware analysis results and our developed55

SDN-based security framework. For the proof of concept, the infamous Wan-
naCry ransomware is used. However, the developed framework is also applicable

2

in other ransomware families. In particular, we examine the behaviour of Wan-
naCry during its execution in an isolated virtual lab environment. Based on
the obtained results, we design an SDN detection and mitigation framework60

and develop a solution based on OpenFlow [17, 18], which is currently the most
widely adopted SDN standard. The developed solution detects suspicious ac-
tivities through network traffic monitoring and blocks infected hosts by adding
flow table entries into OpenFlow switches in a real-time manner. The logic
of the proposed framework has been implemented in the POX controller. For65

detection purposes, our implementation utilizes the WannaCry’s features and
its generated traffic. Finally, our experimental results with multiple samples of
WannaCry show that the developed mechanism is able to promptly detect, in
all cases, the infected machines and prevent WannaCry from spreading.

To the best of our knowledge, this is the first work that investigates and70

develops an SDN-based mitigation mechanism for ransomware with worm com-
ponents, such as WannaCry. Furthermore, we have performed a comprehensive
WannaCry analysis, both static and dynamic, and the identified WannaCry
features have been used in our developed mechanism for real-time detection.

The rest of paper is organized as follows. Section 2 presents the background75

information on WannaCry and SDN. Sections 3 and 4 present the main find-
ings from our conducted static and dynamic analysis of WannaCry, including
its inherent network indicators. Section 5 presents our proposed design for an
SDN-based detection and mitigation framework. Section 6 discusses our im-
plementation, testbed, and experimental results. Finally, Section 7 draws the80

conclusions and discusses potential future directions.

2. Background

2.1. The Case of WannaCry

On 9 February 2017 researchers from Fortinet discovered the first sample
of WannaCry, which they named as beta-version of the ransomware [19]. This85

version encrypted files by using the AES-128 algorithm and did not have any
worm component implemented. On 28 March 2017, the same researchers found
another improved version named as WannaCry 1.0, which used a hardcoded
dictionary to access server message block (SMB) shared folders and dropped a
Tor browser download link in the cfg file.90

An enhanced WannaCry 2.0 version included critical improvement in prop-
agation process, by implementing the worm module with leaked exploits from
Shadow Brokers. In fact, this was the version that was observed during a mas-
sive attack on 12 May 2017 in more than 150 countries worldwide [2]. As stated
in security reports, over 300,000 machines had been infected in a wide range95

of sectors, including healthcare, government, telecommunications, and gas/oil
production. A unique feature which hinders the defense measures against Wan-
naCry is its ability to spread using a worm component. This necessitates the
development of protection mechanisms which can react quickly and in real time.

During the infection phase, WannaCry uses:100

3

• The EternalBlue exploit for the SMB vulnerability that was patched by
Microsoft on 14 March 2017 and has been described in the security bulletin
MS17-010 [20]. This vulnerability allows the attackers to execute remote
code by sending specially crafted messages to an SMBv1 server, connecting
to TCP ports 139 and 445 of unpatched Windows systems.105

• The DoublePulsar backdoor for gaining access and executing code on com-
promised machines. This essentially enables the installation of additional
malware components on the machine. During the distribution process,
WannaCry relies on the EternalBlue to enable an initial infection via the
SMB vulnerability and if successful, attempts to implant the DoublePulsar110

backdoor on the compromised machines.

On 13 May 2017 a researcher from the MalwareTech company accidentally
stopped the spreading of WannaCry by registering the following kill-switch do-
main, which was embedded in WannaCry’s code [21]:

iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com115

On 14 May, a security researcher from Comae Technologies [22] reported
the findings of two other versions of WannaCry that used different kill-switch
domains. They identified that new versions of WannaCry utilized domain names
that differed only in two letters. On 15 May, researchers from Rendition Security
[23] identified another version of WannaCry, which did not implement a kill-120

switch domain check, as in previous versions. The researchers reported that
previous successful mitigation approach based on sink-holing of the kill-switch
domain did not work, and as an alternative method they suggested limiting
the SMB traffic and implementing a host-based firewall. In fact, our proposed
protection mechanism of Sections 5 and 6 follows this approach by utilizing the125

SDN functions.

2.2. The Concept of SDN

SDN is an emerging paradigm of programmable networks, that decouples
the control and data planes [3]. This changes the way networks are designed
and managed, and also enables new security solutions.130

The data plane is responsible for forwarding and modification of packets,
whereas the control plane determines the rules of how packets must be han-
dled. The separation of the two planes enables the devices of the data plane
(i.e., routers and switches) to function as simple forwarding elements, while the
network control logic is implemented in a logically centralized controller. The135

control plane determines how individual packets should be handled and sends
this information down to the data plane. This approach greatly simplifies the
management of network devices, since they no longer need to understand a wide
range of different protocols, but only need to understand the instructions re-
ceived from the controllers. For the communication between SDN controllers140

and SDN devices the dominant protocol today is OpenFlow [18].
Controllers maintain a view of the entire network and implement policy

decisions. Each SDN device (e.g, OpenvSwitch) has a flow table where the

4

packet handling rules are stored in flow entries. The latter can be created,
modified, or deleted by the controllers. During the network operation, when a145

device receives a packet, packet’s fields are compared against flow entries. Then,
the packet is processed and forwarded according to the rules in the flow table or
is forwarded to the controller if no matching rule exists. This approach enables
real-time network traffic management, including promising applications in the
cybersecurity domain.150

SDN controllers can be implemented either in software or in hardware. Soft-
ware controllers are more popular nowadays and support a wide range of pro-
gramming languages, such as Python (e.g., POX and Ruy controllers), Java
(e.g., Floodlight, OpenDayLight, and ONOS controllers), or C++ (e.g., NOX
controller) [24, 25].155

3. WannaCry Analysis

In this section, we present our results from static and dynamic analysis of
WannaCry. To perform static analysis, two virtual machines (VMs) were used.
The characteristics of the host machine are: Intel Core i7-4700MQ 2.40 GHz and
16 GB RAM. The 1st VM was running Windows 7 SP1 and was infected with160

WannaCry 2.0. The 2nd VM was running REMnux and was used for malware
analysis.

To perform dynamic analysis, a virtual testbed of Fig. 1 was built. This
scheme allows observing domain name system (DNS) queries made by Wan-
naCry during the infection and replication process, as performed by the worm165

component across the internal and external networks via the port 445 of the
SMBv1 protocol. The REMnux machine acts as DNS and HTTP/HTTPS
server, and is able to intercept all network communications using Wireshark.
DNS and HTTP services in REMnux were enabled using the FakeDNS and
HTTP Daemon utilities, respectively.170

3.1. Static Analysis

We analyzed two WannaCry executables: the worm component and the
encryption component. Their corresponding hashes and basic characteristics
are shown in Table 1. Below we present our main findings from the static
analysis.175

Analysis with the Pestudio tool has revealed that the worm and the en-
cryption components contain dynamic-link libraries (DLLs), as shown in Tables
2 and 3. During its execution, the worm invokes the iphlpapi.dll in order to
retrieve network configuration settings for the infected host. The kernel32.dll
and msvcrt.dll are two most invoked libraries by the encrypter. It was found180

that WannaCry uses Microsoft’s crypto, file management, and C runtime file
application programming interfaces (APIs). The Crypto API library is used to
generate and manage random symmetric and asymmetric cryptographic keys.

5

Figure 1: Virtual testbed for dynamic WannaCry analysis: Two Windows 7 VMs (infected
and clean), one OpenvSwitch, and one REMnux VM with HTTP Daemon, FakeDNS utility,
and Wireshark.

Table 1: WannaCry worm and encryption components: Hashes and file types.

Worm Component
MD5 db349b97c37d22f5ea1d1841e3c89eb4
SHA1 e889544aff85ffaf8b0d0da705105dee7c97fe26

SHA256 24d004a104d4d54034dbcffc2a4b19a11f39008a575aa
614ea04703480b1022c

File Type PE32 executable (GUI) Intel 80386, for MSWindows

Encryption Component
MD5 84c82835a5d21bbcf75a61706d8ab549
SHA1 5ff465afaabcbf0150d1a3ab2c2e74f3a4426467

SHA256 ed01ebfbc9eb5bbea545af4d01bf5f107166184048043
9c6e5babe8e080e41aa

File Type PE32 executable (GUI) Intel 80386, for MSWindows

6

Table 2: Dynamic Link Libraries (DLLs) invoked by WannaCry’s worm component.

Library Imports Description
ws2 32.dll 3 Windows Socket 2.0 32-bit

iphlpapi.dll 2 IP Helper API
wininet.dll 3 Internet Extensions for Win32
kernel32.dll 32 Windows NT BASE API Client
advapi32.dll 11 Advanced Windows 32 Base API
msvcp60.dll 2 Windows NT C++ Runtime Library
msvcrt.dll 28 Windows NT CRT

Table 3: Dynamic Link Libraries (DLLs) invoked by WannaCry’s encryption component.

Library Imports Description
kernel32.dll 54 Windows NT BASE API Client
advapi32.dll 10 Advanced Windows 32 Base API
user32.dll 1 Multi-UserWindows USER API Client
msvcrt.dll 49 Windows NT CRT

3.2. Dynamic Analysis

Our dynamic analysis has revealed that, when started, the worm component185

invokes the InernetOpenUrl function and attempts to establish a connection
with the following domain: www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com

This, in fact, is a kill-switch domain and if is active, the worm stops running.
In the case that the worm is not able to establish a connection with this domain,
it continues to run and registers itself as a “Microsoft Security Center (2.0)190

Service” mssecsvs 2.0 process on the infected machine.
The FakeDNS utility has captured the malicious DNS request on port 80,

as shown in Fig. 2. At the same time, Wireshark reveals the DNS packet query
field from the infected machine to the DNS server, as shown in Fig. 3.

After installing itself as a service, the worm component extracts the hard-
coded R resource and then copies it to C:\Windows\taskche.exe. The R re-
source represents the encryption component of WannaCry. When invoked, the
encrypter checks if at least one of the three mutual exclusion objects (mutexes)
exists:

GlobalnMsWinZonesCacheCounterMutexA

GlobalnMsWinZonesCacheCounterMutexW

MsWinZonesCacheCounterMutexA

If the mutex is present on the system, then the encrypter immediately termi-195

nates. Otherwise, the encryption process begins. To encrypt each file, a different

7

Figure 2: A malicious DNS request as captured by the FakeDNS utility of the REMnux VM.

16-byte symmetric AES key is generated with the help of the CryptGenRandom
function. Then, every generated AES key is encrypted with the public RSA key
(which is part of the encrypter) and stored inside the file header starting with
WANACRY!. The encrypted files are renamed and get the .WNCRY exten-200

sion. The encrypter has a password-protected ZIP file. By disassembling the
encrypter, as shown in Fig. 4, it was possible to reveal the password of the ZIP
file: “WNcry@2ol7”. The most important contents of the ZIP file are briefly
described below:

• msg is a folder containing rich text format (RTF) files which are the in-205

structions in different languages for displaying the extortion messages to
victims.

• b.wnry contains instructions for decrypting user files.

• c.wnry is a list of the Tor addresses with .onion extension and a link to
the Tor browser compressed installer.210

• s.wnry is a compressed file with the Tor browser executable.

• taskdl.exe is an executable for deleting files with the extension .WNCRY.

• taskse.exe is an executable for running WannaCry remote desktop protocol
sessions.

• u.wnry is the decryption component of WannaCry.215

Our analysis has also shown that WannaCry attempts to establish persis-
tence on the infected device by:

• Creating an entry in the Windows registry, so that it is invoked every time
the infected computer reboots.

• Adding itself to the AutoRun feature of Windows.220

• Utilizing the icacls command to enable full access to all files on the infected
device.

• Deleting the backup copies and preventing the device rebooting in the safe
mode.

• Attempting to eliminate SQL and MS Exchange database processes by225

executing certain shell commands.

8

Figure 3: A malicious DNS request as captured by the Wireshark on the REMnux VM.

4. WannaCry Communications

After performing initial interactions and checking the connectivity with
the kill-switch domain, the worm functionality is established by initiating the
mssecsvs 2.0 service. This service tries to spread WannaCry’s payload through230

the SMB vulnerability on any vulnerable system. In order to perform this, Wan-
naCry creates two separate threads that simultaneously replicate the payload
in internal (local) and external networks. In the local network, before starting
the propagation process, WannaCry obtains the IP addresses of local network
interfaces using the GetAdaptersInfo function and identifies the available sub-235

nets.
After that, WannaCry attempts to connect to all possible IP addresses in

the existing local networks on the TCP port 445 (the default port for SMB
over IP). If the connections is established, WannaCry attempts to exploit the
EternalBlue vulnerability of the SMB service, as explained in [20]. During our240

experiments, we observed connection attempts where the infected machine (IP
192.168.180.130) sent SMB packets to a Windows host (IP 192.168.180.134), as
shown in Fig. 5. At the same time, we also observed that WannaCry tried
to spread to external networks by generating IP addresses and attempting to
connect to TCP port 445. This has been detected using Wireshark on REMnux,245

as shown in Fig. 6.
During the SMB probing by WannaCry, one of the important character-

istics of the generated traffic is that it contains two hardcoded IP addresses:
192.168.56.20 and 172.16.99.5. They can be obtained by extracting the strings
from the WannaCry executable. In particular, WannaCry sends three NetBIOS250

session setup packets, where two of them contain the aforementioned hardcoded
IP addresses. As part of its activity, WannaCry also attempts to reach the C&C
servers by using the c.wnry file, which contains the configuration data, a list of
possible .onion addresses to be connected, and the compressed Tor installation
file. During its communication with Tor addresses, WannaCry initiates a secure255

HTTPS connection to port 443, and uses common Tor ports 9001 and 9050 for

9

Figure 4: The password of the ZIP file in the encryption component when disassembling with
IDA Pro.

Figure 5: SMB packets sent and received by the infected machine in the local network: At-
tempting the SMB exploit.

network traffic and directory information. The aforementioned identified be-
haviour of WannaCry has been used as a basis for designing and implementing
our detection and mitigation mechanism of Section 5.

5. The Proposed SDN-Based Mechanism260

Our proposed SDN-based detection and mitigation mechanism relies on in-
spection of the DNS traffic with dynamic blacklisting, which particularly ob-
serves the network traffic for the presence of malicious domain names or IP
addresses used during WannaCry’s communication with the C&C server (as
identified in Sections 3 and 4). As soon as such an attempt is detected, it is265

blocked. The list of malicious domain names is commonly specified in a local
blacklisting file or by using online databases. One of the main benefits of this
method is that it provides simplicity in implementation and effectiveness in de-
tection and mitigation of malware activity [15]. Therefore, this approach was
used as a basis for our proposed mechanism.270

The conceptual design of the proposed mechanism is depicted in Fig. 7.
The main detection and mitigation functionality is carried out by the developed
SDN application. This application has been implemented on the SDN controller,
which allows inspecting the entire network traffic and issuing instructions to the
OpenFlow switch to update its flow table by installing appropriate rules.275

10

Figure 6: SMB packets sent by the infected machine to external networks: Attempting the
SMB exploit (TCP port 445).

In Fig. 7, numbers 1 to 5 represent different steps of the detection and
mitigation process and are explained below:

• Step 1 : Malicious TCP traffic from an infected host arrives to the Open-
Flow switch. This traffic includes SMB probing and DNS query packets
generated by WannaCry.280

• Step 2 : Assuming that initially there is no flow entry for the given infected
host, the switch redirects all TCP traffic to the controller (this is the
default action), in order to obtain further instructions on how to handle
these packets.

• Step 3 : All packets that are received by the controller, are passed to285

the application. The application performs the following functions: parses
packets, checks against the blacklist database file, and creates new flow
entries in the switch. After receiving the packets, the application parses
them in order to find any matches with WannaCry’s inherent network
indicators (as discussed in Section 4).290

• Step 4 : The packets are checked against the database file containing the
list of IP addresses and simultaneously with any matches to the TCP port
numbers used by WannaCry.

• Step 5 : If malicious communication is detected, the application creates a
new flow entry in the switch instructing it to block the malicious traffic295

originating from the infected host.

For example, the new flow table of the OpenFlow switch may contain the
entries shown in Table 4. In this case, the IP address 192.168.180.130 was taken
from the blacklist database file (Step 3) and the relevant TCP port numbers
(445, 139, etc.) are known to be used by the SMB protocol.300

6. Experimental Testbed and Results

In order to evaluate the feasibility of our proposed mechanism, we have built
an experimental testbed, depicted in Fig. 8. All experiments were conducted on

11

Table 4: Entries in the flow table of the OpenFlow switch.

Rule Src addr Src Dst Dst Protocol Action
port addr port

1 192.168.180.130 any any 445 TCP deny
2 192.168.180.130 any any 139 TCP deny

Figure 7: Conceptual design of the proposed SDN-based mechanism.

VMs with the help of the VMWare hypervisor. The testbed consists of six VMs.
Three VMs are running Windows 7 SP1, two VMs are running Ubuntu 12.04305

and one VM is running REMnux. All VMs are located in the same subnet:
192.168.180.0/24. One of the Windows VMs has been infected, whereas two
other Windows VMs have the vulnerability required by WannaCry (as explained
in Subsection 2.1). The two Ubuntu VMs are running the SDN controller and
the SDN switch. The REMnux VM is running DNS and HTTP services to310

attract the communication of WannaCry in the infected VM.
As primary software for our SDN switch, the popular OpenvSwitch was

chosen. It supports the OpenFlow protocol versions starting from the initial 1.0
to the latest 1.5 version. For our SDN controller, the Python-based open source
POX software was chosen. The main advantage of POX is its flexibility, as it315

provides fast and easy programmability and supports a wide range of different
applications. The core logic of network traffic handling has been implemented
by two Python-based plugins written for the POX controller. These plugins

12

check the network traffic for blacklisted IP addresses (IP address blocker) and
TCP port numbers (TCP port blocker). A simplified Python code for the TCP320

port blocker is presented below:

##################################

TCP port blocker

##################################325

from pox.core import core #Imports the POX core object

#Specifies the ports to block in port_list variable

port_list = set()

#Function handles packet events and kills the ones with a specified port

def port_inspect (packet_event):330

tcp_packet = event.parsed.find("tcp")

if not tcp_packet: return #Not TCP packet

if tcp_packet.srcport in port_list or tcp_packet.dstport in port_list:

#Halts the event and installs a flow table entry

core.getLogger("blocker").debug("Blocked TCP port %s <-> %s",335

tcp_packet.srcport, tcp_packet.dstport)

event.halt = True

#Function block ports on the switch

def block (*ports=" "):

#Adds specified ports through command line340

port_list.update(int(i) for i in ports.replace(","," ").split())

#Listens to packet events

core.openflow.addListenerByName("PacketIn", port_inspect)

If the check triggers an alert, then a new flow entry is installed in the Open-345

vSwitch to block the corresponding traffic flow. Both plugins are placed into
\ext directory of the POX controller and are invoked simultaneously from the
command line during the network operation. These two plugins implement the
functionality of the SDN application shown in Fig. 7. In particular, the TCP
port blocker plugin identifies packets with TCP ports 443, 139, 445, 9001 and350

9050, and if detected, creates a corresponding flow entry in the OpenvSwitch
to block the traffic from the infected host. The IP address blocker plugin has a
similar logic, and handles traffic for the specified blacklisted IP addresses. Due
to space limitations, we do not present the code for the IP address blocker.

The blacklist IP addresses are placed into an csv file and are loaded from the355

\ext directory of the POX controller. The contents of the csv file are presented
in Table 5. In this file, the 2nd column specifies the IP addresses observed
during WannaCry infection, whereas the 3rd column specifies the IP address of
the infected host. Tests have been performed in order to ensure that the IP
address blocker plugin performs inspections for the given host traffic for any360

match with the IP addresses of the 2nd column. If a match is found, then the
traffic from the host is blocked.

In order to verify the effectiveness of our mechanism, each experiment is
divided in two phases. During the 1st phase, the victim’s VM was infected, but
the plugins have not been initialized in the POX controller. Also, the malicious365

13

Table 5: The blacklist.csv file of the POX controller.

id ip 0 ip 1
1 192.168.56.20 192.168.180.30
2 172.16.99.5 192.168.180.30
3 72.52.179.175 192.168.180.30
4 109.140.223.210 192.168.180.30
5 206.242.244.156 192.168.180.30
6 52.213.90.240 192.168.180.30
7 202.76.26.154 192.168.180.30
8 205.215.5.24 192.168.180.30
9 80.133.73.130 192.168.180.30
10 198.73.58.205 192.168.180.30
11 40.188.28.244 192.168.180.30
12 184.55.110.103 192.168.180.30

Figure 8: Experimental testbed for WannaCry detection and mitigation.

14

DNS queries, originated from the infected machine, were registered on REMnux
machine. At the same time, the SMB probing with external IP address requests
was observed on uninfected Windows hosts and REMnux machine. During the
2nd phase, the two Python plugins were started in the POX controller. After
that, no malicious DNS queries or SMB probing packets were sent to uninfected370

machines. This shows that the POX controller has successfully identified the
malicious traffic from the infected machine (IP address: 192.168.180.30) and
blocked it by creating in real-time a corresponding flow entry in the Open-
vSwitch.

7. Conclusion and Future Work375

We have designed and implemented a feasible approach based on software-
defined networking to detect and mitigate ransomware threat. Our experiments
have been conducted with real samples of WannaCry ransomware. The devel-
oped solution involves an application built for a centralized controller which
communicates with the switches using the OpenFlow protocol. In particular,380

our solution includes two plugins for blocking malicious network addresses and
port numbers based on a blacklist database and involving WannaCry character-
istics derived via static and dynamic analysis.

To the best of our knowledge, this is the first work to demonstrate that the
security mechanisms based on software-defined networking are capable to suc-385

cessfully stop the infections from ransomware with worm-spreading capabilities.
In particular, our experimental results show that the proposed mechanism is
able to detect and block the traffic from infected host, and therefore secure the
remaining untouched part of the network. Moreover, this work shows that the
proposed approach is feasible in practice and capable to block worm components390

in real time. Furthermore, due to flexibility and programmability of software-
defined networks, the presented mechanism can potentially be extended further
to protect against other ransomware families.

As a future work, we plan to enhance the developed mechanism with hard-
ware acceleration and to investigate the possibility of implementing anomaly-395

based detection algorithms using machine learning techniques. Another inter-
esting research direction is to investigate collaborative intrusion detection which
would combine information from multiple OpenFlow switches. Finally, for an
improved performance and to address any scalability issues due to massive at-
tacks, different types of controllers should be tested and optimized.400

References

[1] O’Brien, D., 2017. Ransomware, Internet Security Threat Report, Syman-
tec.

[2] Symantec, 2017. What you need to know about the WannaCry ransomware.
Threat Intelligence, Oct. 2017.405

15

[3] Nunes, B.A., Mendonca, M., Nguyen, X.-N., Obraczka, K., and Turletti, T.,
2014. A survey of software-defined networking: Past, present, and future
of programmable networks. IEEE Communications Surveys & Tutorials
16(3), pp. 1617-1634. DOI: 10.1109/SURV.2014.012214.00180

[4] Yang, H., Zhang, J., Zhao, Y., Han, J., Lin, Y. and Lee, Y., 2016. SU-410

DOI: Software defined networking for ubiquitous data center optical in-
terconnection. IEEE Communications Magazine, 54(2), pp. 86-95. DOI:
10.1109/MCOM.2016.7402266

[5] Yang, H., Zhang, J., Zhao, Y., Ji, Y., Wu, J., Lin, Y., Han, J. and Lee,
Y., 2015. Performance evaluation of multi-stratum resources integrated re-415

silience for software defined inter-data center interconnect. Optics Express,
23(10), pp. 13384-13398. DOI: 10.1364/OE.23.013384

[6] Wu, J., Dong, M., Ota, K., Li, J. and Guan, Z., 2018. Big data analysis-
based secure cluster management for optimized control plane in software-
defined networks. IEEE Transactions on Network and Service Manage-420

ment, 15(1), pp.27-38. DOI: 10.1109/TNSM.2018.2799000

[7] Vassilakis, V.G., Moscholios, I.D. and Logothetis, M.D., 2017. Efficient
radio resource allocation in SDN/NFV based mobile cellular networks un-
der the complete sharing policy. IET Networks, 7(3), pp. 103-108. DOI:
10.1049/iet-net.2017.0053425

[8] Fichera, S., Galluccio, L., Grancagnolo, S.C., Morabito, G. and Palazzo, S.,
2015. OPERETTA: An OPEnflow-based REmedy to mitigate TCP SYN-
FLOOD Attacks against web servers. Computer Networks, 92, pp.89-100.
DOI: 10.1016/j.comnet.2015.08.038

[9] Vassilakis, V.G., Moscholios, I.D., Alzahrani, B.A. and Logothetis, M.D.,430

2016. A software-defined architecture for next-generation cellular networks.
Proc. IEEE International Conference on Communications (ICC), Kuala
Lumpur, Malaysia, May 2016, pp. 1-6. DOI: 10.1109/ICC.2016.7511018

[10] Yang, H., Bai, W., Yu, A., Yao, Q., Zhang, J., Lin, Y. and Lee, Y., 2018.
Bandwidth compression protection against collapse in fog-based wireless435

and optical networks. IEEE Access, 6, pp. 54760-54768. DOI: 10.1109/AC-
CESS.2018.2872467

[11] Li, G., Wu, J., Li, J., Ye, T. and Morello, R., 2017. Battery status sensing
software-defined multicast for V2G regulation in smart grid. IEEE Sensors
Journal, 17(23), pp.7838-7848. DOI: 10.1109/JSEN.2017.2731971440

[12] Fichera, S., Gharbaoui, M., Castoldi, P., Martini, B. and Manzalini,
A., 2017. On experimenting 5G: Testbed set-up for SDN orchestration
across network cloud and IoT domains. Proc. IEEE Conference on Net-
work Softwarization (NetSoft), Bologna, Italy, July 2017, pp. 1-6. DOI:
10.1109/NETSOFT.2017.8004245445

16

[13] Jin, R. and Wang, B., 2013. Malware detection for mobile devices us-
ing software-defined networking. Proc. 2nd GENI Research and Edu-
cational Experiment Workshop, Washington, USA, March 2013. DOI:
10.1109/GREE.2013.24

[14] Ceron, J.M., Margi, C.B., and Granville, L.Z, 2016. MARS: An SDN-450

based malware analysis solution. Proc. IEEE Symposium on Com-
puters and Communication (ISCC), Messina, Italy, June 2016. DOI:
10.1109/ISCC.2016.7543792

[15] Cabaj, K. and Mazurczyk, W., 2016. Using software-defined networking for
ransomware mitigation: The case of CryptoWall. IEEE Network, 30(6), pp.455

14-20. DOI: 10.1109/MNET.2016.1600110NM

[16] Cabaj, K., Gregorczyk, M. and Mazurczyk, W., 2018. Software-defined
networking-based crypto ransomware detection using HTTP traffic char-
acteristics. Computers & Electrical Engineering, 66, pp. 353-386. DOI:
10.1016/j.compeleceng.2017.10.012460

[17] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson,
L., Rexford, J., Shenker, S. and Turner, J., 2008. OpenFlow: Enabling
innovation in campus networks. SIGCOMM Computer Commun. Review,
38(2), pp. 69-74. DOI: 10.1145/1355734.1355746

[18] Suzuki, K., Sonoda, K., Tomizawa, N., Yakuwa, Y., Uchida, T., Higuchi,465

Y., Tonouchi, T. and Shimonishi, H., 2014. A survey on OpenFlow
technologies. IEICE Trans. Commun., E97-B(2), pp. 375-386. DOI:
10.1587/transcom.E97.B.375

[19] S. Biddle, WannaCry: Evolving History from Beta to 2.0, May
2017, https://www.fortinet.com/blog/threat-research/wannacry-evolving-470

history-from-beta-to-2-0.html [March 14, 2019].

[20] Microsoft Security Bulletin MS17-010 - Critical.

[21] MalwareTech, How to accidentally stop a global cyber attacks,
https://www.malwaretech.com/2017/05/how-to-accidentally-stop-a-
global-cyber-attacks.html [March 14, 2019].475

[22] M. Suiche, WannaCry - new variants detected!, May 2017,
https://blog.comae.io/wannacry-new-variants-detected-b8908fefea7e
[March 14, 2019].

[23] Rendition Infosec, New “no kill switch” WanaCry worm found!,
https://blog.renditioninfosec.com/2017/05/wanacrypt0r-worm-with-480

kill-switch-patched-out/ [March 14, 2019].

[24] Shalimov, A., Zuikov, D., Zimarina, D., Pashkov, V., and Smeliansky, R.,
2013. Advanced study of SDN/OpenFlow controllers. Proc. 9th Central
& Eastern European Software Engineering Conference in Russia, Moscow,
Russia, Oct. 2013. DOI: 10.1145/2556610.2556621485

17

[25] Salman, O., Elhajj, I.H., Kayssi, A. and Chehab, A., 2016. SDN controllers:
A comparative study. Proc. 18th Mediterranean Electrotechnical Conference
(MELECON), Limassol, Cyprus, April 2016, pp. 1-6. DOI: 10.1109/MEL-
CON.2016.7495430

Maxat Akbanov received the M.Sc. degree in Cyber Security from the490

University of York, UK, in 2018. He is currently working at private sector in
Kazakhstan and involved in developing several startup projects for governmen-
tal sponsored strategy “Digital Kazakhstan” and “Cyber Shield”. His main
research interests include network and malware forensics, software-defined net-
working, covert channels, cryptography, Internet of things, machine learning495

and artificial intelligence.

Vassilios G. Vassilakis is a Lecturer in Cyber Security at the Univer-
sity of York, UK. He’s been involved in EU, UK, and industry funded R&D
projects related to the design and analysis of future mobile networks and In-
ternet technologies. His main research interests are in the areas of network500

security, next-generation wireless and mobile networks, Internet of things, and
software-defined networks.

Michael D. Logothetis received his Dipl.Eng. degree and Doctorate in
Electrical Engineering, both from the University of Patras, Greece, in 1981 and
1990 respectively. From 1991 to 1992 he was Research Associate in NTT’s505

Telecommunication Networks Laboratories, Tokyo. In 2009 elected Professor in
the ECE Department of the University of Patras. His research interests include
teletraffic theory and optimization of telecommunications networks.

18

	Introduction
	Background
	The Case of WannaCry
	The Concept of SDN

	WannaCry Analysis
	Static Analysis
	Dynamic Analysis

	WannaCry Communications
	The Proposed SDN-Based Mechanism
	Experimental Testbed and Results
	Conclusion and Future Work

