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Abstract

Sparse general matrix-matrix multiplication (spGEMM) is an essential component in many scientific and data analytics applications.
However, the sparsity pattern of the input matrices and the interaction of their patterns make spGEMM challenging. Modern GPUs
include Tensor Core Units (TCUs), which specialize in dense matrix multiplication. Our aim is to re-purpose TCUs for sparse
matrices. The key idea of our spGEMM algorithm, tSparse, is to multiply sparse rectangular blocks using the mixed precision
mode of TCUs. tSparse partitions the input matrices into tiles and operates only on tiles which contain one or more elements. It
creates a task list of the tiles, and performs matrix multiplication of these tiles using TCUs. To the best of our knowledge, this
is the first time that TCUs are used in the context of spGEMM. We show that spGEMM, with our tiling approach, benefits from
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TCUs. Our approach significantly improves the performance of spGEMM in comparison to cuSPARSE, CUSP, RMerge2, Nsparse,
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E 1. Introduction

Sparse general matrix-matrix multiplication (spGEMM),
. ,similar to its dense counterpart, performs the Matrix Multiplica-
tion (MM) of two sparse matrices. The main difference between
sparse and dense MM is that we have to account for sparse ma-
trices, which contain mostly zero elements. spGEMM is an
important component in scientific and data analytics applica-
tions such as Graph analytics [1l], Breadth-First-Search (BFS)
[2], Algebraic Multigrid (AMG) [3], Schur complement [4],
etc. Sparse matrices, which often contain millions of elements,
require MM methods that do not waste computing resources
on elements that are zero. The diverse structure and density of
sparse matrices pose difficulties in regards to memory manage-
ment and load balancing in parallel systems [15} 6} 7, [8| [9].

The re-emergence of deep learning motivated the creation
of application specific integrated circuits (ASIC) that special-
a ize in MM. MM is a core component of convolution [10] and

these ASICs accelerate the calculation of the convolutional lay-
ers significantly in comparison to the normal, general purpose,
processing cores. Such ASICs are Tensor Core Units (TCUs)
from NVIDIA [L1] and TPUs from Google [12]. We utilize
the TCUs from NVIDIA to accelerate spGEMM for two rea-
sons. First, accessibility. They are widely available as they are
included in the new generation of GPUs from NVIDIA. Sec-
ond, mixed precision. Mixed precision allows TCUs to mix
16-bit inputs and 32-bit multiplication and accumulation. Typi-
cally, in regards to deep learning 16-bits of precision (or less) is
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sufficient for training purposes and therefore tensor unit man-
ufacturers opt only for 16-bit or lower precisions. Therefore,
mixed precision of TCUs widens the application field to scien-
tific problems which are more demanding w.r.t. precision.

Our work is motivated by three key observations. First,
blocking sparse matrix storage formats [[13]], which group the
elements of the matrix into rectangular tiles, are a good fit
for TCUs which expect rectangular matrices as input. Second,
TCUs are very efficient even when they are not fully occupied
[14]. Third, even though TCUs support only low precision in-
puts, they can operate in mixed precision mode to perform op-
erations that require higher precision, e.g., GEMM [15} [16].
The key idea of our approach is to partition the input in tiles
and multiply the tiles with TCUs. Tiles are sparse, but TCUs
perform MM efficiently even when not fully occupied. Mixed
precision mode is necessary in order to keep sufficient accuracy
when multiplying large matrices.

Based on these observations, we propose a new GPU-based
framework for spGEMM computation. Our novel methodology
groups elements into tiles and uses the fast MM of TCUs to
multiply the tiles. To the best of our knowledge, this is the
first proposal of using TCUs in the context of spGEMM. Our
TCU-based spGEMM methodology, which we name tSparse,
has two advantages. First, it takes advantage of fast MM of
TCUs. Second, by utilizing TCUs to process the MM, we leave
the normal processing cores free for non-canonical workloads.

tSparse modifies Expand-Sort-Compress (ESC) methodol-
ogy [3] of CUSP [17] to Sort-Expand and Compress (SEaC),
i.e., tSparse brings both multiplication and accumulation after
the sorting step. The benefits of this change are twofold. First,
tSparse does not have to maintain in memory a large matrix for
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the intermediate products. Second, tSparse takes full advantage
of Multiplication-Accumulation (MAC) operation of TCUs. To
that end, we form a task list instead of calculating the inter-
mediate products immediately. Our GPU kernels consume tiles
from the task list and perform MM of the tiles using TCUs.

We measure the performance of tSparse in matrix squaring
(A = A) on matrices from SuiteSparse (formerly known as Uni-
versity of Florida Sparse Matrix Collection) [18]. We com-
pare the performance of our approach to four state-of-the-art
libraries: cuSPARSE [19], CUSP [17], RMerge2 [9], Nsparse
[20]], AC-SpGEMM [7]] and spECK [21]].

The rest of the paper is organized as follows. Section 2]
gives a background on spGEMM. Section [3| presents a high-
level overview of tSparse, whereas Section [4] describes tSparse
in-depth. Section [5]introduces our test configuration, which we
use in Section|[6to evaluate the performance of tSparse. Section
[7 presents related work. Finally, Section [§|concludes the paper.

2. Background

In this section we describe: 1) the sparse matrix storage for-
mat we use (Section [2.1)), 2) the sparse matrix-matrix multipli-
cation (Section @]) 3) the challenges in spGEMM, 4) the ESC
methodology of CUSP (Section 2.4), 5) precision of real num-
bers (Section [2.3), and 6) the tensor cores of Nvidia (Section

2.6).

2.1. Storage format

In sparse matrices, typically, the number of non-zero (NNZ)
elements is much smaller than the number of zero elements.
In order to save memory without degrading the performance
of MM, we need an efficient way to store only non-zero (NZ)
elements.

2.1.1. COO format

COO format stores each NZ element along with the coordi-
nates the element would have in the dense representation of the
matrix [22]. The COO format uses three arrays: for elements,
for row indices and for column indices.

2.1.2. Bitmap format

TCUs simultaneously process multiple elements in rectangu-
lar structures. However, COO stores only single elements and
has no concept of rectangular structures, therefore it is not suf-
ficient by itself as a storage format for tSparse. For this reason,
we use a bitmap-based block shaped storage format to store
sparse matrices [[13].

In our work, we use a bitmap format similar to [[13]] for three
reasons: 1) it is simple and straightforward, 2) square tiles of
fixed size fit well to TCUs, and 3) the performance of the for-
mat has been evaluated in [13]. The basic idea is to partition the
matrices in a grid of 8x8 square blocks and work only on non-
empty blocks. We refer to these blocks as tiles. The elements
inside each tile have the same placement as they have in the
dense representation of the matrix. Each element in the tile can
be either zero or NZ. To keep track which elements are NZ we

use a bitmap, a binary number of which each digit corresponds
to one slot of the tile. If a slot contains a NZ we set the respec-
tive bit of the bitmap to “1”, otherwise to “0”. Then, tiles are
stored in COO format. The difference with the standard COO
format is that, instead of using single elements as values, now
we use a tuplepair of two values: 1) an index to the element ar-
ray. The element array holds the elements of the tile (elements
of the same tile are in consecutive positions of the array), and
2) the bitmap of the tile.

Fig.|l| shows how we convert a dense matrix to bitmap for-
mat. For simplicity we use 4x4 tiles. We represent the positions
of NZ elements as “1”’s in the bitmap. We store four values for
each tile that has one or more NZ elements: 1) row index like in
COO format, 2) column index like in COO format, 3) index into
the element array, and 4) bitmap of the location of NZ elements
in the tile.

2.2. Sparse matrix-matrix multiplication

The general matrix multiplication (GEMM) has the form:
D=AxXB+C @))]

where A, B, C are the input matrices and D is the output. In
spGEMM, similarly to dense matrices, to get one element of
the output, we need to multiply the NZ elements of one row of
A with the corresponding NZ elements of one column of B and
then accumulate the intermediate products (i.e., calculate the
inner product). The difference in spGEMM is that we multiply
the corresponding elements only if the elements in the corre-
sponding positions of the row of A and the column of B are
both NZ and we accumulate only NZ products. The various
ways to access the elements of A and B and perform MM are
listed in [23]. The same multiplication method applies even if
instead of elements we use tiles. In this case, the product of two
corresponding tiles is their outer product (or equally MM). We
make two important observations. First, (I)) takes the form

C=AxXB+C 2)

when accumulating the tiles, where C is both output and accu-
mulator. We use only the form of (2) for the rest of this work.
Second, the matrix Multiplication-Accumulation of small tiles
is exactly what the TCUs were designed to do. Fig. [2]shows an
example of the A = B sparse MM.

2.3. Challenges of spGEMM

Unlike other sparse matrix operations, in spGEMM both in-
put and output are sparse. Therefore, it is very difficult to uti-
lize the knowledge we infer from the sparsity structure of the
input matrices to make arithmetic and memory optimizations.
The reasons that make spGEMM more challenging than spMV
(sparse matrix-vector multiplication) are three [} 6] [7, 18, 9]:

First, data access is highly irregular because it depends on
the sparsity structure of both matrices and the interaction of
both structures. MM is not trivial for two reasons: 1) it requires
access of possibly distant memory locations to load the inputs,
and 2) it requires inserting the result to the output with possibly
irregular access patterns.
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Figure 1: A 12x12 matrix in dense (left) and bitmap formats (bottom right). Tiles of 4x4 partition the 12x12 matrix in a 3x3 grid of tiles. Non-zero elements
a8,a9,all,al2 of the circled tile are represented as “1” in the bitmap. We store the NZ elements of the tile in consecutive locations in the element array. Index
points to the first element of the tile. On the bottom right of the figure, we circle the representation of the selected tile in bitmap format.
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Figure 2: Example of the sparse matrix-matrix multiplication of two matrices A
and B with dimensions MXK and KXN respectively. To find the output tile with
coordinates [/, J], we multiply (MM) the corresponding NZ tiles of row I of A
(dark blue) and column J of B (dark red).

Second, it is computationally expensive to know the size of
the output before the actual MM. According to Liu et al. [6],
there are four methods to estimate how much memory we need
to allocate for the output. First, the precise method, which
makes an estimate that is very close to the actual size of the
output, typically by doing a partial execution of the MM algo-
rithm. Second, the upper bound method, which typically uses
as upper bound the amount of intermediate products. Third, es-
timation using probability theory. Fourth, progressive memory
increase, which allocates more memory if the previously allo-
cated memory overflows. In all cases, at the end of spGEMM,
we remove empty or unused entries from the allocated memory
as necessary.

Third, load balancing. The sparsity structure of both matrices
and the interaction of the structures determine the distribution
of workload. NNZ elements in each row of the input or output
may vary significantly, which makes it difficult to partition the
workload among threads.

2.4. Expand-Sort-Compress and CUSP

CUSP [[17] is a library that specializes in sparse matrix oper-
ations. It is open-source and easily accessible on GitHub. It is
written in Thrust which makes it easy to read and port to other
platforms. Therefore, it provides a good “boilerplate” to test
our approach.

CUSP uses Expand-Sort-Compress ESC methodology. ESC
performs the spGEMM in three steps [17, 3. First, Expand.
ESC multiplies each NZ element g, ; of A with all NZ elements
of row B(j,:) of B to get the intermediate products (no accu-
mulation in this step) [23]]. Second, Sort. ESC sorts the in-
termediate products of the previous step so that products that
correspond to the same element of C are in consecutive posi-
tions. Third, Compress. ESC calculates each element of C by
accumulating all respective products, which are in consecutive
positions, thanks to the sorting step.

2.5. Real number representation in digital computer systems

Computer systems have to store real numbers in bit represen-
tation. Floating point numbers are a common representation.
The location of the decimal point and the number of bits deter-
mines the precision and range of the represented numbers. We
denote the 32-bit representation as fp32, whereas the 16-bit as
fp16. In contemporary systems, typically, we use floating point
numbers as defined in IEEE 754 technical standard [24]]. Usu-
ally, the fewer the number of bits, the faster the processing of
the numbers is.



2.6. Tensor Core Units

NVIDIA, with the latest generations of Graphical Process-
ing Units (GPUs) [25]], brought Tensor Cores to the mainstream
market. Nvidia TCUs are ASICs that have the purpose of accel-
erating MM. Therefore, our work on spGEMM has significant
benefits by properly adapting spGEMM to TCUs.

TCUs mainly target deep learning, which is not very de-
manding precision-wise. Therefore, to accelerate MM, TCUs
usually work with lower precision number representation (16-
bit or less). However, fpl6 or lower precision is detrimental
to the output because precision and range of fp16 numbers can
be insufficient when dealing with physical problems. To rectify
this problem NVIDIA provides mixed precision functionality.
Mixed precision allows to mix numbers of different precision.
The two defining characteristics of the mixed precision imple-
mentation of NVIDIA are as follows. First, although inputs A
and B are in fp16 precision, their multiplication happens in full
precision. Second, the product is stored as fp32 to accumulators
C and D [23]]. Fig. E] shows the two characteristics. Markidis et
al. and Haidar et al. [16}[15] evaluate the performance and pre-
cision of GEMM and linear equation solving using the mixed
precision mode of TCUs. They show that TCUs can be used in
other physical problems, outside deep learning. We use mixed
precision functionality to extend the applicability of our work
to non deep learning workloads.

D A B C
= * +
(Fp32) (Fp32)
Fp32 Fpl6 Fpl6 Fp32

Figure 3: Mixed precision with CUDA TCUs. Inputs are stored in fpl6,
whereas the output and addend are stored in fp32. The multiplication and addi-
tion are performed in full precision.

3. Overview of our technique

Our TCU-based sparse GEMM technique alters ESC
methodology in order to efficiently work with tiles. To that end,
tSparse creates a task list which delivers tiles to TCUs to accel-
erate the MM of the tiles. At this point it is important to make
a distinction between the terms elements and tiles. Elements
represent a single real or integer number, whereas files repre-
sent a group of elements (Section [2.1.2). This section gives a
high level overview of the components of tSparse and how they
relate to each other.

3.1. Creating the task list and allocating memory for tiles

tSparse creates the task list in two steps. First, tSparse de-
termines which tiles of A will be multiplied with which tiles of
B in order to get each tile of C. Second, unlike the expansion
phase of ESC, tSparse does not immediately multiply the cor-
responding tiles of A and B. Instead, tSparse creates a task list
that holds only the locations of the corresponding tuples of A
and B. The entries of the task list are sorted so that pairs that

correspond to the same tile of C are in consecutive positions.
With the help of the task list, tSparse also estimates the number
of C tiles in the output and allocates memory accordingly.

3.2. Counting kernel

Dense matrices contain as many elements as the product of

their dimensions. However, in sparse matrix-matrix multiplica-
tion, the NNZ of the output depend on the structure of the two
input matrices and the interaction of these structures through-
out the MM. Therefore, we know the exact size of the output
only after the matrices are multiplied. However, in order to al-
locate memory for storing the result of the MM we first need
to know the exact size to allocate because GPU kernels cannot
easily reallocate memory during their execution. The purpose
of the counting kernel is to make an estimation of the size of
memory we need to allocate in order to store the element array
of C, before calling the multiplication kernel.
Non-blocking spGEMM approaches allocate memory only for
elements. tSparse allocates memory for elements, in addition
to memory for tiles. However, allocating memory for elements
is not as simple as calling a few parallel primitives because tile
multiplication is a sparse MM. The sparsity structure of both in-
put tiles and the interaction of the structures define the memory
allocation requirements.

In our implementation, we use the precise method (Section
to get an estimate of the count of elements the output has,
i.e., the counting kernel is a partial implementation of the multi-
plication kernel. The counting kernel requires shorter execution
time than the multiplication kernel because it neither loads nor
stores any elements. Instead, this kernel uses the bitmap to put
zeros and ones in the place of the elements and “simulates” the
MM. We allocate memory equal to the NNZ of the output of
the simulated MM.

3.3. Multiplication kernel

Once we know how much memory to allocate for tiles and
elements we use the multiplication kernel to multiply and ac-
cumulate all pairs of tiles of A and B that correspond to each C
tile.

3.4. Putting everything together

In order to perform the matrix multiplication of A with B,
we 1) determine which products need to be accumulated for
each tile of C, and 2) allocate memory for the tiles of C and the
element array. Using the task list and the counting kernel we
determine the memory allocation size for the tiles of C and the
element array, respectively. Subsequently, the multiplication
kernel has everything it needs to multiply A with B.

We expect three benefits. First, by placing both the multi-
plication and accumulation steps of MM in the multiplication
kernel we can use TCUs for MM. By moving MM to TCUs,
the computational heavy MM is no longer a bottleneck of the
spGEMM algorithm. Second, the use of bitmap format reduces
memory consumption because one row index and one column
index represents up to 64 elements [[13]. Third, by grouping
elements to tiles, we reduce the amount of values we have to



manipulate and therefore there are additional performance ben-
efits (e.g., fewer values to sort during sorting phase of ESC).

4. Implementation details

This section describes the three main parts of our approach,
tSparse, in detail: 1) the creation of the task list, 2) the esti-
mation of how much memory to allocate for the elements of
the output, and 3) the MM of the tiles. It also describes some
smaller components of our implementation.

4.1. Creating the task list and allocating memory for tiles

The four main parts of our algorithm are: 1) finding corre-
sponding tiles of A and B, 2) filtering of zero products, 3) cre-
ating a task list with entries that point to the tuples of A and B,
and 4) estimating how much memory to allocate for the tuples
of the output. In detail:

First, similarly to CUSP, tSparse uses parallel primitives
from Thrust library to find the correspondence among tiles of
A and tiles of B. The main difference with CUSP is that instead
of using single elements we use tiles. This is the part of our
methodology that is the same between CUSP and tSparse. We
do not change it because it is efficient and accounts for less than
15% of the total execution time of our sp GEMM.

Second, the algorithm that finds the correspondence among
tiles of A and B considers the whole tile as a single value, i.e.,
the result is the same regardless if the 8x8 tile contains one or
64 elements. Therefore, the correspondence algorithm finds a
correspondence between tiles of A and B even if the elements
inside the two tiles are not corresponding. The resulting tile of
the MM of such tiles is a tile with only zero elements. tSparse
has a routine that removes this type of corresponding tiles by
applying boolean arithmetic on bitmaps. This routine is fast as
it does not compute MMs. The culling significantly lightens
the workload of the rest of our methodology (fewer tiles to sort,
multiply etc.).

Third, tSparse creates the task list. An important considera-
tion is that in ESC methodology the MM and accumulation are
in different steps, i.e., MM is in the Expand step and accumu-
lation in the Compress step. However, to fully take advantage
of the combined MAC operation of TCUs we need to perform
both MM and accumulation of tiles in the same step. In or-
der to put MM and accumulation in the same step we sort the
locations of the multiplicands, instead of sorting the interme-
diate products of the MM. By sorting the locations, we defer
the MM step until after the Sorting step. Effectively, the loca-
tions of the multiplicands form a task list, of which each entry
points to one tile of A and one tile of B. Merging the expansion
and compression steps and moving them after the sorting step
significantly reduces both memory allocations and costly data
movement to/from global memory. The reason is that tSparse
does not store the intermediate products. Therefore, we save
memory by not allocating memory for the 64-bit bitmaps, an
undefined number of up to 64 elements and the correspond-
ing indices in the element array. We reduce data movements

to/from global memory by not storing the intermediate prod-
ucts before the sorting step and loading them for a second time
after the sorting step.

Fourth, our algorithm counts how many of the intermediate
products correspond to the same tile of C using a segmented
reduce parallel primitive on the sorted indices. We create an
offset array from the prefix sum of the counted intermediate
products. Our GPU kernels use the offset array for indexing
purposes. The prefix sum also gives the total count of tuples in
the output. We use this total count to allocate memory.

Sorting. Sorting a long task list is computationally demanding,
therefore we need advanced optimization strategies. tSparse
works with sorted matrices. We use this knowledge to sort the
workload of each row of A separately. For this task, we use the
segmented sort by Kaixi et al. [26], which employs a hybrid
sorting scheme based on row length.

4.2. Counting kernel

The counting kernel works in four steps. First, it reads the
bitmaps of A and B. Second, it creates tiles, wherein each ele-
ment is set to “1” or “0” based on the corresponding position
in the bitmap. Third, it multiplies and accumulates the tiles
of A and B that correspond to each individual tile of C using
TCUs. Fourth, we count how many elements of the resulting
tile are NZ with the ballot instruction. We repeat for all tiles
of C and accumulate the counts. The counting kernel returns
an array of which each value holds an estimation of how many
elements each tile of C has.

Each tile contains only “1”’s or “0”s, therefore: 1) the esti-
mation of memory requirements can be more than what is ac-
tually required because the counting kernel cannot account for
possible numerical cancellation (after the actual multiplication
there is a compaction stage that removes empty entries from the
allocated element array), and 2) half precision is enough for ex-
ecuting the MM of the counting kernel because we work only
with zero and NZ elements.

4.3. Multiplication kernel

The multiplication kernel performs the actual multiplication
and constructs the COO matrix of the output, i.e., it sets the
row and column indices, the index and bitmap tuple and the
elements of the element array. The multiplication kernel loads
the actual elements from A and B and stores the result in the
memory allocated by the counting kernel. We emphasize that
we use only TCUs for the MM and not TCUs in addition to the
standard CUDA cores.

There are two important considerations when multiplying the
elements, which are real numbers. First, fp16 arithmetic has a
very limited representation range of numbers , which we can
easily exceed with multiplication. Therefore, we prefer the
mixed precision functionality of TCUs. Second, unlike the
counting kernel where we have only positive numbers, when
accumulating real numbers, elements get canceled as a result of
numerical cancellation. Many tiles may end up empty, some-
thing that the counting kernel, which acts on boolean elements,



does not predict. For this reason, our multiplication kernel has
the additional task of marking for removal tiles that are empty.

Fig. 4] compares element loading between the counting and
multiplication kernels. The counting kernel does not need to
load any actual element. It just creates “1”s based on the
bitmap. The multiplication kernel, on the other hand, loads the
elements and it places them according to the bitmap.

Counting kernel Multiplication kernel
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Figure 4: Comparison of counting and multiplication kernels. The counting
kernel (left) places “1”’s at the locations indicated by the bitmap. The multipli-
cation kernel (right) loads the actual elements from memory and places them at
the locations indicated by the bitmap.

4.4. Other components

Arrangement of tiles in the TCUs. NVIDIA does not provide
an Application Programming Interface (API) for using TCUs
with small 8x8 tiles [[11]]. TCUs execute MM on 256 elements at
a time. However, our tiles have a size of 8x8, which means that
a large part of the TCU remains unused. Although a TCU does
not have to be fully loaded in order to get performance benefits,
we can fit two tiles in a single TCU. 16x16 is the only supported
matrix configuration that can fit two 8x8 tiles [L1]. To put two
tiles in the same TCU two steps are necessary. First, we initial-
ize the 16x16 matrix to zero. Second, the tiles must be placed
in a diagonal of the 16x16 matrix (Fig. [5). If the tiles were
not in the diagonal, but instead side-by-side (top-bottom), the
same row (column) of the 16x16 matrix would have elements
of two unrelated tiles, which would mix the inner products (of
rows of A with columns of B) of the first tile with the inner
products of the second tile. The API forces loading to/from
TCUs through shared memory. We find the internal layout of
the registers of the TCUs (fragments) and we access them di-
rectly instead. Loading through registers, which are faster than
shared memory, we minimize data movement and increase the
performance of MM.

Tiles placement in 16x16 matrix

=
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Figure 5: Placement of two 8x8 tiles in the 16x16 matrix configuration of TCUs.

Load balancing. Both counting and multiplication kernels cal-
culate an inner product of tiles (Section 2.2). The number of
intermediate products required for each tile of C is different,
because the number depends on the sparsity structure of A and
B. Therefore the workload for the computation of each tile of
C is different, leading to thread blocks with different amounts
of work. Thread blocks with different execution times create
imbalance among the SMs of the GPU. To tackle this issue, we
assign each pair of tiles of C to a different thread block. When
a thread block finishes and releases the resources, the sched-
uler of the SM schedules another thread block to take its place.
Therefore, SMs take blocks according to their needs and stay
fully occupied until completion of the MM.

Compaction of zeros. MM creates zero elements because of
numerical cancellation. To store the output in a strictly sparse
format we need to remove all zeros. Therefore, we need a way
to detect zeros and remove them or, in other words, compact
the arrays that hold the elements and the tuples. For the ele-
ment array, which is just an array, we use a compaction parallel
primitive from Thrust. For the array that holds the tuples, we
first mark empty tiles in the multiplication kernel (see Section

B3).

4.5. Putting everything together

Algorithm[T|summarizes tSparse. First, tSparse creates a task
list (lines . Second, it estimates how much memory to allo-
cate for tiles (linesP}{I5). Third, it estimates how much memory
to allocate for elements (lines . Fourth, it multiplies the
matrices (line [I8)). Finally, it compacts zero elements (line [T9)
and empty tiles (line[20).

Algorithm 1 Pseudocode for tSparse
1: for all NNZ tiles A[i, j]in A[:,:] do

2 for all NNZ tiles B[, k] in B[}, :] do

3 task_list — {row_ptr(Ali, jl), col_ptr(B[j, k])}
4 end for

5: end for
6
7
8
9

: FiLrerTiLEsWiTHZEROPRODUCT(fa sk _list)
: SoRTBYKEY(B,.s[task_list], task_list)
. SoRTBYKEY(A, s [task_list], task_list)
. tile_count « 0
10: for all ¢ in rask_list do
11:  if C[A,pyslc], Beois[c]] is unique then

12: tile_count « tile_count + 1
13:  endif
14: end for

15: ALLocaTEMEMGPU (tile _count)

16: element_count < CouNTINGKERNEL(task_list)

17: ALLocaATEMEMGPU (element _count)

18: Clitess Celements <— MULTIPLICATIONKERNEL(fa sk _list)
19: ComMPACTZEROELEMENTS(C jepments)

20: CoMPACTEMPTYTILES(Cjjjes)

Figure[6|illustrates details of the multiplication kernel (Algo-
rithm [T} line[T8). In order to get a tile C of the output, we have



to accumulate a varied number of products (MMs of tiles of A
and B), e.g., CO = A1 X Bl + A4 x B4 and C1 = A3 X B3 for
the example of Fig. [] (note the color code of tiles). Each TCU
processes two tiles, e.g., TCUO calculates CO and C1. However,
C1 has fewer addends. Therefore, when we load the second ad-
dend of CO, we use 0s in place of the second addend of CI.
From the final result, we extract the bitmaps (using ballot)
and elements of the output.

5. Evaluation Methodology

We test our approach, tSparse, on two systems: 1) Intel i9-
9900@3.6GHz CPU and NVIDIA Titan RTX GPU, and 2) In-
tel 17-8700@3.2GHz CPU and NVIDIA RTX 2070 GPU. Both
GPUs are of the Turing architecture [25]. We use CUDA SDK
v10.2 and the accompanying parallel primitives library, Thrust
[1]], for our GPU code.

We compare tSparse with cuSPARSE from CUDA Toolkit
[[L1]], CUSP [17], RMerge2 [9], Nsparse [20], AC-SpGEMM
[71, spECK [21]. In addition, to confirm the benefit of using
TCUs, we create one implementation of tSparse without TCUs
and we name it nonTCU. In nonTCU, we use the same method
as [13] to multiply the tiles (Algorithm [2). We note that we
include the time of memory allocations in the execution time of
AC-SpGEMM.

Algorithm 2 Matrix multiplication of two 8x8 tiles without
TCUs
1: tid {The id of a thread}
i—0
while i < 8 do
C_tile[tid] = C _tile[tid]+A _tile[(tid | 8)+dim~+i]+B_tile[i*
8 + mod(tid, 8)]
5: end while

bl

To evaluate the performance of tSparse, we perform the A A
MM, which has the benefit that both matrices have the same
sparsity structure. The same structure makes it easier to make
observations. In order to facilitate the presentation of the per-
formance of tSparse, we select a subset of 16 matrices from
SuiteSparse Matrix Collection [18] for our dataset. All selected
matrices are square, as our A * A problem dictates. We select
matrices which have elements in the fp16 range.

Table [1] shows the characteristics of our dataset. We denote
a matrix stored in bitmap storage format as Cyy. For non-
tiling (i.e., single element) approaches, we denote as C the to-
tal amount of intermediate products. Similarly, for our tiling
approach, we denote as E‘mm the total amount of intermediate
products, where each product is a MM between tiles. NNZ(:)
of a matrix denotes the NNZ values of the matrix. Finally, from
the second and third columns of Table[T|derives the average row
size of the input, which is defined as NNZ(A)/Dimensions, and
we denote as RowA.

We divide our dataset into two parts. The first part (upper
half of Table E]) consists of matrices that other works use [5,
6l 7, 18, 9L 13} 20} (19} 27} 28]]. The second part (lower half of

Table [T consists of matrices that we select after taking into
consideration the two criteria that derive from the analysis in

Section[6.1} 1) NNZ(A) > 300000, and 2) RowA > 42.

6. Results and Analysis

In this section, we find the criteria that define when tSparse is
the recommended spGEMM approach using all qualified matri-
ces from SuiteSparse. Then, we collect four types of measure-
ments using the matrices in Table |1} 1) the speedup of tSparse,
2) the execution time breakdown, 3) the numerical precision,
and 4) the memory consumption.

6.1. Finding the selection criteria

We measure the execution time of cuSPARSE, CUSP,
RMerge2, Nsparse, AC-SpGEMM, spECK, nonTCU and
tSparse on a collection of matrices which we create from
SuiteSparse. For this collection, we keep matrices that meet the
following four conditions: 1) the input matrix has more than
10000 NNZ elements, 2) the input is square with real numbers
in the fp16 range, 3) the bitmap density of the input is more
than one, and 4) matrices for which all approaches that partic-
ipate in the comparison return correct results. We then define
criteria based on the characteristics of the matrices. These cri-
teria facilitate the selection of the most appropriate spGEMM
approach among tSparse and the other approaches.

We find the criteria in two steps. First, we analyze how each
approach works in order to identify which matrix characteris-
tics affect the performance of said approach. Second, we adjust
the criteria to our matrix collection manually. Alternatively, we
could use a machine-learning method to find the criteria [29],
which we leave for future work. We make six major observa-
tions.

First, tSparse generally outperforms cuSPARSE in the larger
matrices of our collection (NNZ(A) > 200000). This happens
probably because cuSPARSE does not have sufficient shared
memory to store the hash tables and therefore global memory
traffic increases. Nevertheless, the size of the matrix is not the
only thing that decides the performance of cuSPARSE. To the
best of our knowledge, the performance of cuSPARSE also de-
pends on the sparsity structure of the matrix because the struc-
ture affects the number of hash conflicts.

Second, tSparse performs better than CUSP when the num-
ber of intermediate products of tiles is smaller than the
number of intermediate products of elements of CUSP, i.e.,
NNZ(Cyies) < NNZ(C). Otherwise, CUSP, which handles only
single elements, is faster than tSparse which has an additional
overhead for handling tiles.

Third, tSparse is faster than Nsparse when the average row
size of A (RowA) is greater than 42 and NNZ(A) > 100000.
Nsparse follows a hash table approach (Section[7.2). Therefore,
larger rows possibly create more hash conflicts and hash tables
are difficult to keep in shared memory (instead of the slower
global memory) with large rows. We also note that web graph
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Figure 6: Detail of the multiplication kernel. Each TCU calculates two tiles of the output C. If the two output tiles require a different number of addends, we use
“0”s to make them match. Finally, the output of the TCU gives us the respective output elements of the two tiles and their bitmaps (using ballot operations).

Matrix name Dm}:gf;’r‘; NNZ(A)  NNZ(C)  NNZ(©) NNZ(Cie) NNZCie) (o d?;;m;pe:sn:t‘g
mc2depi 525825 2100225 5245952 8391680 718228 1364149 7,64,49
webbase-1M 1000005 3105536 51111996 69524195 2546355 4327469 6,5.6,5.3
cagel2 130228 2032536 15231874 34610826 2945653 9295217 3,4.5,4.1
dawson5 51537 1010777 3616737 21284355 219077 1515543 6,9.5,9.1
lock1074 1074 51588 134676 2752056 3050 19520 32,314,173
patents_main 240547 560943 2281308 2604790 2089143 2511808 1,1.0,0.2
struct3 53570 1173694 3400384 26704476 146007 543125 21,18.8,9.8
wiki-Vote 8297 103689 1831112 4542805 526421 3058660 1,1.4,1.0
besstk30 28924 2043492 8946070 173481412 252076 1627326 23,25.9,17.9
nemeth21 9506 1173746 2578720 146859992 47341 523549 59,47.0,21.1
perystk03 24696 1751178 7240266 129128312 212471 1514965 15,23.4, 18.8
pet20stif 52329 2698463 10016951 154237335 323396 1770466 17,234, 18.1
pkustk06 43164 2571768 10596384 179924544 451380 2336176 16, 19.6, 12.9
pli 22695 1350309 8548665 99698581 202851 2262407 14,15.9, 11.5
net50 16320 945200 40622452 79727280 1037234 8150260 8,86, 11.1
web-NotreDame 325729 1497134 16801350 64593748 693759 1589613 3,6.5,10.7

Table 1: Matrix characteristics. We list the size of the matrix (number of rows/columns), the number of non-zeros of: the input (NNZ(A)), the output (NNZ(C)), the
intermediate matrix (NNZ(C), the number of tiles (NNZ(Cijies)), and the number of tiles of the intermediate matrix (NNZ(Cjes)), and the density of the tiles of the
input matrix. The upper part corresponds to matrices that are commonly used in the literature, the bottom part to matrices we selected based on our criteria.

matrices (webbase-1M and web-NotreDame) have high irregu-
larity, i.e., although the average row size is small (3.1 and 4.6
respectively), there are rows with thousands of elements (maxi-
mum 4700 and 3445 respectively). Therefore they are also tax-
ing for Nsparse.

Fourth, RMerge2 shows behavior similar to Nsparse. tSparse
has better performance than RMerge2 when RowA > 42. To
the best of our knowledge, RMerge2, which follows a hybrid
approach (Section [7.3), uses faster kernels when the row size
is smaller than the size of a CUDA warp [9)]. We note that the
low recall score is owed to an instability of RMerge2 (possibly
caused by a driver issue) that, in a seemingly random manner,
decreases the performance.

Fifth, AC-SpGEMM is an ESC-based approach, like CUSP.
Therefore, a similar criterion applies to AC-SpGEMM. The

only difference is that, as AC-SpGEMM has much better per-
formance than CUSP, the criterion is much stricter, i.e., 9 *

NNZ(Cyies) < NNZ(C).

Sixth, spECK is a hash table approach and has similar behav-
ior to Nsparse. spECK generally performs better than Nsparse,
therefore we select a criterion similar to Nsparse’s but stricter,
i.c., RowA > 42 and NNZ(A) > 300000.

Global criterion. In summary, a range of matrix characteris-
tics define the performance of each spGEMM approach. To
help with selecting tSparse over other approaches, we define
two criteria that generally work well to show when tSparse is
the most appropriate approach: 1) NNZ(A) > 300000, and 2)
RowA > 42. Table ﬁsummarizes the various criteria. We
note that tSparse performs better on RTX 2070 than on Titan
RTX, for the reasons we describe in Section [6.2} Therefore,
we can relax the criterion for non-high-end GPUs as follows:
RowA > 21. Finally, we note that the first criterion may limit
the suitability of our approach for applications that reduce the



Predictions

Approach Condition /Collection size Precision Recall
cuSPARSE NNZ(A) >200000 122/260 0.75 0.84
CUSP NNZ(C) / NNZ(Cyijes) = 1 260/260 0.98 1
RMerge2 RowA > 42 AND NNZ(A) > 100000 53/233 0.92 0.33
Nsparse RowA > 42 AND NNZ(A) > 100000 53/233 0.75 0.74
AC-SpGEMM NNZ(C) / NNZ(Ciies) > 9 120/233 0.89 0.86
spECK RowA > 42 AND NNZ(A) > 300000 45/234 0.78 0.8
All RowA > 42 AND NNZ(A) > 300000 45/233 076  0.85

Table 2: The criteria that define when tSparse is faster in comparison to other approaches. This table evaluates the performance of each condition using the precision
and recall metrics from the classification theory. We note that the collection size varies to account for the incorrect results of each approach.

size of input matrices, e.g., AMG.

6.1.1. Evaluating the performance of the criteria

We evaluate the speedup of tSparse over the other spGEMM
approaches after applying our global criterion to the matrix col-
lection. Table [3] shows the speedup of tSparse over the other
spGEMM approaches when applying the global criterion.

We make three major observations. First, tSparse is faster
than all other approaches by 1.46x — 36.93%, which confirms
that our global criterion is reliable. Second, the speedup of all
approaches follows the same trends for both GPUs. The RTX
2070 GPU performs better w.r.t. execution time, with more re-
laxed criterion, as the CPU does not bottleneck the execution
time as much as on Titan RTX (Sections [6.3] [6.2). Third, the
Minimum columns of Table [3] show speedups < 1. This hap-
pens because of the wrong predictions of our proposed criterion
(false positives).

6.2. Speedup

To show the benefits of our approach that uses TCUs for
MM, we find the speedup over cuSPARSE, CUSP, RMerge2,
Nsparse, AC-SpGEMM, spECK and nonTCU for the 16 ma-
trices of our dataset. Figure [7]and Fig. [§] show the speedup of
tSparse over the seven approaches when calculating A = A on
the Titan RTX GPU. Figure [/| corresponds to the first part of
our dataset (randomly selected matrices), whereas Fig. [§| cor-
responds to the second part of our dataset (matrices selected
based on criteria). Figures [9] and [I0] present the speedup on
RTX 2070. GeoMean indicates the geometric average of the
speedup for the matrices of the respective figure.

We make five major observations.

First, tSparse that uses TCUs performs faster than our
nonTCU implementation, by an average of 1.68x. This speedup
may seem low considering that TCUs in mixed precision
promise 4x more flops than normal fp32 operations [25]]. There
are two reasons that keep it low: 1) our counting and multipli-
cation kernels, without TCUs, occupy about 50% of the total
execution time of spGEMM, so according to Amdahl’s law we
do not expect more than 2x speedup of the total execution time,
and 2) tSparse is memory bound, rather than arithmetic bound,
because the sorting step results in a task list with entries that
point to non-continuous memory locations.

Second, tSparse outperforms cuSPARSE, CUSP, RMerge2,
Nsparse, AC-SpGEMM and spECK in 14 (15), 15 (14),
10 (10), 9 (10), 11 (12) and 8 (10) out of the 16 ma-
trices, respectively (the performance of 2070 in parenthe-
ses). The speedup of tSparse for the randomly selected ma-
trices is: cuSPARSE 2.47x (2.67x), CUSP 3.78x (3.29x),
RMerge2 0.79x (0.56x), Nsparse 0.58% (0.74x), AC-SpGEMM
0.58%x (0.71x), spECK 0.58x (0.59x), nonTCU 1.46x (1.72x).
With the matrices selected based on our criteria, the speedup of
tSparse is: cuSPARSE 3.97x (4.96x), CUSP 31.77x (28.93x),
RMerge2 3.92x (2.88X), Nsparse 2.39x (3.34x), AC-SpGEMM
3.37x (3.78x), spECK 1.53x (2.35%), nonTCU 1.61x (1.84x).
The total speedup for the sixteen matrices of our dataset on av-
erage (geometric mean) is: cuSPARSE 3.12x (3.64x), CUSP
10.91x (9.76x), RMerge2 1.76x (1.27x), Nsparse 1.18x (1.58X),
AC-SpGEMM 1.51x (1.63%), spECK 0.81x (1.17x), nonTCU
1.59% (1.78x).

Third, tSparse owes its performance gain to both tiling and
TCUs. nonTCU indicates the performance we gain by using
tiling only. Across the matrices of our dataset, the speedup
of nonTCU, on Titan RTX (RTX 2070), on average (geomet-
ric mean) is: cuSPARSE 1.97x (2.04x), CUSP 6.88x (5.49x),
RMerge2 1.11x (0.72x), Nsparse 0.74x (0.89x), AC-SpGEMM
0.95% (0.92%), spECK 0.51x (0.66x).

Fourth, although the spGEMM approaches generally main-
tain their relative ranking, the speedup of tSparse over the other
approaches is greater on the RTX 2070 system. The reason
is that, although the GPU parts become significantly faster on
Titan RTX, the CPU tasks of tSparse (e.g., memory alloca-
tion/deallocation) take the same time on both systems. tSparse
scales slightly worse than the other approaches on the higher-
end GPU due to the CPU bound tasks.

Fifth, tSparse shows better performance with denser tiles.
Grouping NZ elements in tiles reduces the number of values
to work on. According to [5], the main cost of ESC is sorting.
Consequently, fewer values equals to less time sorting. Gener-
ally, tSparse has good performance for bitmap density greater
than five.

6.3. Execution time analysis

In this section, we present the relative execution time of the
main parts of tSparse, i.e., Task list creation, Sorting of the task
list, Counting elements of the output and the MM itself (Fig.



Speedup with tSparse

Titan RTX (RowA < 42) RTX 2070 (RowA < 21)

Approach

Gmean Minimum Maximum Gmean Minimum Maximum
cuSPARSE 2.8 0.65 11.58 2.98 0.78 9.37
CUSP 36.93 4.17 132.74 26.25 3.55 113.5
RMerge?2 11.16 0.89 124.09 11.1 1.17 149.18
Nsparse 1.49 0.65 6.64 1.77 0.84 7.8
AC-SpGEMM 3.72 0.79 19.21 3.4 0.71 12.95
spECK 1.46 0.47 3.17 1.88 0.7 4.67
nonTCU 1.48 1.1 1.97 1.56 1.19 2.14

Table 3: Speedup of tSparse over the various approaches for matrices selected by our criteria.

Speedup of A*A spGEMM on Titan RTX GPU - Random selection
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Figure 7: Speedup of tSparse on A * A spGEMM using randomly selected matrices on Titan RTX.

Speedup of A*A spGEMM on Titan RTX GPU - Criteria based selection
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Figure 8: Speedup of tSparse on A * A spGEMM using matrices selected based on criteria on Titan RTX.

fl;f[). We make three observations. First, creating the task list
takes considerable time. The main reason is that during the
task list phase we do most of the necessary memory allocations.
Second, Sorting takes about 19%, Counting about 11%, MM
about 16% and Compaction about 4% of the execution time.
Third, the runtime of Counting is not much shorter than MM’s.
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The reason is that Counting includes the execution time for both
the counting kernel and the memory allocations that the MM
kernel needs.

‘We note that in the execution time we include all allocations,
including the allocation of the output. We also include the time
for conversion from fp32 to fp16 (if the input is stored in fp32).
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Figure 9: Speedup of tSparse on A * A spGEMM using randomly selected matrices on RTX 2070.
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Figure 10: Speedup of tSparse on A * A spGEMM using matrices selected based on criteria on RTX 2070.

However, we do not include the time for conversion to/from
bitmap format for fair comparison to other approaches.
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Figure 11: Relative runtime of the main parts of tSparse on Titan RTX.
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6.4. Numerical precision

TCUs accept 16-bit numbers as input, whereas TCUs per-
form MM and accumulation in 32-bit precision (mixed pre-
cision - Section @ In this section, we show how tSparse
fares w.r.t. precision in comparison to a full 32-bit approach
(we use CUSP as base). Figure illustrates the precision
of spGEMM as Symmetric Mean Absolute Percentage Error
(SMAPE - Equation (3)).

100% <
no x5

lx; — Xil

3

We make two observations. First, when the input matrices
contain patterns of “1” and “0” the SMAPE is 0%. Second,
when the inputs are real numbers the SMAPE is on average
0.02%. Exception are the cases with inputs close to the limits
of the fp16 range, where the round-off error is bigger (nemeth21
- 2.49%, patents_main - 0.66%).
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Figure 12: Numerical precision of sp)GEMM in Symmetric Mean Absolute Per-
centage Error (SMAPE).

6.5. Memory requirements

In this section we present the peak memory consumption of
all approaches. Fig. [I3] presents the memory consumption for
the 16 matrices of our dataset.

We make four major observations. First, hash table ap-
proaches require the smallest memory area as they do not have
to store huge intermediate matrices. Second, ESC approaches
require large amounts of memory. Third, tSparse, which
“packs” elements into tiles, typically requires more memory
than hash approaches and less than ESC. The amount of mem-
ory is proportional to the bitmap density. When the average
bitmap density is very low, like in patents_main and wiki-vote,
tSparse requires a lot of memory due to the additional overhead
for storing tiles. Fourth, RMerge2 performs well as it usually
requires only 5 bytes for each row of the left-hand side.
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Figure 13: Memory Consumption in MB

6.6. Summary

We examine the performance of our approach in A * A
and compare to cuSPARSE, CUSP, RMerge2, Nsparse, AC-
SpGEMM and spECK over the 16 sparse matrices of our
dataset. We draw two important conclusions. First, tSparse
generally outperforms the other approaches for the larger ma-
trices of our dataset when we have dense tiles and enough work
per matrix row. Second, TCUs play an important role in the
performance of our approach, speeding up nonTCU 1.68x.
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tSparse outperforms the other state-of-the-art approaches
1.53x to 31.77x when our selected criteria are met, without sig-
nificant loss in accuracy. Therefore tSparse is a suitable alter-
native for sp GEMM.

7. Related work

To our knowledge, this is the first paper to use TCUs in the
context of spGEMM. With this approach, we group NZ into
tiles. Unlike previous methods, which use normal fp32 cores,
we use tensor cores to multiply the tiles. We show that, with
this approach, we can increase the performance of spGEMM.
In this section we summarize other sp GEMM implementations.

7.1. Expansion Sorting Compression

There exists a substantial body of work on improving ESC
methodology that we describe in Section 2.4] Dalton et al.
[S] improve on ESC by optimizing sorting, the most time con-
suming step, and by localizing processing to shared memory.
Kunchum et al. [28]], in HybridSparse, implement variants of
ESC. Winter et al. [7], in AC-SpGEMM, perform ESC locally
in shared memory. They use dynamic scheduling of iterations
of ESC to keep data longer in shared memory. Thus, they re-
duce global memory traffic and the cost of sorting a huge inter-
mediate matrix in global memory.

tSparse moves expansion and compression steps after sort-
ing. This way we reduce memory allocation and movements
and utilize MAC of TCUs.

7.2. Hash tables

Hash tables can mitigate the cost of sorting and storing huge
intermediate matrices. Demouth et al. [19] present one of the
first implementations of spGEMM with hash tables. cuSPARSE
[[L1] is based on the work of Demouth et al. Their approach
has two drawbacks. First, there is imbalance between threads
because different threads of the warp might have to insert a dif-
ferent number of values in the hash table. Second, shared mem-
ory space is limited, which results in frequent data movement
to global memory. Anh et al. [27], in BalancedHash, and Na-
gasaka et al. [20]], in Nsparse, reduce the consumption of shared
memory by partitioning the rows of the input or output, respec-
tively. Nsparse improves on BalancedHash in two ways: 1) by
using hash tables of variable size in shared memory, less shared
memory is required and more thread blocks can run, and 2) by
using fewer auxiliary matrices, it keeps memory traffic low and
reduces memory storage requirements. Deveci et al. [30] use
two-level hash tables. They adapt the hash tables to the number
of threads in order to create a method that is portable to many
platforms. Parger et al. [21], in spECK find a trade-off between
analysis cost for load balancing and expected gain.

In tSparse, 1) we have less values to sort because elements
are grouped into tiles, and 2) we avoid storing the intermediate
products by using the task list to directly accumulate them.



7.3. Hybrid

Hybrid methods select among multiple methods/kernels dur-
ing spGEMM depending on the workload. Dalton et al. [S]] im-
prove on ESC methodology by changing the thread granularity
of the sorting method based on the size of rows of C. Liu et al.
[6], in bhSparse, change the sorting-merging method depending
on the size of rows of C. Kunchum et al. [28]], in HybridSparse,
choose the spGEMM method based on the workload of each
row of A. They select among variants of ESC and their own
method (a GPU implementation of scatter vectors). Gremse et
al. [8 9], in RMerge create different kernels for different row
sizes of A. Hybrid methods achieve good load balance thanks
to their adaptability to the workload.

We can divide tSparse in two parts. The part that performs
ESC on tiles to form the task list and the part that uses our
kernels to perform MAC operations. For the first part, we use
Thrust which achieves good load balance. For the second part,
we let the GPU hardware scheduler manage the workload. This
is possible because we employ many thread blocks, which the
GPU schedules to SMs based on the available resources of each
SM.

8. Conclusion

In this work, we utilize TCUs to increase the performance
of spGEMM. To that end, we modify the ESC method and we
create a task list of MMs of tiles. The key advantages of our
approach, tSparse, are two. First, tiles reduce the number of
values that the computationally demanding parts of ESC have
to act on. Second, the task list sends the tiles to TCUs, which
not only perform MM faster than normal computation cores,
but also leave the normal cores free for different workloads.

The results confirm that TCUs increase the performance
of MM and the combination of our tiling approach with
TCUs provides significant benefits to spGEMM. TCUs in-
crease the performance of tSparse by 68% in comparison to our
nonTCU implementation. Our approach is, on average, 1.53x
to 31.77x faster than cuSPARSE, CUSP, RMerge2, Nsparse,
AC-SpGEMM and spECK when NNZ(A) > 300000 and
RowA > 42. We conclude that our methodology improves
the performance of spGEMM by making efficient use of tiles
and TCUs. The source code of our approach is available at
https://github.com/oresths/tSparse.
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