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A B S T R A C T   

Predicting the population density of key areas of the city is crucial. It helps reduce the spread risk 
of Covid-19 and predict individuals’ travel needs. Although current researches focus on using the 
method of clustering to predict the population density, there is almost no discussion about using 
spatial-temporal models to predict the population density of key areas in a city without using 
actual regional images. We abstract 997 key areas and their regional connections into a graph 
structure and propose a model called Word Embedded Spatial-temporal Graph Convolutional 
Network (WE-STGCN). WE-STGCN is mainly composed of the Spatial Convolution Layer, the 
Temporal Convolution Layer, and the Feature Component. Based on the data set provided by the 
DataFountain platform, we evaluate the model and compare it with some typical models. 
Experimental results show that WE-STGCN has 53.97% improved to baselines on average and can 
commendably predicting the population density of key areas.   

1. Introduction 

At present, a part of big cities in China has been completed and some are in the second round of population gathering and expansion 
of the built-up area. This means that the population will accelerate into the big cities, making the built-up areas of big cities continue to 
expand. In the background of continuous population growth in Beijing, monitoring and forecasting the population density of certain 
key areas is an important task, which can prevent the spread of Covid-19 and other infectious diseases to some extent, avoid the 
occurrence of the stampede and alert unexpected abnormal gathering of people. Besides, the vehicle dispatch system of the taxi 
company can dispatch taxies [1] according to people’s travel needs reflected by the population density of different areas. 

1.1. Background 

Population density plays a crucial role in researches related to cities [2,3], it is an important indicator of the level of cities’ 
development without a reliable data set describing the daily activities of residents. Generally speaking, the data that we easily obtain is 
provincial-level census data, but the provincial-level census data is often of limited use in analyzing the rationality of urban internal 
road planning, evaluating the integrity of infrastructure construction, and implementing regional emergency plans. However, it is of 
great significance to study the population density of these areas after dividing the regions within the city. A survey from the Office of 
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Management and Budget (OMB) shows that the area with the highest population density in a city is usually the area with the best traffic 
condition, the highest level of infrastructure construction, and the best economy, that is, the central business district (CBD). 

As the process of urbanization continues to accelerate, many researchers in developing countries have begun to pay attention to the 
role of urban functional areas. Da Silva et al. [4] used road coverage and population density variables to define functional areas of a 
city in Brazil and found that the development of the urban transport system is closely related to people. Balakrishnan [5] proposed a 
method for urban population density prediction at 30 m resolution, using data such as the height of the building and street conditions 
of a city in India to analyze the internal conditions of the city. A detailed understanding of population density is of great significance for 
improving excessive population crowding and improving urban services reasonably. Many researchers used the population density 
function [6] to describe the internal regional structure of metropolises and non-metropolises to explore the scale of urban develop-
ment. A survey towards Shenzhen shows that regional population density can intuitively reflect people’s travel needs. Generally 
speaking, people’s demand for taxies is positively correlated with regional population density. 

1.2. Methods of studying population density 

The rapid development of neural networks [7] has provided researchers with new ideas for studying regional population density. 
Shesteperov et al. [8] used artificial neural networks (ANN) to predict the density of the biological population in certain areas; the 
structure of ANN [9] can simulate the interactive response of the biological nervous system due to the stimulation of real-world objects, 
and it has shown its practicality in many disciplines such as biology and engineering [10], but the problems of ANN have always 
existed, such as excessive parameters, slow training speed, and difficulty in tuning; the long-short term memory (LSTM) [11] makes the 
recurrent neural network (RNN) not only remember the past information but also selectively forget some unimportant information 
through the gating mechanism for modeling long-term semantic information; the gated recurrent unit (GRU) [12] is based on the 
principle of LSTM to reduce the phenomenon of gradient disappearance while retaining long-term sequence information. Therefore, 
for time-series data, GRU and LSTM can effectively capture the semantic association among long sequences; the spatial features of the 
data can be extracted by the convolutional neural network (CNN) [13], and one convolution kernel is used to extract a feature of the 
data. When all the convolution kernels can effectively complete the task of feature extraction, the complex system (CNN) composed of 
many convolution layers can effectively extract and process multifarious spatial features; the connections among areas are complex 
and interlaced. We can build a graph structure with areas as vertices and connections among areas as edges. However, CNN cannot 
handle data with the non-Euclidean structure such as the graph structure. To solve this problem, Wu et al. [14] used the graph 
convolutional network (GCN) to extend traditional CNN to the graph structure and merge the node features with the graph topology. 

1.3. Contributions 

Based on the above researches, we clean the data set about the population density of key areas in Beijing provided by the Data-
Fountain platform and screened out the data with obvious features. Then we transformed the spatial relationship of these areas into the 
graph structure, used the population density and association strength of these areas as the vertex matrix and the adjacency matrix 
respectively, and introduced a graph spatial-temporal model called WE-STGCN to reflect the temporal dependence and spatial cor-
relation of the data. Experiments show that our work can well complete the task of predicting the population density of key areas with 
different urban functions [15]. The main contributions of our work are as follows: 

●We predict the population density of certain key areas within the city from the perspective of data mining. Compared with current 
studies, we use the graph spatial-temporal network to model the regional population density data without considering actual images of 
key areas. This is the first work to use the graph spatial-temporal model to predict the population density of key areas within the city 
without the help of actual images of areas. It is of great significance to the construction of safe cities, the rational deployment of urban 
resources, the control of the spread of the epidemic, the intelligent dispatch of taxies, and the construction of intelligent cities. Ac-
cording to the phenomenon of the crowd gathering in different areas at different time points, city managers will make diverse de-
cisions. For example, if city managers observe excessive population density of a certain commercial area during the epidemic 
prevention and control period, they will deploy police in advance to restrict the flow of people in certain commercial areas with 
relatively high population density. The taxi dispatch system can also make decisions based on actual road conditions and regional 
population density, and guide taxi drivers to certain nearest and densely crowded areas. 

●We have introduced a graph spatial-temporal model called WE-STGCN. It is mainly composed of three parts, which are the 
temporal convolutional network (TCN) for expressing time-series information, GCN for extracting information about nodes and edges 
in the graph structure, and the Feature Component including some vital attributes (such as weather conditions, what day of the week, 
migration conditions and regional natures) that affect the population density of the area. TCN and GCN can extract spatial-temporal 
features of data, and the Feature Component can enhance the importance of other attributes. 

●We used the data set about the population density of key areas in Beijing to evaluate the performance of WE-STGCN and used six 
typical models such as GRU, LSTM, and GCN as baselines for conducting comparative experiments. Experiments show that WE-STGCN 
has advantages in the accuracy of regional population density prediction. 

The rest of the paper is organized as follows. In Section 2, we introduce the basis of the graph structure and the graph spatial- 
temporal models. In Section 3, we introduce the process of data preprocessing and the application of WE-STGCN in predicting the 
population density of key areas. In Section 4, we carry out the experiment and compare our model with other typical models. In 
Section 5, we summarize the work. In Section 6, we discuss future work. 
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2. Related work 

2.1. Contributing factors of regional population density 

People’s travel behavior determines the population density. Therefore, the regional population density is constantly changing 
under the influence of the periodicity of people’s travel behavior [16]. Generally, the population density of the area is relatively high 
on weekdays and decreases rapidly on weekends. At the same time, the population density also shows obvious periodicity in the hourly 
level changes. The distribution of the population density at different time points of the day is different. In the morning, especially 
around nine o’clock, the population density of some areas is relatively high, while the population density of certain areas will decrease 
at night. In different periods of each day, the growth trend of regional population density varies greatly. During the day, especially at 
noon, the growth rate is fast, while the growth rate is extremely slow in the early morning. Besides, the change of population density is 
also restricted by the nature of the area. For example, the population density of scenic spots and parks is high while the population 
density of working areas is low on Sundays. On the contrary, the population density of working areas is higher than that in parks on 
weekdays. Some researchers [17] explored the influence of weather on the density of biological population, and then Jones et al. [18] 
found that there is a clear positive correlation between the population of a kind of pest and the maximum temperature, which is related 
to the average value of relative humidity. The results can help researchers design a reasonable pest control model. The Baidu Migration 
provides a good platform for us to understand the immigration and emigration of the urban population. Based on the data provided by 
the platform, we can understand the urban travel intensity of a certain city every day, as shown in Fig. 1. The horizontal axis represents 
the date, and the vertical axis represents the urban travel intensity of Beijing. The urban travel intensity here does not refer to the 
specific number of people traveling outside, but a value that can indicate the approximate proportion of the number of people traveling 
outside. Generally speaking, there is a positive correlation between the travel intensity of a city and the population density of key areas 
in the city. 

2.2. Graph structure 

The connections among areas are complex and diverse, and different areas have different features. The graph is a data structure [19, 
20] that can represent certain areas and their connections. We can consider the areas themselves as nodes, and the spatial correlation 
among nodes as edges. Topological relations can be converted into matrices for the calculation of the graph network. Fig. 2 shows the 
graph structure, the adjacency matrix (W matrix or edge matrix), and the vertex matrix (V matrix) constructed according to areas and 
their connections. Each row of the V matrix represents the population density of ten areas (0–9) at a certain moment; the W matrix 
represents the association strength among areas. For two areas without the direct relationship, we consider the association strength to 
be 0. For convenient computation, we think that the association strength is also 0 between a certain area and oneself. 

2.3. Graph spatial-temporal network 

Traditional models in machine learning can achieve high prediction accuracy by modeling complex data, but the huge amount of 
population density data forces us to choose deep learning methods for data processing and data analysis. The complex interaction 
relationship among areas can be represented by the graph structure, but CNN cannot handle the non-Euclidean structure of graph 
structure. With the development of the neural network, the graph convolutional network (GCN) proposed by Wu et al. [14] extends 
CNN to data with graph structure and integrates node features, edge features, and graph topology. Many kinds of data do not have a 
regular spatial structure, such as knowledge graphs and social networks. For these irregular data objects, the effect of ordinary con-
volutional networks is poor. Therefore, for the data with the graph structure, we have to consider not only the node information but 
also the structure information. GCN can not only automatically learn the features of nodes, but also learn the association information 
among nodes, and it is efficient to process data with graph structure. 

Fig. 1. Changes in urban travel intensity in Beijing during the Spring Festival in 2019 and 2020.  
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Fig. 2. Examples of graph structure (topologized structure), V matrix, and W matrix.  

Fig. 3. Average crowd flow index in Beijing from 0:00 on January 17, 2020 to 23:00 on February 15, 2020.  
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3. Materials and methods 

3.1. Data preparation, data cleaning, and data processing 

In the background of the raging Covid-19 epidemic and the low level of safety management in cities, to further grasp the movement 
and gathering of people and deal with emergencies, we take public health and urban safety as research purposes and explore a new 
method for predicting the population density of key areas in a city. We choose to use the data set of population density of key areas in 
Beijing provided by the DataFountain platform, which includes the daily in and out of Beijing, the association strength among areas, 
and the population density of key areas. The time range of the data set is from 0:00 on January 17, 2020 to 23:00 on February 15, 2020. 

The time is an integer from 0 to 23. Considering the privacy of data, the data set uses the migration index to represent the actual 
migration rate in Beijing. The migration index is positively correlated with the number of people moving in or out. For the sake of 
convenience, we designate all migration indexes out of Beijing as negative numbers. The data set uses the human flow index to indicate 
the amount of regional human flow, and the human flow index is positively correlated with the regional human flow; the association 
strength is determined by the strength of the interaction between two areas. Generally, the greater the association strength, the 
stronger the interaction between two areas. The data set provided by the DataFountain platform is based on the population density 
data of 997 key areas provided by 11 units including the Beijing Municipal Development, the Beijing Reform Commission, and the 
Beijing Municipal Bureau of Economics and Information Technology. The data set is obtained after fitting, cross-validation and 
weighting. It can scientifically and objectively reflect the interaction among different types of areas at a certain time point and the 
population density of each area and then portray people’s travel rules and travel needs from the side, and at the same time provide 
early warning of the abnormal gathering behavior. 

Fig. 3 shows changes in the average crowd flow index in Beijing from 0:00 on January 17, 2020 to 23:00 on February 15, 2020 
(Considering the privacy of data, the true values are replaced by indexes.). Combining the analysis of Fig. 1, it is not difficult to find 
that since the first confirmed case of the Covid-19 epidemic in Beijing on January 20, 2020, Beijing’s urban travel intensity and human 
flow index have both declined significantly. Besides, due to the influence of the Spring Festival, the flow of people and the urban travel 
intensity before the Spring Festival (January 25, 2020) were extremely high at certain moments. To avoid the influence of festivals on 
the population density as much as possible, we choose to train the population density index (PDI, the specific calculation method is 
shown in Formula (1)) of 997 areas from 0:00 on January 26, 2020 to 23:00 on February 6, 2020, and to evaluate the population 
density index of 997 areas from 0:00 on February 7, 2020 to 23:00 on February 15, 2020. Fig. 4 shows the interaction among all grids in 
area B and A1 in area A. A1Bj is the association strength between A1 and Bj. 

PDI =
CFI

S × 10− 6 (1)  

Fig. 4. The association strength among 8 grids in area A and 12 grids in area B.  
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ASAB =

∑
AiBj

imax · jmax
(i ∈ [1, 8], j ∈ [1, 12], i ∈ N∗, j ∈ N∗) (2) 

Formula (1) is the expression of the population density index in a certain area. The PDI represents the population density index; the 
CFI represents the index of human flow; the S represents acreage and the unit of measurement is square meter. 

After finishing the data cleaning, we process the data set. Firstly, we divide 997 areas into 5 categories, which are the commercial 
land, the land for transportation facilities, the science and education park, the public service land, and the medical land. Secondly, the 
acreage range of 997 key areas is [10,000.47, 21,658,303.75], we convert it to [0.01, 21.66], and the unit of measurement is square 
kilometer. Then, for the human flow index, we combine the acreage of the area to convert it to the regional population density index 
and calculate that the range of the regional population density index is [0, 214.08]; for the migration index, we set the migration index 
of going to Beijing as a positive value and count its range as [0.00003, 0.62208], then we set the migration index of moving out of 
Beijing as a negative value and count its range as [− 0.29134, − 0.00003]. Therefore, the range of the migration index is [− 0.29, 0.62]. 
Finally, because the data set divides the entire Beijing into many 200(meters)*200(meters) grids, and gives the data of the association 
strength among the grids, we need to convert the association strength data among the grids to the association strength data among 
areas. The specific method is shown in Fig. 4 and Formula (2). 

Formula (2) is an expression for the association strength between area A and area B. The ASAB represents the association strength; 
the A represents area A; the B represents area B; the AiBj represents the association strength between the grid Ai and the grid Bj; the imax 
represents the maximum value of i; the jmax represents the maximum value of j. 

3.2. Baselines 

We set up three categories of baselines to verify the performance of the model, including traditional recurrent neural networks 
(such as GRU and LSTM), spatial-temporal networks, and graph spatial-temporal networks. All models are trained and evaluated on the 
same data set, and the experimental results are the average of these training and evaluation results. The six baselines used in the 
experiment are as follows: 

●LSTM: It controls the transmission state of data through a gating mechanism. Compared with ordinary RNN which only me-
chanically superimposes one kind of memory, the principle of LSTM is to retain the long-term memory and forget the unimportant 
information. 
●GRU: Its input and output structures are similar to ordinary RNN, and its processing logic unit is similar to that in the structure of 
LSTM. Compared with LSTM, GRU has two gates and fewer parameters, but it can achieve similar functions and accuracy to LSTM. 
Considering the computing power and time cost of hardware, GRU is the first choice of many researchers. 
●Spatial-temporal Dynamic Network (STDN) [21]: It uses local CNN and LSTM to process spatial-temporal information, and uses 
the attention mechanism to model long-term information. 
●GCN: The essential purpose of GCN is to extract the spatial features of topological graphs. The core idea is to use edge information 
to aggregate node information to generate new node information. 
●Spatial-temporal Graph Convolutional Network (STGCN) [22]: STGCN is a general framework for processing structured time 
series. The spatial-temporal convolution block combines graph convolution and temporal convolution, which can extract the most 
useful spatial features and capture the most basic temporal features coherently. The STGCN is completely composed of the 
convolution structure, which is parallelized at the input, with fewer parameters and fast training speed. More importantly, this 
structure allows the model to process large-scale data with higher efficiency. 
●Attention Based Spatial-temporal Graph Convolutional Network (ASTGCN) [23]: ASTGCN uses the attention mechanism to 
extract spatial-temporal features. Then it uses graph convolution to extract spatial features and uses standard convolution to extract 
temporal features. Finally, it stacks the attention layer and convolution layers to complete the construction of the spatial-temporal 
block 

3.3. Problem definition 

The topological relationship among areas can be described as a graph structure: G=(V, W). The V represents the population density 
index of each area node per time step, and the W represents the adjacency matrix. The population density prediction problem can be 
defined as the prediction of the data in the next time from historical data ([Xt-n, …, Xt-2, Xt-1], the n represents the number of historical 
data, we choose n = 7 in the experiment). The predicted data Xt is shown in Formula (3). 

Xt = Mf (Xt− n, ⋅ ⋅ ⋅,Xt− 2,Xt− 1) (3) 

The M represents the modeling method, the t represents the time point; the f represents external factors including weather con-
ditions, migration index, natures of areas, and what day of the week. The data input to the model has four dimensions, namely [Batch 
Size, Node Number, Time Step, Channel]. The Batch Size represents the number of samples selected in a round of training, and we 
choose Batch Size=16 in the experiment; the Node Number represents the number of areas; the Time Step represents the length of the 
time step. In the experiment, we choose each step as 1 hour. The Channel represents the number of features of the data. 
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3.4. Model design 

To perform scale compression and feature transformation on the regional population density index data, we input the data into the 
first Temporal Convolution Layer in a graph format instead of conduct the operations of linearization and concatenation. The asso-
ciation strength among areas is mapped to an adjacency matrix. The adjacency matrix is combined with the output of the first 
Temporal Convolution Layer to calculate the spatial correlation of the population density index of each area. The output of the Feature 
Component and the output of the GCN are combined and input into the three-layer GRU structure to calculate the temporal depen-
dence of fused data. Since WE-STGCN is almost entirely composed of convolutional networks, BatchNorm2D is used to prevent the 
disappearance and explosion of the gradient in convolutional networks. Finally, the Fully-connected Layer maps features of the data to 
the sample space. Fig. 5 shows the structure of WE-STGCN. This model is mainly composed of three parts [24], which are the Feature 
Component, the Temporal Convolution Layer, and the Spatial Convolution Layer. 

Temporal Convolution Layer 
For the time-series data with the graph structure, we choose to use Temporal Convolution Layer to extract temporal features. The 

Temporal Convolution Layer is designed based on TCN [25]. The design of TCN is very clever, unlike the convolutional long-short term 
memory (ConvLSTM). ConvLSTM introduces a convolution operation so that LSTM can process image information. Its convolution 
only operates on input images at a time, while TCN directly extracts features across time steps. 

TCN retains all historical information and uses causal convolution to obtain long-term historical information. The formula of causal 
convolution is shown in Formula (4). {X1, X2, …, Xt} is the input sequence; {Y1, Y2, ..., Yt} is the output sequence; {f1, f2, …, fk} 
represents the filter; the k is a constant. However, there is a problem with causal convolution, that is, it requires many layers or a large 

Fig. 5. The structure of WE-STGCN.  

Z. Xu et al.                                                                                                                                                                                                              



Computers and Electrical Engineering 93 (2021) 107235

8

filter to expand the receptive field. 
Therefore, dilated convolution is used to expand the receptive field. The expression of the dilated convolution is shown in Formula 

(5). X is the input; Y is the output; {f0, f1, …, fk-1} represents the filter; the k is a constant. The d represents the dilated divisor, which 
changes according to the way as shown in Fig. 6 according to the depth of the network. Increasing d or KS can increase the range of the 
receptive field. Dilated convolution allows the filter to be applied to an area larger than the length of the filter itself by skipping part of 
inputs so that the problems caused by causal convolution can be solved. In Fig. 6, the convolutional receptive field has been enlarged 1, 
2, and 4 times in turn. Dilated convolution can make the model have a very large receptive field when the number of layers is not large. 
Besides, the dilated divisor changes according to the convex function, so that the model will not lose local information. 

Yt =
∑k

i=1
fi ·Xt− k+i (4)  

Yt =
∑k− 1

i=0
fi ·Xt− i⋅d (5) 

Fig. 6 shows the structure of the Temporal Convolution Layer. On the left is the process of dilated causal convolution. The KS is the 
size of the convolution kernel; the d is the dilated divisor which represents the size of the expansion; the Dilations represents the 
sequence of changes in the dilated divisor. On the right is the residual structure between every two layers. The S(i-1) represents the (i- 
1)-th state, and the S(i) represents the i-th state. 

To reduce the complexity of the training process, the residual structure is used to replace the gated structure in the traditional 
recurrent neural network. The residual structure can overcome some shortcomings, which are the traditional recurrent neural network 
does not support parallel computing, the training speed is slow, and the gradient disappearance. The residual structure mainly includes 
a two-layer convolutional network and a nonlinear mapping process. Weight Norm can speed up the model convergence, and the 
Dropout layer can ignore a certain number of neurons to reduce over-fitting. After the convolution process, we choose Tanh as the 
activation function. The range of the regional population density index is [0, 214.08], the minimum value is − 1.69 after the Z-Score 
standardization process, and the maximum value is 1.32. The expression of Z-Score is Formula (6), the X is the input data, the Mean is 
the average, and the Std is the standard deviation. The average value is nearly equal to 0 after the Z-Score standardization process, the 
number larger than the average number is positive after the Z-Score standardization process, and the number smaller than the average 
number is negative after the Z-Score standardization process. Since the output from Tanh is in the interval [− 1, 1], the average value of 
the output is 0, which is close to the average value of the standardized regional population density index, the convergence speed is 
faster than sigmoid, and the training efficiency is high, we choose Tanh rather than other activation functions. Besides, since the 
number of channels between S(i-1) and the output (R_Output) of the two-layer convolutional network may be different, we design a 
convolution layer (KS=1) so that the transformed S(i-1) and R_Output can be directly added. The calculation method of this step is 
shown in Formula (7), the Act represents a certain activation function; the S(i) represents the result. 

Z =
X − Mean

Std
(6)  

S(i) = Act(S(i − 1) + R Output) (7) 

Fig. 6. The structure of the Temporal Convolution Layer.  
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Spatial Convolution Layer 
We use GCN as the Spatial Convolution Layer, the main function of this layer is to extract the spatial correlation among various 

areas. The spatial correlation is established based on the association strength and is represented by the graph structure. GCN exqui-
sitely designs a method to extract features from graph data, so that we can use these features to perform node classification, graph 
classification, boundary value prediction on graph data, and also get the embedding representation of the graph by the way. The core 
of GCN is to use the edge information to aggregate the node information to generate a new node representation. Each vertex in the 
graph will always be affected by its neighboring nodes or other nodes and constantly change its state until it reaches a balanced state. 
The adjacency matrix only defines which nodes are connected to the node, and there is no information about the node itself, which is 
reflected in the matrix that the diagonals of the adjacency matrix are all 0. We want to express the information of the node and the 
adjacency information of the node in a matrix at the same time, then we introduce the Laplacian matrix. The Laplacian matrix is the 
degree matrix (the degree matrix is the diagonal matrix formed by the degree of each node) minus the adjacency matrix, and the 
calculation method is shown in Formula (8). The L represents the Laplacian matrix; The D is the degree matrix; the A is the adjacency 
matrix. 

However, to prevent performance degradation due to different scales during training, we need to normalize the eigenvalues of the 
Laplacian matrix, so that we will get the Symmetric Normalized Laplacian matrix used by us in the experiment, as shown in the formula 
(9). The B represents the Symmetric Normalized Laplacian matrix; the D is the degree matrix; the A is the adjacency matrix. 

Besides, the Fourier Transform in the graph convolution process makes the calculation time complicated. To avoid the existence of 
the Fourier Transform, many researchers have introduced the Chebyshev Polynomial. We also choose to use the Chebyshev Polynomial 
to fit the convolution kernel to reduce complexity. The convolution kernel gθ(B) can be approximated by a truncated shifted k-order 
Chebyshev Polynomial (as shown in Formula (10)). The βk is the coefficient of the Chebyshev Polynomial; the K is a constant; the B 
represents the Symmetric Normalized Laplacian matrix; the Tk(B̃) can be expressed by Formula (11). The λmax is the maximum 
eigenvalue of the Laplacian matrix; the I is the identity matrix. The reason for this shift transformation is that the input of the Che-
byshev Polynomial should be in the range of [− 1, 1]. According to the properties of Chebyshev Polynomials, recursive formula 
(Formula (11)) can be obtained, which is the recursive definition of Chebyshev Polynomial, also known as K-localized convolution 
algorithm, which ensures that the current node only considers the influence of nodes within a specified range. 

L = D − A (8)  

B = D− 1
2(D − A)D− 1

2 (9)  

gθ(B) =
∑K

k=1
βkTk

(
B̃
)

(10)  

Tk

(
B̃
)
= 2B̃ ⋅ Tk− 1

(
B̃
)
− Tk− 2

(
B̃
)
, T0

(
B̃
)
= 1,T1

(
B̃
)
= B̃, B̃ =

2
λmax

B − I (11) 

Feature Component 
We have introduced the Feature Component that integrates various attributes that affect the population density of the area, 

including weather conditions (Weather, such as “sunny”), the nature of the area (Class, such as Class 0, we transfer it into “Zero”), what 
day of the week (Week ID, such as “Monday”) and the migration index (Migration Index, such as 0.5, we transfer it into “zero point 
five”). Each attribute in the Feature Component is processed by word embedding and concatenated. The result is input into some places 
of the model to enhance the importance of these attributes. The population density of an area is affected by many complex attributes, 
such as weather conditions, regional nature, and urban travel intensity. Therefore, considering these attributes is very important to 
predict the population density. 

The first step of word embedding is to encode certain words or sentences through indexes, that is, to assign an index to each 
different word or sentence. Next, the embedding matrix will be created. We have to decide how many latent attributes to assign to each 
index. Compared with one-hot encoding, the word embedding method has two main advantages. Firstly, since the vocabulary size of 
the classification value may be very large, the word embedding method effectively reduces the input dimension, so the calculation 
efficiency is high. Secondly, some studies found that classification values with similar semantic meanings are usually embedded in 
similar locations, so the embedding method helps to find and share similar patterns among different regions. As far as the experiment 
itself is concerned, we can give different weights to each attribute in the Feature Component. For example, we can give larger di-
mensions to the factors that affect the results to a large extent. 

GRU 
GRU is a variant of traditional RNN. Like LSTM, it can effectively capture the semantic association among long sequences and 

alleviate the phenomenon of gradient disappearance or gradient explosion caused by many layers of convolutional networks (mainly 
TCN and GCN). At the same time, its structure and calculation process are simpler than LSTM, and its calculation efficiency is higher 
than that of LSTM. Besides, the number of parameters of GRU is not very large, which reduces the risk of over-fitting. Compared with 
LSTM, GRU has a faster convergence speed. Based on the above theory, we choose to use a three-layer GRU structure (Experiments 
show that the effect of the three-layer GRU is the best.) to store and filter the information obtained after the Temporal Convolution 
layer, Spatial Convolution Layer, and the Feature Component. GRU does not clear the previous information as time progresses, on the 
contrary, it retains the relevant information and passes it to the next unit. 
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Attentional pooling mechanism 
Fig. 7 is the structure of the attentional pooling mechanism (APM). APM consists of two inputs and one output. The A is the output 

of the Feature Component; the B is the output of the three-layer GRU structure. The A is processed by the linear layer and Tanh 
activation function to change the size and shape. As a result, the AP undergoes a dimensional upgrade and conducts batch matrix 
multiplication (bmm) operation with B. All the data will be amplified after going through the bmm layer, and then we can make the 
value distribute in the range of [0, 1], and the final output is Con. 

Bmm1,2
[a,b,d] = B1

[a,b,c] ∘ B2
[a,c,d] (12) 

Formula (12) is the formula of bmm operation. The B1, B2, and B1,2 are three matrices; the Bmm represents bmm matrix multi-
plication; [x, y, z] represents the shape of the matrix. The parameters of the bmm operation are two three-dimensional matrices. The 
first dimension of the two matrices must be the same, and the latter two dimensions must satisfy the dimensional transformation 
condition of matrix multiplication in terms of dimension. APM has two obvious advantages. For one thing, the attentional pooling 
mechanism compresses the number of features of the output generated by the upper layers, reduces the parameters, and simplifies the 
calculation of the model in the post-processing stage. For another, the attentional pooling mechanism enables the output via the upper 
layers network to continuously pay attention [26] to the influence of certain necessary features. The attentional pooling mechanism 
assigns different weight parameters to each element of the input to highlight useful information. 

Post-processing 
Unlike traditional machine learning [27] algorithms, the post-processing process in deep learning models is extremely important. 

Before the nonlinear transformation is performed, since the upper layer network has a deeper depth and has undergone multiple 
nonlinear transformations, the distribution of values output by the upper layer network will shift or change. The reason why the 
convergence speed of the training process is slow is that the overall distribution gradually approaches the upper and lower limits of the 
value range of the nonlinear function. The process of batch normalization (BatchNorm2D) forces the value distribution back to the 
standard normal distribution with a mean value of 0 and a variance of 1 through a certain normalization method. In this way, a small 
change in the value will cause a large change in the loss function, avoiding the problem of vanishing gradient. Besides, the larger the 
gradient means the faster convergence speed, which can greatly speed up the training speed. 

The expression of BN is shown in Formula (13), the Mean and S are the mean and variance of the input data respectively; the ele is 
the stability divisor added to increase the stability of the calculation, and its value is equal to 10–5; the Q and T are learnable coefficient 
matrices; the X is the input data; the Y is the output. Finally, the Fully-connected Layer and log softmax activation function map the 
distributed features calculated by the network to the sample target space. The difference between the predicted value of the model and 
the true value is measured by the mean square error loss (MSE Loss). The formula of MSE Loss is shown in Formula (14). The Y is the 
predicted value; the Ytr is the true value; the n represents the number of samples. 

Y =
X − Mean

̅̅̅
S

√
+ ele

× Q+ T (13)  

MSELoss(Y,Ytr) =
1
n
∑

(Y − Ytr)2 (14)  

4. Results 

4.1. Evaluation indexes 

We use three commonly used evaluation indicators to evaluate the performance of the model. They are root mean square error 
(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The respective expressions are Formula (15), 

Fig. 7. The structure of the attentional pooling mechanism (APM).  
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Formula (16), and Formula (17) (The Ypr represents prediction value; the Ytr represents true value; the n represents the number of 
samples.). 

We use Nvidia Tesla V100 GPU to train different models for 2000 rounds, and the evaluation results are shown in Table 1. GRU and 
LSTM are traditional recurrent neural networks, they have a high level of processing time-series data, but they cannot be used to 
process data with the graph structure, so they perform the worst. STDN adds a convolutional network based on the traditional 
recurrent neural network to extract spatial features, and the accuracy is slightly improved compared to GRU and LSTM. However, 
traditional convolutional networks cannot handle data with the non-Euclidean structure, so STDN does not affect this experiment. GCN 
can capture the spatial relationship among data with graph structure and extract spatial features, but it cannot obtain the temporal 
dependence among these data, so its performance is average. Both STGCN and ASTGCN belong to graph spatial-temporal models, and 
their essence is to use GCN to extract spatial features of data with graph structure and to use recursive neural networks to extract 
temporal features. Due to the consideration of both temporal and spatial features, STGCN and ASTGCN perform relatively well. 
Compared with the above-mentioned baselines, WE-STGCN performs best. This is because WE-STGCN not only considers the spatial 
correlation and temporal features of the population density of each area, but also the Feature Component is introduced to enhance the 
influence of some important external attributes on the regional population density. Besides, the evaluation results of WE-STGCN 
without the Feature Component (WE-STGCN(N)) are worse than the evaluation results of graph spatial-temporal networks (STGCN 
and ASTGCN). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Ypri − Ytri)2

√

(15)  

MAE =
1
n
∑n

i=1
|Ypri − Ytri| (16)  

MAPE =
1
n

∑n

i=1
|
Ypri − Ytri

Ytri
| (17)  

4.2. Under-fitting phenomenon 

Firstly, we want to explain the under-fitting problem of marginal values, which refers to the difference between true values and the 
model’s prediction of small values and large values in the regional population density index. This problem is reflected in Fig. 8. When 
the regional population density index is in the range of 20 to 160, the predicted value is consistent with the true value; while in the 
range of 15 to 20 and in the range of 160 to 172, the predicted results are extremely poor. This problem occurs because the regional 
population density index calculated according to the data set has more intermediate values, so the features of this part of the value are 
more obvious, and the data volume of the regional population density index with large and small values is small, which leads to 
unobvious features. Fig. 9 is the prediction results of GCN, STGCN, and ASTGCN. Because GCN can model the data with the graph 
structure, the predicted value has a certain fitting ability in the entire numerical range, so it effectively relieves the under-fitting 
problem of marginal values. It is worth mentioning that some models that are dependent on historical data will also have a certain 
degree of the under-fitting problem of marginal values because the weight of marginal values in historical data is too small. 

Secondly, we want to talk about the under-fitting problem of local peaks, which refers to the under-fitting phenomenon of the 
predicted value near the extreme value when the real data has a local extreme value, as shown in Fig. 10. GCN can extract the spatial 
correlation of data with the graph structure, but GCN lacks consideration of the temporal relationship in data with the graph structure. 
The traditional recurrent neural network has significant advantages in extracting temporal features. The graph spatial-temporal 
network represented by STGCN and ASTGCN shows the advantages of predicting margin values and local peaks. They use GCN to 
solve the problem of under-fitting of margin values and use recurrent neural networks to solve the under-fitting phenomenon of local 
peaks. 

The prediction effects of WE-STGCN and WE-STGCN(N) are shown in Fig. 11. Fig. 11 shows the superiority of WE-STGCN in 
capturing temporal features in a continuous period (17:00 on February 8, 2020 to 20:00 on February 12, 2020). The accuracy of WE- 
STGCN is better than traditional recurrent neural networks because the Spatial Convolution Layer can establish the spatial correlation 

Table 1 
Different evaluation indexes.  

Model RMSE MAE MAPE 

LSTM 6.51 4.02 4.35% 
GRU 6.55 3.82 4.32% 
STDN 6.50 3.71 4.29% 
GCN 6.44 3.66 4.01% 
WE-STGCN(N) 3.35 3.01 2.12% 
STGCN 3.01 2.49 2.86% 
ASTGCN 2.99 2.50 1.86% 
WE-STGCN 1.32 1.95 1.59%  
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Fig. 8. GRU, LSTM, and STDN forecast the population density index of area A in 100 consecutive time points.  

Fig. 9. GCN, STGCN, and ASTGCN forecast the population density index of area A in 100 consecutive time points.  

Fig. 10. Under-fitting of the local peak.  
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among areas; the accuracy of WE-STGCN is better than GCN because the Temporal Convolution Layer has established a wide range of 
receptive fields, and relies on the multi-layer residual structure to overcome the excessive temporal dependence of the gating 
mechanism on historical data; the accuracy of WE-STGCN is better than that of the graph spatial-temporal network because the Feature 
Component integrate some attributes with the regional population density index, making the external attributes that affect the regional 
population density more important. 

5. Conclusions 

We proposed a new method for predicting regional population density based on the graph spatial-temporal network (WE-STGCN) 
without the help of actual images of areas. Considering the complex relationship among areas, we abstracted the 997 key areas and the 
regional connections among them into a graph structure, taking the population density of the areas as the vertex matrix, and the 
association strength among the areas as the adjacency matrix. Besides, to highlight attributes that affect the density of regional 
populations such as weather, migration condition, and regional nature, we designed the Feature Component for highlighting these 
external attributes in the form of word embedding. Based on the topological features of the data with the graph structure, we used 
slightly modified GCN and TCN to extract the spatial correlation and temporal dependence among areas respectively. WE-STGCN not 
only has high accuracy but also has stable performance. In general, the WE-STGCN model has the best performance compared with 
baselines. When baselines have the under-fitting problem, WE-STGCN can still predict steadily. Therefore, using WE-STGCN can 
complete the work of predicting the population density of key areas. Our work is of great significance in launching regional emergency 
plans, reducing the spread risk of infectious diseases such as Covid-19, and predicting people’s travel needs. 

6. Future work 

There are still some issues that need further study. First of all, the regional population density data we selected is the data during the 
Covid-19 epidemic. We just used the model to predict the population density of each key area during the epidemic. However, we did 
not consider changes in the population density during the non-epidemic period. The data during the epidemic period should be 
compared with the data during the non-epidemic period to analyze the impact of the Covid-19 epidemic on the population density of 
areas with different urban functions. The impact can further reflect the impact of the Covid-19 epidemic on various economic forms. 
Then we should consider using the model for predicting population density of the large region, such as the prediction of population 
density of certain city-level areas in the Guangdong-Hong Kong-Macao Greater Bay Area of China. 
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