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Abstract.  Topology affects outcomes of processes in planar networks.  Hexagon tessellations 
have different performance than, and are often superior to, square tessellations in applications 
such as fluid dynamics, percolation theory, self-avoiding walks, survey sample design, and 
quantization.  Hexagon tessellations and square tessellations using both von Neumann and 
Moore neighborhoods were examined as a network topology for neutral ecology community 
models, following the simulation approach of Graham Bell.  These models, which assume 
identical life history and movement properties for each individual of each species, produce 
collective properties of communities, such as abundance distributions, range distributions, spatial 
variation in abundance, species-area curves, and spatial variation in species composition, that 
match many empirical patterns.  The simulations in this study varied the dispersal rate but kept 
birth, death, and immigration rates constant.  For these experiments, ending community 
populations, species richness, Shannon diversity, and Simpson diversity were clearly different 
for the different topologies, but the relationship between the topologies varied as the dispersal 
rate changed.  Empirical distributions of the performance measures also showed clear differences 
among topologies.  The interaction of topology with dispersal, spatial boundary effects, and other 
parameters of these models appears to be quite complex and warrants further research. 
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1. Introduction 
 
Models of spatial processes in two dimensions often use one of the only three regular 
tessellations in the plane:  squares, hexagons, or triangles.  Triangles are seldom used, hexagons 
infrequently, and the vast majority of regular grid applications uses squares.  While square 
tessellations are easy to use there is one significant problem.  Hexagons have six neighbors each 
with the same border length (Figure 1a).  Squares have four orthogonal neighbors each with the 
same border length and four diagonal neighbors adjacent only at a vertex.  The orthogonal 
neighbors are called the von Neumann neighborhood (Figure 1b), and those plus the diagonal 
neighbors are called the Moore neighborhood (Figure 1c).   
 
Using the von Neumann neighborhood neglects the close proximity of the diagonal neighbors, 
but using the Moore neighborhood implicitly assumes, in effect, that the cell is an octagon and 
octagons do not tile the plane.  Of course, the diagonal neighbors can be weighted (see Birch 
2006 for an example), but it is not obvious what the weighting should be, depending on whether 
the process assumes locations are points or areas.  An alternative used in some cellular automata 
applications is the Margolus neighborhood, which can be visualized as the six closest neighbors 
in a tilted square tessellation (Figure 1d).   The Margolus neighborhood is implemented with two 
4x4-cell blocked square tessellations which are offset from one another by one row and one 
column.  The Margolus neighborhood then consists of a cell and its three block neighbors in one 
tessellation plus its three block neighbors in the other tessellation.  This procedure essentially 
simulates hexagonal adjacency relations. 
 
The motivation for examining this issue in the context of community ecology population models 
comes from a wide literature that describes the differential performance of alternative topologies 
on a number of physical properties and processes when represented in a plane.  
 
The most important of the findings on topological effects is probably in the simulation of the 
Navier-Stokes equations for fluid dynamics in two dimensions.  Both analytical results and 
simulations show not only differences between square and hexagonal tessellations, but also that 
the square tessellation (using the von Neumann neighborhood) has an anisotropic viscosity that 
is an artifact resulting, apparently, from the ambiguity in connectivity between adjacent side 
neighbors and adjacent vertex neighbors (Toffoli and Margolus 1987 p. 178, Frisch et al. 1986).  
The Navier-Stokes results raise a question for ecology: is particle movement such as that found 
in ecological processes subject to similar artifactual effects when implemented in a square 
tessellation? 
 
Another finding is from analysis of the percolation movement model, or graph connectivity 
property, in two (and greater) dimensions.  This model has a critical parameter that is topology 
dependent.  This parameter is the threshold of density of occupancy beyond which it is 
guaranteed that a path will exist from one boundary of the study area to another, connecting 
occupied locations.  If the locations are conceived of as vertices, the model is called site 
percolation, and if edges, bond percolation.  For both types of percolation the critical value for a 
hexagon tessellation (considered as a triangular lattice representing the movement graph) is less 
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than that for a square tessellation (using the von Neumann neighborhood) (Stauffer and Aharony 
1992, Wolfram Mathworld 2006). 
 
In geostatistics, a hexagonal tessellation of sampling sites has a lower minimum average standard 
error, a lower maximum standard error, a larger screen effect (ability of sample points to 
minimize influence of points farther from the estimation point), and a smaller number of nearest 
neighbors for stable kriging, than a square tessellation (or any other pattern of sample points) 
(Olea 1984). 
 
In the quantization of continuous or highly detailed discrete data into chunks or bins more 
suitable for data analysis or graphical display, hexagons are the optimal solution in two 
dimensions (Conway and Sloane 1999). 
 
Recent work questions simulations using square tessellations (and other types) and quantifies 
some of the problems.  Flache and Hegselman (2001) found that in agent-based social 
cooperation simulations, actors will migrate in search of other cooperating actors in hexagon 
tessellations at a higher rate than in square tessellations, and it takes approximately six times as 
long for the rates to stabilize.  Cioffi-Revilla (2002) points out that the average number of 
territorial neighbors in political systems is close to six, that is, close to the number of hexagon 
neighbors, and that the use square tessellations in agent-based model simulations may affect 
model behavior.   
 
Birch (2006) compared a hexagonal tessellation with a modified square tessellation where 
diagonal interactions were given half the weight of orthogonal interactions, in an attempt to 
approximate the behavior of the equiprobable interactions in the hexagonal tessellation.  Using a 
weed spread algorithm where the probability of spread was equal to the proportion of neighbor 
cells occupied minus the probability that external events (e.g., grazing) would occur, the 
modified square tessellation and hexagonal tessellation had similar behavior except when the 
grazing probability was in the range 0.25 to 0.3.  (At 0.25 the square tessellation with only 
orthogonal interactions [i.e., using the von Neumann neighborhood] does not propagate 
occupancy to neighbor cells.)  Bithell and Macmillan (2007) explored alternatives to regular 
tessellations with one individual per cell for cellular automata applications in population 
dynamics.  They advocated for a "particle-in-cell" representation where more than one individual 
can occupy a cell. 
 
Although hexagonal tessellations have been used in ecological modeling at least as far back as 
1967 (Murray 1967), the first comparison of tessellation properties for ecological research may 
have been that of Keller et al. (1979).  These authors compared hexagonal and square 
tessellations for use in evaluating habitat edge effects, spatial trends in habitat distribution, and 
modeling territory size for terrestrial wildlife. 
 
In this paper the question is posed whether the topology of a network of ecological communities 
affects the dispersal statistics of populations in the communities.  To do this we use a recently 
proposed theory that does, in some circumstances, appear to produce, when simulated or 
analyzed mathematically, observed empirical distribution patterns of species and their 
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abundances.  This theory has been called the neutral theory of community ecology (e.g., Bell 
2005) or, alternatively, the unified neutral theory of biodiversity and biogeography (Hubbell 
2001). 
 
The theory is neutral in the sense that each species in a community of species that compete with 
one another is assumed to have the same per capita birth and death rates.  This assumption 
contrasts with most accepted biological knowledge especially when carefully analyzed 
empirically (Chave 2004).  Furthermore, the theory has been developed with the assertion, 
although not specified as an assumption, of a uniform environment.  This limitation, obvious to 
anyone, has been explicitly investigated by Bell (2005). 
 
What, then, is striking about such a simplified model, having only a handful of parameters, that 
will be described shortly, is that both analytical results and simulated experiments yield patterns 
that conform to many of the documented relationships about species, their abundances, and 
ranges as discussed above.  As a number of reviewers have noted (e.g., Brown 2001, Chave 
2004), although the theory is almost surely incorrect in its assumptions, it is the most ambitious, 
creative, and successful attempt so far to account for many of the issues and assemblage data of 
community ecology.  This theory has also, appropriately to its importance, generated substantial 
investigations both theoretical and empirical into its properties and validity (e.g., Adler 2004, 
Bell 2003, Chase 2005, Chave et al. 2002, Condit et al. 2002, Enquist et al. 2002, Etienne and 
Olff 2004, Gilbert and Lechowicz 2004, He 2005, Hubbell 2005, Magurran 2005, McGill 2003, 
McGill and Collins 2003, McKane et al. 2004, Nee 2005, Nee and Stone 2003, Volkov et al. 
2003, Yu et al. 1998).   
 
The present paper contributes to this literature by examining the extent that simulation models of 
the theory may depend upon, in addition to any other parameters, the geometric nature of the 
network in which the communities of species are presumed to inhabit.   
 
2. Methods 
 
The six parameters for the Bell (2001) version of neutral community ecology models are (1) the 
number of species in the species pool, (2) the (maximum) number of individuals in a community 
(a carrying capacity), (3) the probability that an individual of any species will give birth in each 
time step, (4) the probability that an individual of any species will die in each time step, (5) the 
probability that a newborn individual will disperse to an adjacent community, and (6) the 
probability that a new individual of each species will immigrate (from outside the meta-
community) in each time step.  It appears from Bell (2005, Figure 1) that he used a square 
tessellation in his simulations, although this was not specified in his papers nor whether he used 
the von Neumann or Moore neighborhoods.  (Hubbell (2001) used the square tessellation with 
the Moore neighborhood for simulation results.) 
 
In this study simulation runs were initialized by assigning to each community an initial 
population of half the carrying capacity randomly distributed to each species.  The actions in 
each time step were immigration, birth and dispersal, death, and maintenance of carrying 
capacity.  Each community was assigned immigrant individuals according to the immigration 
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probability, distributed randomly to each species.  Each existing individual of each species in 
each community produced a new individual with probability equal to the probability of birth.  
Each new individual moved to a random adjacent location with probability equal to the 
probability of dispersal and continued moving until the probability of dispersal was not met (Bell 
2001).  Each existing individual died with probability equal to the probability of death.  Finally, 
if the number of individuals in a community exceeded the carrying capacity, the excess were 
deleted randomly.  The algorithm for the neutral model represented in pseudo-code is: 
 
for (t ∈ 1:nT) 
 for (c ∈ 1:nC) 
 

  Immigration  
  for (s ∈ 1:nS)  
   if x ~ U[0, 1) < P(m) then N{c, s} ++ ; 
  end (s) ; 
 

  for (s ∈ 1:nS) 
   Birth 
   if x ~ U[0, 1) < P(b) then  
   Dispersal 
    i = c ; 
    while x ~ U[0, 1) < P(u) do i = a{i, y ~ V[1, m{i}]} ; 
    N{i, s} ++ ; 
   end birth & dispersal ; 
   Death 
   if x ~ U[0, 1) < P(d) then N{c, s} -- ; 
  end (s) ; 
 
  Carrying Capacity 
  E = t{c} - K ; 
  for (e ∈ 1:E) 
   j = x ~ U[s ∈ (S | t{c, s} > 0)]; 
   N{c, j} -- ; 
  end (e) ; 
 end (c) ; 
end (t) ; 
 
where t indexes time steps, nT is the total number of time steps, : is the range operator (a:b 
means integers between a and b), c indexes communities, nC is the total number of communities, 
s indexes species, nS is the number of species, x is a random number, U[a, b) is the uniform 
continuous distribution from the closed lower bound a to the open upper bound b, P(m) is the 
probability of immigration, N{c, s} is the population of species s in community c, ++ is the 
increment operator (by one unit), P(b) is the probability of birth, i indexes community location, 
P(u) is the probability of dispersal, a{i,} is the adjacency table of adjacent communities for 
community i, y is a random variable, V[a, b] is the uniform discrete distribution for integers 



between a and b, m{i} is the number of adjacent communities to community i, P(d) is the 
probability of death, -- is the decrement operator (by one unit), E is the excess number of 
individuals in a community, K is the carrying capacity, e indexes the excess amount, j is a 
random species with population greater than zero. 
 
The simulations used a set of 121 communities arranged either as an 11 by 11 tessellation of 
squares or as an 11 by 11 tessellation of hexagons.  These tessellations were not connected 
across edges with toroidal topology but were considered as planar bounded spaces.  Adjacency 
for square tessellations was defined by both the von Neumann neighborhood, meaning the side 
adjacent four neighbors, as well as the Moore neighborhood of those four plus the corner four 
neighbors. 
 
The number of species was set to 15, the number of individuals to 1000, and the probability of 
immigration to 0.001, for all simulation runs.  The probability of birth and death was set to 0.3; 
and the probability of dispersal varied between 0.0 and 0.4. There were 400 replicates, each 
having 2000 time steps, for each topology for each change in parameter settings.   
 
Community outcomes were measured as the mean values of total community population at the 
end of each simulation, plus the community diversity measures of species richness, Shannon 
diversity, and Simpson diversity (the negative of the original measure, see Magurran 1988 for 
Shannon and Simpson measures and variants, and Lande 1996 for analysis of Simpson's 
measure).  The formulas of the diversity measures, for one community, are: 
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where Ii is the indicator variable having the value of 1 if there is at least one individual of species 
i, otherwise zero; ni is the number of individuals for species i, N is the total number of 
individuals, and ln is the natural logarithm. 
 
3. Results 
 
For the three topologies in the configurations studied here, the mean number of adjacent 
communities was 5.29 for the hexagonal tessellation ("hexagon"), 3.64 for the square tessellation 
with the von Neumann neighborhood ("square-von Neumann"), and 6.942 for the square 
tessellation with the Moore neighborhood ("square-Moore"). 
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Total populations at the end of the simulations had several characteristics (Figure 2).  From 
relatively low ending populations at no dispersal all topologies reached a peak by a dispersal 
probability of 0.10 and then declined.  Before 0.10 the ranking of values was square-von 
Neumann, hexagon, square-Moore.  After 0.10, the ranking was square-Moore, hexagon, square-
von Neumann.  At 0.40 ending populations declined to between 40% and 60% of the highest 
values. 
 
Median values of Shannon diversity had a less consistent pattern (Figure 3).  Between minimum 
values for no dispersal and a probability of dispersal of about 0.20, square-von Neumann had the 
highest diversity and hexagon was higher than square-Moore.  Between dispersal probabilities of 
about 0.20 to 0.40, hexagon had the highest values, although square-Moore was essentially the 
same from 0.36 to 0.40.  Median values of species richness and Simpson diversity had the same 
patterns. 
 
Medians of Shannon diversity revealed one story but the distributions of these values revealed 
another aspect (Figures 4).  Distributions of Shannon values for hexagon and square-Moore were 
generally similar whereas square-von Neumann was either skewed in the opposite direction 
(dispersals of 0.10 and 0.20) or broader in shape (dispersal of 0.30).  All distributions had a 
strong negative skew at a dispersal probability of 0.40, contrasting with more symmetric or 
positive skews at lower values of dispersal. 
 
4. Discussion 
 
Topological differences clearly show in the results in Figures 2, 3, and 4, but the patterns are 
complex.  Ending populations have the simplest pattern, however even there the ranks of the 
topologies flipped at a low value of dispersal.  As dispersal increased, the topologies with higher 
degrees of adjacency were less impacted by decline in population, possibly because of more even 
spread of populations. 
 
It might be expected that topologies with more neighbors would lead to more evenly spread 
populations for each species also.  The results for Shannon diversity only support this hypothesis 
for species diversity within communities at higher values of dispersal.  At lower values, below 
the range 0.22 to 0.28, the reverse was the case. 
 
Behavior reversals were also evident in the distribution of Shannon diversity values.  The 
hexagon topology had positively skewed histograms at dispersals of 0.10 and 0.30 but a nearly 
symmetric histogram at 0.20.  The square-von Neumann topology changed from strong negative 
skew at 0.10, to a slight negative skew at 0.20, to a broad distribution with slight positive skew at 
0.30, and then back to a strong negative skew at 0.40.  The square-Moore topology had positive 
skews between 0.10 and 0.30, and then negative skew at 0.40. 
 
Although the results beg for further exploration and explanation, the dynamics of topological 
effects on properties of networks of ecological communities are complex and suggest potentially 
important issues.  These impacts of topology on models of ecological processes have been little 
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studied, and there is little awareness of the possibility of important effects.  Because the large 
majority of modeling applications that use regular tessellations do use square tessellations, and 
because the two main topologies for implementing models using squares have drawbacks--von 
Neumann neighborhoods ignoring the diagonal neighbors, Moore neighborhoods implicitly 
assuming a non-tiling cell shape--greater attention to topological structures for process modeling 
is certainly called for.   
 
Computer code in the R or C languages implementing the neutral model simulations are 
available from the first author. 
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Captions   
 
Figure 1.  Topologies analyzed in the paper are (a) hexagons, (b) squares with the von Neumann 
neighborhood, and (c) squares with the Moore neighborhood.  Some cellular automata 
applications use (d) squares with the Margolus neighborhood in order to achieve hexagon 
neighborhood properties. 
 
Figure 2.  Mean for all simulations of total populations per community across all species at the 
end of the 2000 step replicates, for each dispersal probability, by topology.  Dispersal 
probabilities were from 0.00 to 0.40 by increments of 0.05. 
 
Figure 3.  Median values of Shannon diversity across all simulations and communities, for each 
dispersal probability, by topology.  Dispersal probabilities were from 0.00 to 0.40 by increments 
of 0.02.  The graphs are lowess smoothed versions of the point by point trajectories, where the 
proportion of points used for each smoothed value was 0.3 of the total. 
 
Figure 4.  Histograms of the distribution of Shannon diversity values for each combination of 
dispersal probability and topology.  Each histogram includes 48,400 values.



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 

 
14 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 

 
15 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 

 
16 



 

 
 
 
 

Figure 4 
 

 
17 


