
Computers, Environment and Urban Systems 35 (2011) 173–182
Contents lists available at ScienceDirect

Computers, Environment and Urban Systems

journal homepage: www.elsevier .com/locate /compenvurbsys
Relationality in geoIT software development: How data structures
and organization perform together

S. De Paoli a,⇑, G. Miscione b

a Sociology Department and National Institute for Regional and Spatial Analysis, National University of Ireland Maynooth, Iontas Building, Maynooth, Ireland
b Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Hengelosestraat 99, PO Box 6, 7500 AA Enschede, The Netherlands

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 March 2010
Received in revised form 13 September
2010
Accepted 15 September 2010

Keywords:
Constructivism
Relationality
GIS
Data structure
Memory allocation
Organization
0198-9715/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.compenvurbsys.2010.09.003

⇑ Corresponding author. Tel.: +353 17086688.
E-mail addresses: stefano.depaoli@nuim.ie, Stefan

Paoli), g.miscione@utwente.nl (G. Miscione).
Constructivism in geo-information science has emphasized what happens to geo-information technolo-
gies (geoIT) after the design stage, when systems and applications are used in real life. Current construc-
tivist views, however, have focused less on other aspects such as software development practices. This
paper adopts a similar constructivist epistemology, but looks at how geoIT and people are entangled in
the development stages.

We discuss the case of the migration of GIS software to Free and Open Source license. This case provides
clear empirical evidence of the entanglement of humans and artifacts during the development of GIS
technologies. Through an analysis of archived material (such as mailing lists), and of the software code,
the paper describes how the integration of a new software (the library Fast Fourier Transformation in the
West) was hindered by the different data structures of the original GIS and the new software. The case
study we propose shows how actual software development practices may contrast with the well-estab-
lished rhetoric of technical efficiency of the algorithms. In addition this choice also illustrates the orga-
nizational aspects of developing GIS and the different weights that are given to computational resources
and organizational resources.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Constructivism in geo-information technologies (geoIT) is an
approach that has criticized the limits of positivist approaches
(e.g. Goodchild, 1998) and the idea of a one-way impact of geoIT
on society (e.g. Pickles, 1995). Constructivism therefore rejects
positivist and techno-deterministic approaches, emphasizing on
the contrary the mutual constitution of technology and society.
This is what Chrisman (2005) calls the Full Circle, in which software
shapes social relationships and is shaped by them:

Certainly there are impacts of the new technology on society,
but these can only be understood when we also consider the
impacts of society on the technology. By turning full circle, con-
necting from social needs to technical issues, then back to the
social realm, we avoid the flaws of isolating implications from
their causative environment. (Chrisman, 2005, p. 32)

Authors such as Chrisman and Harvey (Chrisman, 2005, 2006;
Chrisman & Harvey, 1998, 2004; Harvey, 2000, 2009) and Schuur-
man (Schuurman, 2002; Schuurman & Pratt, 2002) have promoted
an approach to geoIT that is based on constructivist concepts
ll rights reserved.

o.depaoli@gmail.com (S. De
mainly drawn from Science and Technology Studies, for example
using the concepts of ‘boundary object’ (Star & Griesemer, 1989)
or ‘configuring the user’ (Woolgar, 1991). Constructivism has the
merit of emphasizing that technical choices inside geoIT and geo-
graphic information systems’ (GIS) software have a fundamental
social dimension, and this constitutes an antidote to determinism
(Chrisman, 2005).

In this paper, while we agree with the idea that geoIT possesses
a crucial social dimension, we also consider that current construc-
tivist literature has overlooked what happens to geoIT during soft-
ware development stages, before applications, systems or
geographic data formats will be used in real life settings. We aim
to avoid both technological and social determinism by discussing
a long term software development process, and showing how geoIT
and organizational processes perform together. Therefore, follow-
ing a constructivist approach, our goal is to investigate some as-
pects of the development stages of geoIT with the goal of
unveiling the mutual shaping of technologies and organizational
aspects (the Full Circle) that happens during these stages. We are
of the idea that our view complements already existing construc-
tivist analyses. Indeed we fill a gap in the literature by proposing
empirically based knowledge on what happens before technologies
are adopted by end users.

GeoITs are composed of various technologies that include
hardware and software. In this paper, we focus on the latter,

http://dx.doi.org/10.1016/j.compenvurbsys.2010.09.003
mailto:stefano.depaoli@nuim.ie
mailto:Stefano.depaoli@gmail.com
mailto:g.miscione@utwente.nl
http://dx.doi.org/10.1016/j.compenvurbsys.2010.09.003
http://www.sciencedirect.com/science/journal/01989715
http://www.elsevier.com/locate/compenvurbsys


174 S. De Paoli, G. Miscione / Computers, Environment and Urban Systems 35 (2011) 173–182
particularly on the co-evolutionary relationship of GIS software
and its developers, as a case of entanglement of humans and artifacts
(Orlikowski & Scott, 2008) and of imbrication of geography and
technology (Chrisman & Harvey, 2004). Criticizing mainstream
organization studies on information systems, Orlikowski and Scott
argue that the social and the technical are not separate entities, but
that they ‘‘perform” together. Our investigation on the entangle-
ment between GIS software and its developers relies upon the re-
sults of an empirical case study of the migration of Geographic
Resources Analysis Support System (GRASS, see Neteler & Mitas-
ova, 2002) under a Free and Open Source Software (FOSS) license,
the GNU General Public License V. 2.0 (GPL hereafter).1 The events
we refer to in this paper happened mostly during the years 1999 and
2001.

What is interesting about the GRASS case study is that the
migration to the GPL license forced the GRASS developers into a ser-
ies of socio-technical negotiations. In particular, the specific and de-
clared goal of these negotiations was to substitute several software
modules/programs of GRASS (whose licenses were legally incom-
patible with the new license) with other software performing the
same operations but compatible with the GPL. From our point of
view, this migration was an occasion to follow GIS software devel-
opment practices and problems-solving. Thus, FOSS is not our re-
search focus per se, but the GRASS case study proved to be an
opportunity to unpack the black-box (Bijker, Huges, & Pinch,
1987) of GIS software development and to observe underlying so-
cio-technical logic and technological efficiency construction.

In this paper, we analyze a specific case of software substitution,
that of the code for computing the Fast Fourier Transformation (FFT
hereafter), an algorithm that computes the Discrete Fourier Trans-
formation. In GIS, the FFT is used for processing and filtering remote
sensing images. Indeed, with the adoption of the GPL, the GRASS
development team undertook a process for the migration from
the Numerical Recipes’ (Press, Teukolsky, Vetterling, & Flannery,
1988) implementation of the FFT to the FOSS library FFTW.2 By
describing the socio-technical practices undertaken by the GRASS
development team to operate this substitution, we show the entan-
glement between the organizational constraints (mainly in terms of
resources available) faced by the GRASS development team for the
development and the final shape of the technical solution.

The paper is organized as follows: first we present our theoret-
ical framework and our take on constructivism; consequently, we
describe our research design and methods. In Section 4, after intro-
ducing GRASS as an empirical case, we explain why the license
change provided a good opportunity for research to gain insights
into the black-box of GIS software development. We then move to-
wards the case study and describe the process of substitution of
the Fast Fourier Transformation software. In Section 6 we propose
reflections on the social and technical relationality in geoIT and re-
flect on how technological efficiency was shown to be an outcome
rather than a principle of GIS software development.

2. Socio-material relationality

The theoretical starting point of this paper is the following: we
consider that current constructivist contributions to literature fo-
cus more on the socially constructed nature of geoIT use, and less
on other aspects of the social construction of geoIT such as soft-
ware development. As support to this consideration, we can for in-
stance observe that the recent Journal of Information Society special
issue on geoIT (2009) did not contain papers about the actual pro-
1 The GPL license is the main Free and Open Software license used on thousands of
software programs including, among others, the well known operating system Linux.

2 FFTW stand for Fast Fourier Transformation in the West (http://www.fftw.org).
FFTW is a C subroutine library for computing the discrete Fourier transform (DFT).
duction of geoIT. The editors highlight the vitality of research on
social aspects of geoIT in the last decade:

researchers from geography and neighboring disciplines have
since tackled many key and critical issues, specifically around
the three initiatives of the societal component of the Varenius
Project: (i) place and identity in an age of technologically regu-
lated movement, (ii) measuring and representing accessibility
in the information age, and (iii) empowerment, marginalization,
and public participation geographic information systems
(PPGIS). (Ekbia & Schuurman, 2009)
This special issue includes contributions along three main
dimensions: geographical, social, and informational. They manifest
themselves in contributions on land use and decision making (Har-
vey, 2009), religious communities’ use of online environments
(Cheong, Poon, Huang, & Casas, 2009), mobile communication
and urban mobility (Kim, 2009), wireless networks and construc-
tion of places (Forlano, 2009), and Spatial Data Infrastructure and
its travel across space and time (Homburg & Georgiadou, 2009).
No article of the special issue considers, however, the social dimen-
sion of geoIT construction in terms of software development, an as-
pect of geoIT that remains therefore black-boxed.

An initial answer to the limits of social constructivism in un-pack-
ing geoIT development comes from two works by Chrisman. In a rel-
atively recent book, Chrisman (2006) describes how GIS mapping
technologies came out of Harvard in the period of the 1960s onward.
Although this book is mostly a historical account of events, Chrisman
also discusses how negotiations among a variety of actors (research-
ers, institutions) and technologies (available mapping techniques
and computing resources) lead to GIS as we know it today.

In a second work, Chrisman (2001) follows Woolgar (1991)
illustrating how GIS technological choices can configure different
users, hence giving birth to different divisions of labor within the
field of GIS practice. For example, Chrisman describes the case of
how different geographic representations based either on sepa-
rated layers (e.g. polygon overlay) or on a gestalt view of the
map (integrated terrain map view) were adopted by different com-
munities of practitioners in the field (public administration in the
first case, academia and public agencies in the second). According
to Chrisman neither of these mapping techniques can be said to
be the most accurate. However, according to the author, the pref-
erence given to the overlay technique in public administration re-
flects ‘‘administrative hierarchy, with its implicit divisions of labor
and responsibility” (p. 10), whereas the preference given to gestalt
mapping by public agencies reflects their autonomy.

A further example comes from D’Andrea and De Paoli (2008), in
which the authors show that the final configuration of a GIS tech-
nology and its users depends also on legal issues, such as copyright
licenses compatibility among GIS software components.

The two works by Chrisman (2001, 2006) and D’Andrea and De
Paoli (2008) are not entirely concerned with software development
as such, but with geoIT technologies in the broad sense (e.g. geo-
graphic representation, computational resources and research
funding or legal issues). Therefore they constitute a basis for our
constructivist view in investigating the relations and co-construc-
tion between technological development and organizations.

With this paper our aim is to fill the gap in constructivist liter-
ature – the focus on geoIT use and the rare attention given to soft-
ware production – by studying the development of software. By
doing so, we also aim at bridging a tacit division of labor between
studies on technological and on social aspects of geoIT and to con-
tributing to a better understanding of the artifacts’ co-construc-
tion. Indeed, we aim at un-packing the social dimension of GIS
source code development to add to a major theme of constructiv-
ism approaches (Bijker, 1995; Bijker et al., 1987): that the

http://www.fftw.org


3 Public Domain is a legal term that states that there is no Copyright over a work of
art, like software.

S. De Paoli, G. Miscione / Computers, Environment and Urban Systems 35 (2011) 173–182 175
efficiency of a technology is not what explains its success, rather
the efficiency (and inefficiency) of technologies need to be ex-
plained as socially (or socio-technically) constructed. We argue
that the efficiency of geoIT is an effect rather than a cause of tech-
nological and organizational drivers. Orlikowski (2000; Orlikowski
and Iacono, 2001) places the traditional dichotomy between struc-
tures and agencies at the analytical (rather than empirical) level.
Adopting such a stance, the author emphasizes how artifacts
reproduce structures through actions and, symmetrically, empha-
size if and how structures enact artifacts. Structuration theory re-
jects unilateral views based on the impact of technology on
organizations (as auditing, for instance) or the impact of organiza-
tions on technology (as explicit ‘‘users’ requirements”). Structur-
ation theory allows studying how technology enacts structures,
and how actions enable technology reciprocally. In this line of rea-
soning, Orlikowski and Barley (2001) strengthen the view on the
mutual interdependence of technology and organization by argu-
ing that Information Systems research and Organizational Studies
can learn from each other: the former by including institutional
analysis, the latter by considering the specific characteristics of IT.

In a recent work, closer to our theoretical perspective, Orlikowski
and Scott (2008, p.21) look at the strand of research on ‘‘socio-mate-
riality”. The authors argue that the socio-technical paradigm con-
ceives the social and the technical as self contained entities
interacting with each other, whereas a socio-material perspective
understands them as they exist in a mutual relation. Therefore, for
the authors, the key mechanism that produces action is not the
‘‘interaction” between human and non-human (Latour, 1987) but
rather ‘‘performativity”. In other words, for Orlikowski and Scott,
the social and technical perform the action together, so they are
‘‘entangled”. The authors also refer to Suchman (2007, p.268) who ar-
gued that socio-materiality accepts the mutual constitution of actors,
but not in the same way. In conclusion, in this paper we adopt a con-
structivist epistemology well represented by Orlikowski and Scott’s
work, and look at how geoIT and organizations are entangled in the
development process of GIS software. The technical choices from
the empirical case will be discussed by highlighting how software
(in)efficiency is ‘‘performed” by a variety of social and technical ac-
tors (what in ANT terms are defined as actants or entities): the tech-
nicalities of remote sensing, conditions pre-existing the FOSS switch,
the development team’s organizational form and actual resources.

3. Research approach

To be coherent with our theoretical framework, we adopt a
methodological principle whereby the researcher does not decide
in advance the social and technical attributes of the technological
system. Therefore, we do not decide in advance the performativity
of technology and society, but we seek to explain how these per-
form together. This also implies that the observer is required not
to impose in advance a theory to understand the socio-technical
change. Callon (1986) describes this emergent approach as follows:

‘‘the observer must consider that the repertoire of categories
which he uses, the entities which are mobilized, and the rela-
tionships between these are all topics for actors’ discussions.
Instead of imposing a pre-established grid of analysis upon
these, the observer follows the actors in order to identify the
manner in which these define and associate the different ele-
ments by which they build and explain their world, whether
it be social or natural.” (pp. 200–201)

Methodologically, our investigation of the GRASS case study
scrutinizes both software development practices and technologies
themselves, that in FOSS, by definition, are mostly carried out in
the open (Raymond & Moen, 2006).
The empirical research has been conducted through the analysis
of archived material of both online interactions (such as mailing
lists), and of the software source code. The empirical data in this
paper comes from a 3 year long in-depth investigation of the
GRASS case study (during the period 2003–2007), conducted as
part of the doctoral research of one of the authors.

GRASS, as many other FOSS projects, is mostly developed
through the means of the Internet infrastructure and by geograph-
ically dispersed development teams. All the tools that are used in
FOSS development (such as mailing lists, shared repositories of
source code, web-sites or IRC channels) are important sources of
data for empirical investigations. Specifically, the data presented
in this paper comes from the investigation of GRASS archives,
including the GRASS User Mailing List (1991–2010, GUML hereaf-
ter) and the GRASS Developers’ Mailing List (1991–2010, GUDML
hereafter) archives and source code archives. Some data also refers
to the direct participation in the mailing list discussions.

More precisely, we present data that refers to the mailing list
public discussions related to the elimination of the functions from
the Numerical Recipes implementation of the FFT and its substitu-
tion with the FFTW. The analytical approach of this research
emphasizes the accounts that are provided directly by the actors
themselves (Callon, 1986; Latour, 1988): in particular by GRASS
developers and users. Moreover, in the analysis we kept track of
how design details and the already existing software solutions
were active entities of concrete negotiations, including people’s
practices and orientations. In other words, we considered the role
of what Law (2004, p. 13) defines as the ‘‘hinterland of pre-existing
social and material realities”. In this line, adopting a concept tradi-
tionally closer to IT research, we purposefully considered the role
of the ‘‘installed base” (Hanseth & Monteiro, 1997; Monteiro &
Hanseth, 1995) to highlight the variety of shaping socio-technical
arrangements. The concept of installed base implies that technical
infrastructures always already exist in one form or another, and
that the existing elements of an infrastructure influence its future
development (Bowker & Star, 1999; Star & Bowker, 2002). Thus,
the installed base that includes not only artifacts but human hab-
its, norms, and roles (Edwards, Bowker, Jackson, & Williams, 2009,
p. 366), provides both possibilities and constraints for infrastruc-
tural evolution. Radical and abrupt changes are indeed rare and
intervention attempts need to take into account the inertia or flex-
ibility of the already existing software and organizational re-
sources. New parts and new organizational practices are
integrated into an existing installed base through the extension
of the latter or the replacement of existing parts. In this way the
installed base evolves creating inertia (self-enforcement with the
effects of path-dependence, lock-in, and possible inefficiencies)
(Hanseth & Monteiro, 1998). In addition, the distributed nature
of mandate, ownership and agency creates several obstacles for
the applicability of conventional and control-oriented manage-
ment approaches (Ciborra & Associates, 2000).
4. Brief history of GRASS

GRASS was born at the beginning of the 1980s as a small project
of the United States Army Corps of Engineering Research Labora-
tory (USACERL). The system was distributed by the USACERL as
public domain3 software. The project grew very fast. In 1993, GRASS
source code was approximately 300,000 lines, with more than 15
locations developing the system, at a development effort estimated
to be the work of five person-years (Westervelt, 2004). In 1996, how-
ever, USACERL (US Army CERL, 1996) announced its decision to stop



Fig. 1. Organizational structure of the GRASS Development Team, adapted from
Neteler (2006).

Fig. 2. A synopsis of the GRASS case study.

176 S. De Paoli, G. Miscione / Computers, Environment and Urban Systems 35 (2011) 173–182
GRASS development following a governmental decision. In 1998, a
new GRASS Development Team (GDT) was formed with the purpose
of furthering GRASS development and creating a new community of
users. In particular the new GDT wanted to continue to develop
GRASS as a FOSS. The GDT included (and still includes) a group of
volunteers affiliated to several public and private international orga-
nizations. The new development team took a structure close to the
‘‘town council” model (Cox, 1998), characterized by a small group
of programmers leading the development of a large project. This
partly differs from the classic idea of a Bazaar development (i.e. a flat
organization, with a limited centralized control and a large number
of developers), but also differs from the Benevolent Dictator model
(i.e. a single person acting as gateway to all the development deci-
sions) (Rivlin, 2003) (see Fig. 1).

The current versions of GRASS (for example GRASS 6.4) are
composed of more than eight-hundred thousands lines of source
code written in the C programming language (GDT, 2010a). The
development is currently led by a worldwide team of developers
(about 38 people, of which more than half are active) and sustained
by an estimated user base of 25–30,000 users,4 distributed all
around the world.

October 1999 has certainly been one of the milestones of the re-
cent history of GRASS, as the software was released under the
terms of the GPL license, version 2 (FSF, 1991). The GPL is well
known for a specific licensing term: the ‘‘copyleft”. The copyleft
term states that derivative works based on previous GPL’ed soft-
ware, must be GPL’ed as well. In this way the license ensures that
the source code of the software is not only always available to the
public under the same copyright conditions, but can also be mod-
ified and distributed as long as the original license’s terms remain
intact. In other words, the copyleft clause is hereditary and once
the license it is applied to a piece of software it remains on that
and on its derivative. More relevant for us here, is that GPL made
the process of software development transparent to us.

The release under the GPL has made GRASS one of the leading
FOSS geoITs world wide. Indeed, GRASS has gained world wide
interest and today is one of the founding projects of the Open
Source Geospatial Foundation (see Fig. 2).5
5. What the license shift made visible

Numerical Recipes (NRs) is the title of an influential series of
books on algorithms and numerical analysis (Press et al., 1988).
The book series contains a huge amount of material related to com-
putational methods, with examples of implementation of algo-
rithms for numerical analysis in different programming
languages. The term Numerical Recipes does not refer just to the
book series. In fact each book is always accompanied by the imple-
mentation of the algorithms, for example Numerical Recipes in C;
4 The number is an estimate based on downloads of the GRASS software.
5 See OSGeo Portal at http://www.osgeo.org.
Numerical Recipes in Fortran and so on. Indeed, as is noted on
the authors’ website:

‘‘Numerical Recipes” also refers to the copyrighted computer
software that is in those books, and also sold separately.6

For a developer the possibility to use the NRs in software, is
therefore tied up with copyright compliance. As the authors of
NRs noticed:

We receive a range of requests regarding redistribution permis-
sions, and we try to apply a consistent and straightforward pol-
icy in answering these requests.7

The NRs’ authors allow therefore the use of NRs’ software under
specific circumstances. For example the use of NRs’ software is al-
lowed in executable code for non-commercial use only, while the
distribution of the software source code of NRs’ software (still for
non-commercial use) is prohibited.8

This short digression helps to frame the empirical problem of
this paper: GRASS contained the implementation of some NRs’
algorithms. The following message, from the GRASS Developers’
Mailing List (GDML), remarks how the inclusion of NRs in GRASS
was somehow problematic because of the GPL:

had you noticed the problematic inclusion of the ‘Numerical
Recipes’ code in the now-GPL’d GRASS v5.0b4?
[GDML, 14 December 1999, http://lists.osgeo.org/pipermail/
grass-dev/1999-December/012746.html]

The use of NRs’ software in GRASS dated back to the period
when the system was still developed by the US Army. The NRs’
software in GRASS was covered by the following copyright notice:

/� Based on ‘‘Numerical Recipes in C; The Art of Scientific
Computing”
(Cambridge University Press, 1988). Copyright (C) 1986, 1988
by Numerical Recipes Software. Permission is granted for
unlimited
use within GRASS only.�/
and comes down to three relatively small functions:
‘‘egvorder” (eigsrt) function
‘‘fft” (fourn) function
‘‘jacobi” function
[GDML, 14 December 1999, http://lists.osgeo.org/pipermail/
grass-dev/1999-December/012746.html, bold emphasis added]

From this email, which was posted by a GRASS developer on the
GDML, we can see that the authors of ‘‘Numerical Recipes in C”
granted the use of three specific functions to the US Army GRASS
developers. The use of these three NRs functions was also granted
to the GRASS users. In particular, according to an email sent by the
6 From http://www.numerical-recipes.com/infotop.html.
7 From http://www.numerical-recipes.com/infotop.html.
8 From http://www.numerical-recipes.com/infotop.html.

http://lists.osgeo.org/pipermail/grass-dev/1999-December/012746.html
http://lists.osgeo.org/pipermail/grass-dev/1999-December/012746.html
http://lists.osgeo.org/pipermail/grass-dev/1999-December/012746.html
http://lists.osgeo.org/pipermail/grass-dev/1999-December/012746.html
http://www.osgeo.org
http://www.numerical-recipes.com/infotop.html
http://www.numerical-recipes.com/infotop.html
http://www.numerical-recipes.com/infotop.html


Fig. 3. Schematic representation of the FFT: it creates a relation between two series
of numbers (xn input and Xq output).

Fig. 4. Raster layer.

S. De Paoli, G. Miscione / Computers, Environment and Urban Systems 35 (2011) 173–182 177
NRs’ authors to the US Army developers (that was also reported on
the GDML), the use of these three functions was granted only for ‘‘a
non-commercial research purpose”. In addition for the NRs’ authors
it was a matter of concern to ‘‘make clear to your users [the GRASS
users] that they have permission to use the included routines �only�

with your software, �not� to transplant it to other programs”.9 (text
in square brackets added).

With the adoption of the GPL as the GRASS License arose the
problem of assessing the compatibility between the NRs’ copyright
and the new GRASS License. According to some GDT members the
agreement between the NRs’ authors and the US Army was still va-
lid. For other developers there was, however, a clear incompatibil-
ity with the GPL: indeed the NRs’ copyright notice not only
prevents users from further developing the code, but also prevents
its inclusion in other software (i.e. permission is granted for unlim-
ited use within GRASS only). This clearly clashes with the ‘‘copy-
left” clause of the GPL that requires the software to be further
modifiable for users. Hence, due to a license incompatibility, the
GDT was forced to eliminate the NRs’ software from GRASS.
5.1. How to eliminate the NRs by creating a different object

The elimination of the NRs from GRASS involved a series of so-
cio-technical negotiations between the GRASS Development Team
and the GRASS system. For example one of the NRs’ elements of
software contained in GRASS was an implementation of the algo-
rithm known as Fast Fourier Transformation (FFT hereafter). This
algorithm is a mathematical method used for the computation of
the Discrete Fourier Transformation, whose goal is to transform a
mathematical function into its frequency domain. For our discus-
sion, more important than the mathematical problem per se (see
Howell, 2001) is to consider that the Fourier Transformation cre-
ates a relation between two series of numbers. These series are
usually (but not always) composed of complex numbers.

A complex number is a real number to which it is added an
imaginary part, designated usually by the i character. Hence a com-
plex number Z is represented as Z = a + bi, where a and b are real
numbers, and i is the imaginary unit (Howell, 2001). The real num-
ber a is called the real part of the complex number, while b is called
the imaginary part. Hence, given a series of numbers xn with n = [0,
1, . . . , N � 1] we can schematically represent the Fourier Transfor-
mation as the series of numbers Xq with q = [0, 1, . . . , N � 1], as fol-
lows (see Fig. 3):

What is important for our discussion is the consideration that
the FFT creates a relation between two series of numbers, xn as in-
put and Xq as output.

In computer science, a common application of the FFT is the
manipulation of images. The FFT is indeed used for a broad range
of image processing, such as the analysis, filtering, reconstruction
and compression of images.10 For example, in Remote Sensing Tech-
niques raw images require a certain level of manipulation and cor-
rection before any interpretation may be possible (Martin, 1996;
Schowengerdt, 1997). Among these corrections and manipulations,
9 From GDML http://lists.osgeo.org/pipermail/grass-dev/1999-December/
012745.html.

10 See http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm.
the Fourier Transformation allows the identification and elimination
of periodic noises from images.

5.2. The case of the FFT

Going back to GRASS, the NRs’ implementation of the FFT (here-
after FFT-NR) was a function integrated in the mathematical library
of the system. This function was used by some GRASS programs/
modules to compute the FFT. For example the GRASS module/pro-
gram i.fft (GDT, 2010b) is an image processing program based on
the FFT-NR, that processes a single input raster map layer (input_-
image) and constructs as output the real and imaginary Fourier
components in frequency space (Neteler & Mitasova, 2002, p.
239). Hence each pixel of a raster layer acquired through a Satellite,
contains a pair of real numbers (x; y) with specific values. On this
raster layer it is then possible to compute the Fourier Transforma-
tion by using the GRASS command i.fft (see Fig. 4).

The GRASS command i.fft receives as input the raster layer, uses
the FFT-NR contained in the GRASS mathematical library and re-
turns as output two raster layers: an image composed of the real
(rxn; ryn) and an image composed of the imaginary (ixn; iyn) Fou-
rier components (see Fig. 5).

5.3. Elimination of FFT-NR

As already noticed, due to the incompatibility between the GPL
and the NRs copyright statement contained in GRASS, the GDT was
forced to eliminate the FFT-NR implementation from the system.
The GDT was however also forced to provide GRASS users with a
new solution for the computation of the FFT, a solution fully com-
patible with the new license. In particular the GDT adopted a
GPL’ed library known as the Fast Fourier Transformation in the
West (FFTW hereafter). However, this (mandatory) decision to
eliminate the FFT-NR and its substitution with the FFTW came
with some problems as described in the following email posted
on the GRASS User Mailing List (GUML):

a) adds another library dependency,

b) requires either that existing applications are re-written to
use the FFTW interface, or that we add code to convert between
the existing and FFTW interfaces (which might introduce ineffi-
ciency; I don’t know the semantics of the existing interface, so I
can’t tell).

[GUML, 09 August 2001, http://lists.osgeo.org/pipermail/grass-
dev/2001-August/003082.html]

In this message, a member of the GDT highlights some conse-
quences related to the adoption of the FFTW. First, the FFTW will
introduce a library dependency. In other words, while the NRs’
software was fully incorporated in the GRASS mathematical li-
brary, the FFTW will operate ‘‘externally”. This is a dependency, a

http://lists.osgeo.org/pipermail/grass-dev/2001-August/003082.html
http://lists.osgeo.org/pipermail/grass-dev/2001-August/003082.html
http://lists.osgeo.org/pipermail/grass-dev/1999-December/012745.html
http://lists.osgeo.org/pipermail/grass-dev/1999-December/012745.html
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm


Fig. 5. Computation of the FFT by the GRASS commands i.fft, using the FFT-NR.

Fig. 6. FFT-NR and GRASS before the GPL.

178 S. De Paoli, G. Miscione / Computers, Environment and Urban Systems 35 (2011) 173–182
situation in which software, in order to be fully functional, depends
on the functionalities of other external software. The FFTW depen-
dency is however only a secondary problem here. GRASS users can
indeed download the FFTW and install it together with GRASS.

5.3.1. Different data structures
It is the second part of the message that we have to consider

more carefully. The developer notices that the GRASS programs/
modules using the FFT-NR (such as i.fft) would have required to
be partly re-written to adhere with the FFTW data structures. An
alternative solution to rewriting the data structures of the GRASS
modules was to write a program interface (an FFT Interface) to
be placed between the GRASS modules and the FFTW library. Be-
tween these two possible options the GDT decided to adopt the
second one: they decided to write a simple program FFT Interface
that translates between two different data structures. The follow-
ing email clarifies this:

The old fft() function (NRs) used separate arrays for the real and
imaginary components, while FFTW uses an array of fftw_com-
plex values (i.e. interleaved real and imaginary components).

The old fft() function required the array dimensions to be pow-
ers of 2, while FFTW doesn’t have this requirement.

[GUML, 04 May, 2005, http://lists.osgeo.org/pipermail/grass-
dev/2005-May/018304.html]

As already described, the FFT algorithm creates a relation be-
tween an array11 of numbers as input and an array of complex num-
bers as output. The previous email messages highlight the existence
of a fundamental difference between the FFT-NR and the FFTW in
manipulating these arrays: the data structures.

In the first case (FFT-NR) the real and imaginary parts of the
complex number (both input and output) are stored using two sep-
arate arrays. For example, considering only an array X of real num-
11 An array is a type of data structure used in many programming languages that
allows to define new data types from existing types. An array is a list of records,
whose boxes are cells in the array: each cell is a variable of the same pre-existing data
type base of the array.
bers as input, we will have as output of the FFT-NR two different
arrays, one for the real Fourier part (R) and one for the imaginary
part (I) (see Fig. 6):

R ¼ ½rx1; rx2; rx3; . . . ; rxn� and I ¼ ½ix1; ix2; ix3; . . . ; ixn�

In the FFTW the data structure consists instead of a unique ar-
ray of complex numbers (called fftw_complex). Hence, with X as
input, we have as output an array Z of complex numbers (see
Fig. 7):

Z ¼ ½rx1þ ix1; rx2þ ix2; rx3þ ix3; . . . ; rxnþ ixn�

Hence, between the FFT-NR and FFTW there are two different
data structures in which the complex numbers are stored either
in two separate arrays (R and I) or in a unique array of complex
numbers (Z). The GRASS programs using the FFT-NR, such as the

http://lists.osgeo.org/pipermail/grass-dev/2005-May/018304.html
http://lists.osgeo.org/pipermail/grass-dev/2005-May/018304.html


Fig. 7. The introduction of the FFT interface, with the goal to transform between two different data structures.

S. De Paoli, G. Miscione / Computers, Environment and Urban Systems 35 (2011) 173–182 179
i.fft, did have the same data structure as the FFT-NR. In other words
the real and imaginary parts of the complex numbers were stored
by the GRASS programs/modules (such as the i.fft) using two dif-
ferent arrays. This is the reason why the GRASS development team
had the problem of either rewriting the data structure of the GRASS
modules (to make them adhere with the FFTW data structure: a
single array Z of complex numbers) or to write a program interface
(an FFT Interface) in order to transform between the two different
data structures. The GDT decided to adopt the second solution,
therefore in order to use the FFTW, as the following email remarks:

Most (or all) of the existing users of the fft() function are con-
verting data to and from the format which the old fft() function
used, and the new fft() function is converting it to or from the
format which FFTW wants.

[GUML, 04 May, 2005, http://lists.osgeo.org/pipermail/grass-
dev/2005-May/018304.html]

The following two figures (Figs. 6 and 7) try to explain the con-
tent of this email message. Before the introduction of the GPL
(Fig. 6), there was a total correspondence between the data struc-
tures of GRASS modules (e.g. i.fft) and that of the FFT-NR. The fol-
lowing figure shows this adherence by assuming (as simplification)
just one array (X) as input of the FFT-NR. We have one array X as
input and two arrays as output, one for the real part (R) and one
for the imaginary part (I). In addition it is important to note that
the FFT-NR is fully integrated inside the GRASS Math Library (i.e.
it is not a dependency).

The following figure (Fig. 7) instead, shows the situation after
the adoption of the GPL with the introduction of the FFTW. First
of all the FFTW is external to GRASS: there is therefore a depen-
dency. What is fundamental however is that the GDT added a pro-
gram ‘‘FFT Interface”. The goal of the interface is that of
transforming between the different data structures: that of the
FFTW (a single array of complex numbers) and that of the GRASS
commands (two arrays real and imaginary).
5.3.2. The memory allocation problem
The different data structures were not the only fundamental dif-

ference between the FFT-NR and the FFTW. A second problem
faced by the GDT was the following:

‘‘The old fft() function required the array dimensions to be pow-
ers of 2, while FFTW doesn’t have this requirement.”.
[GUML, 04 May, 2005, http://lists.osgeo.org/pipermail/grass-
dev/2005-May/018304.html]

According to this message, the FFT-NR requires for its execution
arrays whose dimension is the next power of 2. For example with
an array of 20 elements the FFT-NR requires an array of 32 cells
(25), that is the next power of 2 (where 24 = 16). For instance, with
a raster map of 256 � 256 pixels (28 � 28) as input, the FFT-NR pro-
cesses the image with a matrix of dimension 256 � 256. As each
pixel of the map is 32 bytes, then the execution of the FFT-NR re-
quires 256 � 256 � 32 bytes of memory. With a map of
200 � 400 pixels, the FFT-NR requires to approximate to the next
power of 2: in this case 256 � 512 � 32 bytes (28 � 29).

The FFTW does not require any array approximation. The FFTW
processes the arrays at same dimension. For example a map of
200 � 400 pixels is processed at this same dimension, 200 � 400.
However given that the GRASS modules adhere to the FFT-NR they
also required an approximation to next power of 2. The introduc-
tion of the program ‘‘FFT Interface” between i.fft and the FFTW, cre-
ated therefore a further problem, in relation to some specific
situations, as the following message well describes:

The net result of this is that code which uses fft() is wasting a lot
of memory. In the worst case, it can use almost 8 times as much
memory as is actually necessary. Padding each dimension to the
next power of 2 can result in a near-fourfold increase, while
storing two copies (the separate real/imaginary arrays plus
the interleaved array) doubles it again.
[GUML, 04 May, 2005, http://lists.osgeo.org/pipermail/grass-
dev/2005-May/018304.html]

http://lists.osgeo.org/pipermail/grass-dev/2005-May/018304.html
http://lists.osgeo.org/pipermail/grass-dev/2005-May/018304.html
http://lists.osgeo.org/pipermail/grass-dev/2005-May/018304.html
http://lists.osgeo.org/pipermail/grass-dev/2005-May/018304.html
http://lists.osgeo.org/pipermail/grass-dev/2005-May/018304.html
http://lists.osgeo.org/pipermail/grass-dev/2005-May/018304.html


180 S. De Paoli, G. Miscione / Computers, Environment and Urban Systems 35 (2011) 173–182
This message requires a few clarifications. First the program
i.fft, in order to compute the Fourier Transformation of a raster
layer, must do an operation known as memory allocation. The dy-
namic memory allocation is the allocation of an amount of physical
memory for use in a computer program during the execution of
that program. The memory allocation is a way of managing and
distributing limited memory resources among various programs
in execution. In other words with a dynamic allocation the com-
puter program establishes in advance the amount of memory it re-
quires for the execution of the task.

The i.fft program requires a memory allocation for storing the
input map. The amount of memory required by the GRASS pro-
grams (such as i.fft) for the execution of the FFT, as we have noted
before, is an approximation to the next power of 2. Hence, a map of
200 � 400 pixels requires a memory allocation of 256 � 512 �
32 bytes. For example with a map of 2049 � 4097 pixels (notice
that 2048 = 211 and 4096 = 212), the i.fft requires an allocation of
4096 � 8912 � 32 bytes (212 � 213). Therefore, with the require-
ment of having arrays with a dimension which is power of 2, we
have the first problem: in the worst case (e.g. 2049 � 4097 vs.
4096 � 8912) the programs (e.g. i.fft) require an allocation of al-
most double the amount of memory.

The second inefficiency relates to the operations of the program
‘‘FFT Interface”. In order to make the transformation between the
two different data structures (that of FFTW and that of for example
i.fft), the program ‘‘interface” allocates itself a certain amount of
memory. In other words the interface must allocate a sufficient
quantity of memory to transform the array of complex numbers
Z (the FFTW data structure) in the two arrays R (for real numbers)
and I (for imaginary) (the FFT-NR data structure) and vice versa
(and so the allocation of memory doubles).

Both these inefficiencies (the power of 2 ‘‘rule” and the double
allocation of memory of the ‘‘interface”) lead, in the worst case, to a
memory allocation eight times bigger than that effectively needed
for computing the Fourier Transformation with GRASS. Both these
problems could have been solved if the data structure of FFTW and
the GRASS modules (e.g. i.fft) were the same.

5.3.3. Users facing the inefficiency
At this point it is interesting to see how the memory allocation

inefficiency was in some rare occasions affecting the GRASS use.
The following email, coming from the GRASS User Mailing List, is
the example (one of the few though) of a user having problems
in executing the FFT with GRASS:

I figured out, that reducing the size of a window will make i.fft
work.

My original regions, where it segfaults:

[. . .]

rows: 11923

cols: 25151

The region where it seems to work well:

[...]

rows: 5445

cols: 6519

[GUML, 10 June 2004, http://lists.osgeo.org/pipermail/grass-
dev/2004-June/014825.html]

In this message a user complains about a problem in using the
i.fft command: with a raster layer of 11923 � 25151 pixels (original
regions) as input of the i.fft, the user obtains a ‘‘segfault” error.12
12 A segmentation fault occurs when a program attempts to access a memory
location that it is not allowed to access.
However, with a reduction of the raster layer dimension to
5445 � 6519 pixels, the error disappears. A developer explains the
reasons for the segfault error as follows:

So, you would actually need:

16384 � 32768 � 32bytesð4 doublesÞ ¼ 17179869184ð16 GbÞ

for the original resolution, or:

8192 � 8192 � 32bytesð4doublesÞ ¼ 2147483648ð2GbÞ

for the reduced resolution.
[. . .]
The memory requirements could be reduced to two doubles per
cell (without scaling up to a power of two) if i.fft used FFTW
directly, rather than using the fft() interface.
[GUML, 10 June 2004, http://lists.osgeo.org/pipermail/grass-
dev/2004-June/014830.html]

In other words, with big maps the program interface that trans-
forms between the two data structures might require more memory
than that effectively available on the user’s computer: in the first
case (with 16,384 rows and 32,768 columns) it requires an alloca-
tion of 16 GB of RAM, more than the memory normally available
on the computer at the time of these messages. As a result the user
cannot compute the Fourier Transformation on the original map.

5.4. Was this an inefficiency of GRASS?

At this point of the paper we have described in full details the
negotiations undertaken by GRASS Development Team in order
to eliminate the FFT-NR from GRASS. We have in particular high-
lighted how the solution adopted by the GDT (the use of FFTW
with a program interface wrapping between two different data
structures) was somehow inefficient requiring in the worst case,
an allocation of eight times more memory than that effectively re-
quired. Of course in most cases the users would not notice or
would not even be affected by the existence of this inefficiency.
In any case, at this point arises, perhaps, a legitimate question:
why the GDT chose an inefficient solution there being other more
efficient (i.e. rewrite the GRASS modules with a different data
structure) solutions available?

One of the authors of this paper was invited by one of the GRASS
developers to discuss this question/problem directly on the GRASS
Developers’ Mailing List. The following is one of the answers
obtained:

The efficiency issues with the fft() interface are but a single
instance of a more widespread issue, namely that the GRASS
codebase is extremely large relative to the number of active
developers. [GDML, 26 February 2007, http://lists.osgeo.org/
pipermail/grass-dev/2007-February/029520.html]

Interestingly, the GDT pointed out that the inefficiency was just
a consequence of an organizational problem, rather than the conse-
quence of a purely technical problem: the introduction of the ‘‘FFT
Interface” was the easiest solution for the problem (less time con-
suming). Indeed, implementing the ‘‘FFT Interface” required lim-
ited effort compared with that required for rewriting the data
structures. In fact, according to the previous message, the number
of active developers in GRASS is limited compared with the dimen-
sion of the system codebase.13 Therefore it might be that in some
13 500,000 lines of source code in 2005, and a number of active developers around
10 people.

http://lists.osgeo.org/pipermail/grass-dev/2004-June/014825.html
http://lists.osgeo.org/pipermail/grass-dev/2004-June/014825.html
http://lists.osgeo.org/pipermail/grass-dev/2004-June/014830.html
http://lists.osgeo.org/pipermail/grass-dev/2004-June/014830.html
http://lists.osgeo.org/pipermail/grass-dev/2007-February/029520.html
http://lists.osgeo.org/pipermail/grass-dev/2007-February/029520.html


S. De Paoli, G. Miscione / Computers, Environment and Urban Systems 35 (2011) 173–182 181
cases the solutions that require minor effort are preferred, in partic-
ular in those situations in which the changes are related to non-fun-
damental components of the system (as it was with the Fourier
Transformation). In addition, in most cases this inefficiency would
have not directly affected the GRASS users (only in the worst cases
there is indeed a significant inefficiency). Hence, the decision to
implement a program interface between the library FFTW and the
GRASS commands was the easiest and least time consuming solu-
tion. This is, if we follow Law’s argument (2004), part of the pre-
existing hinterland of GRASS:

When the switch to FFTW was discussed, efficiency (in terms of
memory usage) really wasn’t a major factor. The main factors
were the amount of developer effort required to make the
change and the addition of FFTW as a dependency.

[GDML, 26 February 2007 http://lists.osgeo.org/pipermail/
grass-dev/2007-February/029521.html]

The decision to implement the ‘‘FFT Interface” was then due to
what the GDT considers a major issue (compared to the computer’s
memory consumption): the limited human resources available for
the GDT. In addition the GDT members made us notice that the
interface was indeed memory consuming, but that the library
FFTW was more efficient than the FFT-NR in term of CPU usage.
In 2007 the GDT decided finally to rewrite the data structures of
the GRASS programs using the FTTW library (such as i.fft), to make
them adhere with the data structure of the library.

6. Discussion

From the case study of this paper, we have seen how the entan-
glement of a series of social and technical elements ‘‘performs” ac-
tion. The main elements are the following: the software pre-
existing the shift to FOSS (NRs) and its data structures and memory
allocation processes, the new license, the GRASS developers, the
new software (FFTW) and its data structures, the computational
power they have (and expect the users to have) and users. All these
elements constitute a ‘‘socio-materiality” – a seamless web (Bijker,
1995) – that performs a GIS software solution. Empirically, this is
how we substantiate the human–artifact relationality in geoIT.

In the case of GRASS, the shift from the non-FOSS Numerical
Recipes’ implementation of the FFT (contained in GRASS pre-
GPL), toward the FOSS library FFTW shows in particular how social
choices and pre-existing technical solutions are intertwined in
ways that shape the final form of a technology, as the installed base
concept itself captures. The choice to implement a program inter-
face as gateway to transform data between two different data
structures (from a single array of complex number to two separate
arrays, one for the real part and the other for the imaginary part), is
indeed a social choice (MacKenzie & Wajcman, 1999), as different
solutions were available to programmers. Further, the elimination
of the NRs FFT was also a consequence of compliance with legal
requirements of software copyright protection and especially
requirements of software licenses. This, we argue, shows how ac-
tual software development practices contrast with the well-estab-
lished rhetoric of technical efficiency of algorithms as a principle. It
is interesting how seeing efficiency as a possible outcome intro-
duces a shift between the computational and human resources. So-
cio-technical conditions may lead to inefficient solutions, but with
understandable reasons: organizational resources are more scarce
then technical, whereas the rhetoric of efficiency originated when
computing resources were extremely expensive. Such cultural leg-
acy was reinforced by neighboring disciplines including informa-
tion systems and management studies. The case of GRASS shows
that the contrary might have become true: an idea that was also
partly suggested by Raymond (1999) in his well known and influ-
ential essay, The Cathedral and the Bazaar. Moreover, the influence
exercised by pre-existing GRASS software (for instance the legacy
of the data structures of programs) illustrates the role of the ‘‘in-
stalled base”: how pre-existing socio-technical elements are an ac-
tive actor in IT development. This is in line with Chrisman and
Harvey’s (2004) contribution that different GIS implementations
follow a variety of different technological roots. This leads to the
need to investigate historically the intertwining of technological
and social factors in geoIT.

As any programmer can confirm, this case illustrates a common
(but overlooked by research) aspect of GIS development, the differ-
ent weights that are given to computational and organizational re-
sources, and their entanglement with a preference which is often
given to computational resources, especial when – as in FOSS pro-
jects – organizational resources are scarce and not materially re-
warded. As shown for example by Chrisman (2006) the tradeoff
between computer storage and computational power is often an his-
torical problem whose investigation requires historical comparisons
and empirical research.

At a first level, we see that the social and the technical perform
together: dividing them does not help the analysis, whereas keep-
ing them together enriches our understanding of GIS software
development. This consideration comes as a confirmation of the
strength of a constructivist approach to GIS. Indeed, in the case de-
scribed in this paper the efficiency of GIS software proved to be an
outcome (effect), not a driver (cause) of socio-technical organiza-
tion. This supports one of the principles of the social construction
of technology proposed by Bijker (1995): that efficiency is indeed
an outcome of the seamless web of humans and artifacts. More
in the details, the case analyzed in this paper shows the mutual
constitution of the social and the technical. Indeed, the interaction
between software, algorithms, software licenses, developers and
users shapes the actual course of action, driving towards the devel-
opment of a gateway (the program interface). This is in line with
the ANT view, which highlights the relationality of human and
non-human actors (Latour, 2005).

7. Conclusions

As final remarks, we highlight how software efficiency has
implications on the broader organizational level, so we confirm
that we do not claim primacy of labor force scarcity in determining
GIS software development. For example long computational time
has a number of organizational consequences such as organiza-
tional processes’ redefinition and IT procurement, among others.
Along this line, socio-technical trade-offs can be analyzed and dis-
cussed in the light of scalability of geoIT applications. We are not
looking into this black-box here.

Rather, we refer back to Orlikowski and Scott (2008) to pinpoint
how the approach of socio-material relationality supports an
investigation of the rhetorical basis of the efficiency argument.
Also, we would like to link this work to Orlikowski and Barley
(2001) who claimed that information systems and organizational
research can learn from each other. They argue that engineering
is oriented to define what works, so functionality is the legitimiz-
ing source for this kind of research. Social science approaches are
instead closer to the traditional science epistemology, whose aim
is explaining and predicting rather than doing. In the latter case,
explanatory power – aimed at pushing the boundaries of what is
known – legitimizes research. Following this argument we can
summarize that mainstream research on geoIT sees technology
as a determinant in explaining how things are the way they are,
and in prescribing how they can be changed and also their impact
in changing society. Constructivism emphasized the role of people
and organizations in shaping geoIT. We claim that the human–arti-
fact relationality is a suitable view which avoids both technological

http://lists.osgeo.org/pipermail/grass-dev/2007-February/029521.html
http://lists.osgeo.org/pipermail/grass-dev/2007-February/029521.html


182 S. De Paoli, G. Miscione / Computers, Environment and Urban Systems 35 (2011) 173–182
and social determinisms that have characterized the debate (Chris-
man, 2005) since very early stages of GIS software development.
Acknowledgements

We thank Markus Neteler and the whole GRASS project. With-
out them this research would have not been possible. We also
thank Vincenzo D’Andrea and Ishwari Sivagnanam for reading
early versions of this manuscript. We are indebted with Jan Rigby
for the English proofreading.
References

Bijker, W. E., Huges, T. P., & Pinch, T. J. (Eds.). (1987). The social construction of
technological systems: New directions in the sociology and history of technology.
Cambridge, MA: MIT Press.

Bijker, W. (1995). On bicycles, backelites, and bulbs. Cambridge: MIT Press.
Bowker, G. C., & Star, S. L. (1999). Sorting things out: Classification and its

consequences. Cambridge: MIT Press.
Callon, M. (1986). Some elements of a sociology of translation: Domestication of the

scallops and the fishermen of St. Brieuc Bay. In J. Law (Ed.), Power, action and
belief: A new sociology of knowledge (pp. 196–233). London: Routledge and
Kegan Paul.

Cheong, P. H., Poon, J. P. H., Huang, S., & Casas, I. (2009). The internet highway and
religious communities: Mapping and contesting spaces in religion-online. The
Information Society, 25(5), 291–302.

Chrisman, N. (2001). Configuring the users: Social division of labor in GIS software.
<http://chrisman.scg.ulaval.ca/Present/Configuring.pdf>.

Chrisman, N. R. (2005). Full circle: More than just social implications of GIS.
Cartographica, 40(4), 23–35.

Chrisman, N. R. (2006). Charting the unknown: How computer mapping at Harvard
became GIS. Redlands, CA: ESRI Press.

Chrisman, N. R., & Harvey, F. (1998). Boundary objects and the social construction of
GIS technology. Environment and Planning A, 30(9), 1683–1694.

Chrisman, N. R., & Harvey, F. (2004). The imbrications of geography and technology:
The social construction of geographic information systems. Geography and
technology (pp. 65–80). Kluwer Academic Publishers.

Ciborra, C., & Associates (2000). From control to drift: The dynamics of corporate
information infrastructures. Oxford: Oxford University Press.

Cox, A. (1998). Cathedrals, bazaars and town councils. <http://slashdot.org/features/
98/10/13/1423253.shtml>.

D’Andrea, V., & De Paoli, S. (2008). Geografia del potere e licenze software: le licenze
e la stabilizzazione della conoscenza. In S. Gherardi (Ed.), Le tecnologie tra lavoro
e apprendimento (pp. 84–112). Bologna: Il Mulino.

Edwards, P. N., Bowker, G. C., Jackson, S. T., & Williams, R. (2009). Introduction: An
agenda for infrastructure studies. Journal of the Association for Information
Systems, 10(5), 364–374.

Ekbia, Hamid R., & Schuurman, N. (2009). Introduction to the special issue on
geographies of information society. The Information Society, 25(5), 289–290.

Forlano, L. (2009). WiFi geographies: When code meets place. The Information
Society, 25(5), 344–352.

Free Software Foundation (1991). GNU General Public License 2.0. <http://
www.gnu.org/copyleft/gpl.html>.

Goodchild, M. F. (1998). Geographic information systems. Progress in Human
Geography, 12(4), 560–566.

GRASS Developers Mailing List Archive (1991–2010). <http://lists.osgeo.org/
pipermail/grass-dev/>.

GRASS Development Team (2010a). Geographic Resources Analysis Support System
(GRASS) software, Version 6.4.0. Open Source Geospatial Foundation.

GRASS Development Team (2010b). Geographic Resources Analysis Support System
(GRASS) programmer’s manual. Open Source Geospatial Foundation.

GRASS Users Mailing List Archive (1991–2010). <http://lists.osgeo.org/pipermail/
grass-user/>.

Hanseth, O., & Monteiro, E. (1998). Understanding information infrastructure. <http://
www.ifi.uio.no/*oleha/Publications/bok.html>.

Hanseth, O., & Monteiro, E. (1997). Inscribing behavior in information infrastructure
standards. Accounting, Management and Information Technology, 7(4), 183–211.

Harvey, F. (2000). The social construction of geographical information systems.
International Journal of Geographical Information Science, 14(8), 711–713.

Harvey, F. (2009). Of boundary objects and boundaries: Local stabilization of the
Polish cadastral infrastructure. The Information Society, 25(5), 315–327.

Homburg, V., & Georgiadou, Y. (2009). A tale of two trajectories: How spatial data
infrastructures travel in time and space. The Information Society, 25(5), 303–314.

Howell, K. R. (2001). Principles of Fourier analysis. Chapman and Hall/CRC.
Kim, S. (2009). Seoul searching: How do mobile communication technologies alter

urban mobility? The Information Society, 25(5), 353–359.
Latour, B. (1987). Science in action. How to follow scientists and engineers through

society. Cambridge: Harvard University Press.
Latour, B. (1988). The pasteurization of France and irreductions. Cambridge, Mass:
Harvard University Press.

Latour, B. (2005). Reassembling the social: An introduction to actor-network theory.
Oxford: Oxford University Press.

Law, J. (2004). After method: Mess in social science research. London: Routledge.
Martin, D. J. (1996). Geographic information systems: Socioeconomic applications (2nd

ed.). London: Routledge.
MacKenzie, D. A., & Wajcman, J. (Eds.). (1999). The Social Shaping of Technology (2nd

ed.). Philadelphia: Open University Press.
Monteiro, E., & Hanseth, O. (1995). Social shaping of information infrastructure: On

being specific about the technology. In W. Orlikowski, G. Walsham, M. R. Jones,
& J. I. DeGross (Eds.), Information technology and changes in organizational work
(pp. 325–343). Chapman and Hall.

Neteler, M. (2006). Community based software development: The GRASS GIS project.
Presentation at the University of Trento, Italy, 30 November, 2006. <http://
www.slideshare.net/markusN/community-based-software-development-the-
grass-gis-project>.

Neteler, M., & Mitasova, H. (2002). Open source GIS: A GRASS GIS approach. Boston:
Kluwer Academic Publishers.

Orlikowski, W. (2000). Using technology and constituting structures: A practice lens
for studying technology in organizations. Organization Science, 11(4),
404–428.

Orlikowski, W., & Scott, S. (2008). The entangling of technology and work in
organizations. London School of Economics and Political Sciences, Innovation
Group, Working Papers Series 168.

Orlikowski, W. J., & Barley, S. R. (2001). Technology and institutions: What can
research on information technology and research on organizations learn from
each other? Management Information Systems Quarterly, 25(2), 145–166.

Pickles, J. (Ed.). (1995). The ground truth: The social implications of GIS. New York: The
Guilford Press.

Orlikowski, W., & Iacono, S. (2001). Research commentary: Desperately seeking the
‘‘IT” in IT research—A call to theorizing the IT artifact. Information Systems
Research, 12(2), 121–134.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1988). Numerical
recipes in C. New York: Cambridge University Press.

Raymond, E. (1999). The cathedral and the bazaar. FirstMonday, 3(3). <http://
firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/578/499> (2
March 1998).

Raymond, E., & Moen, R. (2006). How to ask questions the smart way. <http://
floss.syr.edu/Presentations/oscon2006/4_How%20To%20Ask%20Questions%
20The%20Smart%20Way.pdf>.

Rivlin, G. (2003). Leader of the free world: How Linus Torvalds became benevolent
dictator of Planet Linux, the biggest collaborative project in history. In Wired
magazine, Issue 11.11, November, 2003. <http://www.wired.com/wired/
archive/11.11/linus.html>.

Schowengerdt, R. A. (1997). Remote sensing models and methods for image processing
(2nd ed). San Diego: Academic Press.

Schuurman, N. (2002). Women and technology in geography: A cyborg manifesto
for GIS. The Canadian Geographer, 46. <http://www.questia.com/
googleScholar.qst;jsessionid= LJQF2rnQ2871h8jrhfhtxfwNv2knK21HyLph2rcG
7s0SRG2v1d2L!-2073591579!-797291915?docId=5002516570>.

Schuurman, N., & Pratt, G. (2002). Care of the subject: Feminism and critiques of
GIS. Gender, Place and Culture, 9(3), 291–299.

Star, S. L., & Bowker, G. C. (2002). How to infrastructure. In L. Lievrouw & S.
Livingstone (Eds.), Handbook of new media (pp. 230–245). London: Sage.

Star, S. L., & Griesemer, J. (1989). Institutional ecology, ‘translations’, and boundary
objects: Amateurs and professionals in Berkeley’s Museum of Vertebrate
Zoology. Social Studies of Science, 19(3), 387–420.

Suchman, L. (2007). Human–machine reconfigurations: Plans and situated actions.
Cambridge: Cambridge University Press.

US Army CERL (1996). Announcements. <http://web.archive.org/web/
19970619195255/www.cecer.army.mil/announcements/grass.html>.

Westervelt, J. (2004). GRASS roots. In Proceedings of the FOSS/GRASS users conference,
Bangkok, Thailand, 12–14 September, 2004.

Woolgar, S. (1991). Configuring the user: The case of usability trials. In J. Law (Ed.), A
sociology of monsters: Essays on power, technology and domination (pp. 58–97).
London: Routledge.
Glossary

ANT: Actor-Network Theory
FFT: Fast Fourier Transformation
FFTW: Fast Fourier Transformation in the West
FOSS: Free and Open Source Software
GDT: GRASS Development Team
GPL: General Public License
GRASS: Geographic Resources Analysis Support System
GDML: GRASS Developers Mailing List
GUML: GRASS User Mailing List
NRs: Numerical Recipes

http://chrisman.scg.ulaval.ca/Present/Configuring.pdf
http://slashdot.org/features/98/10/13/1423253.shtml
http://slashdot.org/features/98/10/13/1423253.shtml
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://lists.osgeo.org/pipermail/grass-dev/
http://lists.osgeo.org/pipermail/grass-dev/
http://lists.osgeo.org/pipermail/grass-user/
http://lists.osgeo.org/pipermail/grass-user/
http://www.ifi.uio.no/*oleha/Publications/bok.html
http://www.ifi.uio.no/*oleha/Publications/bok.html
http://www.slideshare.net/markusN/community-based-software-development-the-grass-gis-project
http://www.slideshare.net/markusN/community-based-software-development-the-grass-gis-project
http://www.slideshare.net/markusN/community-based-software-development-the-grass-gis-project
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/578/499
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/578/499
http://floss.syr.edu/Presentations/oscon2006/4_How%20To%20Ask%20Questions%20The%20Smart%20Way.pdf
http://floss.syr.edu/Presentations/oscon2006/4_How%20To%20Ask%20Questions%20The%20Smart%20Way.pdf
http://floss.syr.edu/Presentations/oscon2006/4_How%20To%20Ask%20Questions%20The%20Smart%20Way.pdf
http://www.wired.com/wired/archive/11.11/linus.html
http://www.wired.com/wired/archive/11.11/linus.html
http://www.questia.com/googleScholar.qst;jsessionid=LJQF2rnQ2871h8jrhfhtxfwNv2knK21HyLph2rcG7s0SRG2v1d2L!-2073591579!-797291915?docId=5002516570
http://www.questia.com/googleScholar.qst;jsessionid=LJQF2rnQ2871h8jrhfhtxfwNv2knK21HyLph2rcG7s0SRG2v1d2L!-2073591579!-797291915?docId=5002516570
http://www.questia.com/googleScholar.qst;jsessionid=LJQF2rnQ2871h8jrhfhtxfwNv2knK21HyLph2rcG7s0SRG2v1d2L!-2073591579!-797291915?docId=5002516570
http://web.archive.org/web/19970619195255/www.cecer.army.mil/announcements/grass.html
http://web.archive.org/web/19970619195255/www.cecer.army.mil/announcements/grass.html

	Relationality in geoIT software development: How data structures and organization perform together
	Introduction
	Socio-material relationality
	Research approach
	Brief history of GRASS
	What the license shift made visible
	How to eliminate the NRs by creating a different object
	The case of the FFT
	Elimination of FFT-NR
	Different data structures
	The memory allocation problem
	Users facing the inefficiency

	Was this an inefficiency of GRASS?

	Discussion
	Conclusions
	Acknowledgements
	References
	Glossary


