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Abstract

Spatial phenomena are subject to scale effects, but there are rarely studies addressing such effects 

on spatially embedded contact networks. There are two types of structure in these networks, 

network structure and spatial structure. The network structure has been actively studied. The 

spatial structure of these networks has received attention only in recent years. Certainly little is 

known whether the two structures respond to each other.

This study examines the scale effects, in terms of spatial extent, on the network structure and the 

spatial structure of spatially embedded contact networks. Two issues are explored, how the two 

types of structures change in response to scale changes, and the range of the scale effects. Two sets 

of areal units, regular grids with 24 different levels of spatial extent and census units of three levels 

of spatial extent, are used to divide one observed and two reference random networks into multiple 

scales. Six metrics are used to represent the two structures.

Results show different scale effects. In terms of the network structure, the properties of the 

observed network are sensitive to scale changes at fine scales. In comparison, the clustered spatial 

structure of the network is scale independent. The behaviors of the network structure are affected 

by the spatial structure. This information helps identify vulnerable households and communities to 

health risks and helps deploy intervention strategies to spatially targeted areas.
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1 Introduction

Human contact networks play a critical role in disease dispersion, as repeatedly stressed in 

reports on some of the most dangerous communicable diseases, such as SARS, Avian Flu 

(H5N1), and Ebola (Chan 2014; Ferguson et al. 2005; Ferguson et al. 2006; Riley et al. 

2003). A ‘contact network’ refers to a network of human contacts, where nodes represent 
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individuals and edges represent contact relationships between these individuals (Newman 

2010). Understanding the properties of contact networks helps us gain insights into how 

communicable diseases disperse through a population (Eames and Keeling 2003; Keeling 

and Eames 2005; Newman 2002; Smith 2006).

Disease dispersion is inherently a spatial process (Bian 2013; Bian et al. 2012). A contact 

network, once projected into space, becomes a spatially embedded network where nodes are 

projected according to, for example, individuals’ home and workplace locations and edges 

are projected according to the contact relationship between individuals. The spatial 

characteristics of disease dispersion can be readily studied in such networks (Zhong and 

Bian 2016).

Disease dispersion is inherently a spatial process, while scale is involved in all spatial 

phenomena. Spatial resolution and spatial extent are two common connotations of spatial 

scale. Spatial resolution is the size of the finest distinguishable areal grains that collectively 

constitute a study area. It represents the level of detail that is of interest to researchers. 

Spatial extent is the size of a study area that consists of a large number of areal units (Bian 

and Walsh 1993; Lam and Quattrochi 1992; Turner et al. 1989). It represents the spatial 

context of an investigation.

The effect of spatial resolution commonly refers to changes in phenomena properties when 

areal units are aggregated to different levels, while keeping the same study area. A typical 

example is the well-known ‘modifiable areal unit problem’ (MAUP) (Fotheringham 1989; 

Jiang and Sui 2014; Liu et al. 2014; Openshaw 1983; Openshaw and Taylor 1979). In 

comparison, the effect of spatial extent refers to changes in phenomena properties in 

response to enlarged study areas, while keeping the same resolution (Bian and Walsh 1993; 

Lam and Quattrochi 1992). Many studies are based on an arbitrarily selected spatial extent, 

and results may not be generalizable to studies of different extents (Turner et al. 2001; Wu 

and Wu 2013). Between the two connotations, the effect of spatial extent is less studied, and 

collectively, there are rarely studies addressing the scale effects on network properties.

Network structure is the most important network property, as it determines how nodes are 

connected and affects the dynamics of epidemics (Eubank et al. 2004; Keeling and Eames 

2005; Newman 2010; Smith 2006). Spatially embedded contact networks have two sets of 

structures, the network structure and the spatial structure. The network structure has been 

actively studied, while the spatial structure of contact networks has received attention only in 

recent years. Little is known whether the two structures respond to each other and whether 

using one could infer the behavior of the other (Barthélemy 2011; Bian 2013; Riley 2007; 

Tang and Bennett 2010).

Further, the networks are known for their resistance in structures when a fraction of nodes or 

edges are removed (Albert et al. 2000; Buldyrev et al. 2010; Callaway et al. 2000; Gao et al. 

2014; Liu et al. 2011). Most resistance studies, however, have focused on simulated random 

networks. Results may not be applicable to complex yet common structures in empirically 

observed networks (Holme 2004; Holme et al. 2002). Empirical network studies, on the 

other hand, indeed focus on actual networks, but seldom on their resistance properties 

Gao and Bian Page 2

Comput Environ Urban Syst. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Karrer and Newman 2010; Newman 2009). Neither kind of study has looked into the 

network resistance to spatial structures.

This study aims to examine the scale effects, in terms of changing spatial extent, on the 

network structure and the spatial structure of contact networks. Specifically, we evaluate (1) 

the changes in the two contact network structures in response to changes in scale, and (2) the 

ranges of scale at which contact networks are scale dependent. To achieve these goals, three 

networks, one observed and two randomly structured, are partitioned into multiple levels of 

‘unit’ networks, each in a smaller, independent spatial extent. The network structure and the 

spatial structure of the unit networks are compared across scales, where the two structures 

are represented by six network indices. Two sets of areal units, one set of regular grid and 

one set of irregularly shaped census unit are used to support the intended scale study.

Findings of this study provide a better understanding of the properties of contact networks at 

multiple scales. This knowledge could help researchers and policy makers design scale-

adaptive strategies to control and prevent communicable diseases effectively.

The remainder of this article is organized as follows. Due to the number of concepts 

involved in the subsequent discussion, the following background section describes the 

network structure and the spatial structure, along with the six network metrics. Section 3 

introduces the observed contact network data. Section 4 describes the three networks, the 

two sets of areal units, and the division of networks into unit networks at multiple scales. 

Section 5 evaluates the scale effects on the networks, and Section 6 summarizes the findings.

2 Background

The network structure and the spatial structure of networks refer to how nodes are connected 

from the network and spatial perspectives, respectively. Component size, clustering 

coefficient, and average path length are the essential set of metrics used to describe the 

structure for various networks, including spatially embedded contact networks (Albert et al. 

2000; Kovacs and Barabasi 2015; Liu et al. 2011; Newman 2010; Watts and Strogatz 1998). 

Two additional metrics are considered in this study to measure the spatial structure, the 

statistical distribution of edge distance and the statistical distribution of the distance of the 

lost edges when dividing networks into smaller area. Each metric is described below.

Component is a cluster of nodes within a network. All nodes within a cluster are directly or 

indirectly (through a chain of other nodes) connected to all other nodes within the cluster, 

but disconnected with nodes in other clusters (Newman 2010). A network can have multiple 

components. The number of nodes in a component defines its size. The component is a 

global measurement of how cohesively a network is connected. Two metrics are commonly 

used to express component size, the relative size of the largest component (denoted as S) and 

the average size of other components (denoted as <s>) (Newman 2010; Wasserman and 

Faust 1994). The relative size of the largest component is the ratio of the size of the largest 

component to the size of the network:
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(1)

where nmax is the size of the largest component, and n is the size of the network (the total 

number of nodes in the network). The average size of other components is defined as:

(2)

where si is the size of component i, and c is the total number of components in the network. 

A greater S value indicates a more cohesive network, while a smaller <s> value also 

indicates the same. For cohesive networks, a large S value usually accompanies a small <s> 

value. Otherwise, for fragmented networks, both S and <s> values can be low.

The clustering coefficient of a node is the number of connections between its direct 

neighboring nodes, divided by the number of all possible connections between these nodes. 

This metric represents local clustering by measuring how tightly a node’s neighbors are 

clustered together (Watts and Strogatz 1998). Equation 3 expresses the clustering coefficient 

ci of node i as:

(3)

where ki is the number of neighboring nodes of i, and ei is the number of connections 

between the neighboring nodes. The clustering coefficient of an entire network is the 

average over the clustering coefficients of all nodes:

(4)

A higher cc means a stronger locally clustered structure. Within a component, there may 

exist a number of highly localized clusters.

The path length is the number of consecutive edges between a pair of nodes. Among all 

possible paths between the two nodes, the one with the shortest length is called the shortest 

path. The average path length of the entire network is the average of the shortest paths 

between all possible pairs of nodes (Watts and Strogatz 1998). This metric measures the 

efficiency of how a node can be connected from any other node in the component. It is 

defined as:

(5)
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where l(vi, vj) is the length of the shortest path between nodes vi and vj. A shorter l implies a 

more efficiently connected network structure. As an absolute measurement, this metric is 

sensitive to network size when the network is divided into multiple levels of smaller size. To 

eliminate this effect and be consistent with the relative scale of S and c, l is standardized as 

the relative average path length l’:

(6)

where lmax is the diameter of the network, i.e. the maximum of all shortest path length in a 

network (Watts and Strogatz 1998).

The statistical distribution of edge distance (Dist) in a network measures the spatial structure 

(Barthélemy 2011). A negatively skewed distribution indicates the dominance of short 

edges, thus a spatially clustered structure, while a positively skewed distribution implies a 

spatially sparse network. Otherwise a normal distribution indicates a spatially random 

network. When the original network is divided into multiple levels of unit networks in 

smaller spatial extent, those edges that extend across boundaries of the spatial extent are 

eliminated, while those within the spatial extent are preserved. In this sense, Dist is the 

distribution of remaining edges at each scale. The response of Dist to scale change may 

indicate whether the spatial structure is resistant to edge removal or not. The statistical 

distribution of distance of the lost edges (Loss), the second spatial metric, is considered the 

complement to Dist because it is the difference in Dist between the original network and the 

network at a specific scale. The six indices S, <s>, cc, l’, Dist, and Loss, are used to analyze 

the structure of contact networks.

3 Contact network

The contact network used in this study was constructed previously by Bian et al. (2012) for a 

residential area in a metropolitan community in the Northeastern US. This area covers 495 

census blocks, 72 census block groups, and 22 census tracts in an area of approximately 

4,800m * 3,700m. The network consists of 64,726 individuals. Each individual is assigned 

to a family and most individuals are also assigned to a workplace (including schools). The 

individuals, households, workplaces (including schools), and society-wide network were 

constructed using a wide range of data, such as demographic, social-economic, occupational, 

commuting, income, vehicle ownership, workplace type, and spatial distributions of 

households and workplaces.

The constructed households confirmed census statistics. The constructed co-workers 

confirmed multiple sets of public information, such as census statistics, a regional household 

survey, and a regional commuting survey (Bian et al. 2012). Simulated influenza epidemics 

using this contact network showed a good agreement with CDC’s weekly report for an 

influenza epidemic for the study area (Bian et al. 2012).

There are two types of contact relationships between individuals. One type is the contact 

between family members and another is between co-workers. The network represents 
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individuals as nodes and the contact relationships between them as edges, resulting in a total 

of 64,726 nodes and 194,683 edges. The two types of relationships are treated as family 

edges (93,474) and co-worker edges (101,209), respectively. To examine the scale effects, 

the contact network is projected into space. Nodes are projected according to their home 

locations, and all nodes that represent members of a family share an identical location 

(Figure 1). Edges are projected into space according to the location of their associated 

nodes. The distance of the family edges is zero. A co-worker edge links two individuals who 

work in the same workplace but may reside at two different home locations. These co-

worker edges vary in distance. The properties of this network, called an observed network, 

along with two other networks, are discussed in the following text.

4 Methods

In order to investigate the scale effects on the structures of the networks, this study divides 

networks into multiple scales and examines if and how their properties change with scales. 

The three networks are the observed network as discussed above, a random-node network, 

and a random-edge network. Two sets of areal units, regular grids and census units, are 

applied to divide the three networks into multiple scales. The six network structure metrics 

are analyzed and compared between the three networks and between the two sets of areal 

units. The three networks are discussed first below, followed by the discussion of the two 

sets of areal units, and then the division of networks.

4.1 Three networks

Two random networks, a random-node network and a random-edge network, are generated 

to systematically examine the network structure and the spatial structure of contact 

networks. As properties of random networks are controllable, they are commonly used as 

references to study behaviors of observed networks, and research findings can then be 

extended to a broad range of networks (Latapy et al. 2008; Liu et al. 2011; Luo et al. 2014; 

Ruths and Ruths 2013; Salathé and Jones 2010). The two random networks are designed to 

have the same basic properties as the observed network in terms of three constraints. The 

three networks use an identical number of nodes, an identical number of edges, and an 

identical distribution of ‘degree’ of the observed network. The degree is the number of 

neighbors of a node. The statistical distribution of node degree is a basic constraint of the 

network structure (Freeman 2004; Newman 2010; Wasserman and Faust 1994).

The random-node and random-edge networks preserve the network structure and the spatial 

structure of the observed networks, respectively, while altering the other (Figure 2). 

Specifically, the random-node network alters the spatial structure of the observed network by 

randomizing node locations. The associated edge location and the statistical distribution of 

edge distance change according to the new locations of nodes. Yet, the random-node 

network maintains an identical network structure as the observed network in terms of how 

nodes are connected (Figure 2b). In contrast, the random-edge network alters the network 

structure by randomly shuffling edges between nodes, while keeping the locations of nodes. 

The random-edge network maintains an identical spatial structure as the observed network 

by following the same statistical distribution of edge distance (Figure 2c).
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Current network randomization algorithms are only concerned with the network structure, 

not the spatial structure (Barthélemy 2011; Newman 2010). This study devises a spatially 

explicit randomization algorithm to address the joint probability distribution of the network 

structure and the spatial structure for the two random networks (Figure 2). Each of the two 

random networks is generated 1,000 times, and the six metrics are calculated for each 

simulation of the two networks. The average values of the metrics are used to represent the 

properties of the two random networks for the subsequent analysis. The summary statistics 

in Table 1 illustrate the properties of the three networks before they are divided (Loss is not 

reported here, because it is only available after the networks are divided). The shared and 

distinctive network structure and spatial structure properties among the three networks may 

subject them to different scale effects.

4.2 Two sets of areal units

Two sets of areal units, regular grids and census units, are used to divide the networks. Using 

the regular grids, the study area is divided into a total of 24 levels of regular grids ranging 

from 100m * 100m to 2400m * 2400m using 100m increments. The minimum cell size is 

comparable to the size of a census block. The maximum cell size is the largest possible area 

that can be used to divide the study area into multiple cells. Each level represents a scale of 

spatial extent. Because the outer boundary of the regular grids is not consistent with that of 

the study area, the grids include both empty cells and cells that partially overlap with the 

study area. The empty cells are discarded. For the partial cells, the metric values are 

computed according to the proportion of the cell that falls within the study area.

The census units at three scales, including blocks, block groups, and tracts, are employed 

because they are a well-established means to organize many socio-economic and 

demographic data. In addition, they are spatially explicit and available at multiple scales. 

The average size of blocks, block groups, and tracts are equivalent to the 100m * 100m, 

300m * 300m, and 600m * 600m cells, respectively.

4.3 Division of networks

During the division, those edges that extend across boundaries of spatial extent are 

eliminated, while those within the areal units are kept. This results in a greater number of 

smaller-sized unit networks at each finer scale. Each unit network is an independent network 

in an isolated study area of smaller spatial extent. Each unit network has its own network 

structure and spatial structure. The values for the six metrics (S, <s>, cc, l’, Dist, and Loss) 

are calculated for each unit network. Changes in the properties of unit networks across 

scales of spatial extent are evaluated first for each network, and then compared between the 

three networks and between the two sets of areal units.

5 Results and discussion

Given the two sets of areal units and the three networks, the properties of unit networks are 

analyzed for the following six (2 * 3 = 6) combinations of areal units and networks: (1) 

regular grids combined with the observed network, the random-node network, and the 

random-edge network, and (2) census units combined with the observed network, the 
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random-node network, and the random-edge network. The three combinations associated 

with the regular grids are discussed first, followed by the three combinations with the census 

units.

5.1 Regular grids

Regular grids + observed network—The values of the four network structure metrics, 

i.e. S, <s>, cc, and l’, and the two spatial structure metrics, i.e. Dist and Loss, for all unit 

networks are plotted against the 24 cell sizes in Figure 3. Because there are 24 sets of edge 

distance distributions, one for each grid size, for illustration clarity, Dist and Loss for cell 

sizes of 600m * 600m, 1200m * 1200m, and 2400m * 2400m, are shown in Figures 3e-f. 

Figure 3(e) also includes Dist of the three networks before they are divided.

The S, <s>, cc, and l’ values of the observed network (red lines, Figures 3a-d) vary with 

scale, showing a general trend of scale dependence. The S curve rises rapidly up to a 

characteristic scale of 0.6 km2, and begins to level off afterwards. On the other hand, the 

<s>, cc, and l’ values decrease with scale, and their variations correspond reversely to the S 
curve (Figures 3a-d). The metric values collectively indicate that the unit networks at fine 

scales are globally fragmented (low S), locally clustered (high cc), inefficient (high l’), and 

consequently robust against disease dispersion. Beyond 0.6km2, all four metrics stabilize, 

behaving independently of scale change. The network structure at these coarser scales is 

more cohesive (higher S), remains clustered (similar cc), and is more efficient (lower l’), 
thus are more vulnerable to disease dispersion.

Dist appears to be independent of scale. Although absolute quantities of edge distance 

change (a lesser number of edges and shorter distances at finer scales), the response of Dist 
to the scale change is invariant. This suggests that the spatial structure of the unit networks is 

resistant to edge loss across scales. The Dist distribution shows a strong distance-decay 

pattern. It peaks at 0m and diminishes at approximately 800m or shorter. The peak reflects 

the large number of 0-distance family edges, which are not affected when the network is 

divided into smaller spatial extents. The second peak between 0-800m is caused by a large 

supply of short co-worker edges. The 800m diminishing point is equivalent to the 

characteristic scale of 0.6km2. Such a short-edge dominant pattern indicates that the unit 

networks are highly clustered in space at all scales. Spatially clustered networks facilitate 

short distance disease dispersion and lead to an epidemic surge in small areas.

Loss, as a complement to Dist, is the difference in edge distance distribution between the 

original network and the unit networks at a given scale (Figure 3f). Although absolute 

quantities of the lost edge distance change with scale, the response of Loss to scale change 

persists through scales. Loss provides supplementary evidence to the behavior observed in 

Dist, i.e. scale independence, spatial clustering, and resistance to edge loss. The two metrics 

imply that, unlike the network structure that is scale dependent in a scale range 

(0.01-0.6km2), the spatial structure of the unit networks are independent of scale changes.

Regular grids + random-node network—For the random-node network (green lines, 

Figure 3a-d), its network structure is also scale dependent, but in a different manner from 

that of the observed network. At the fine scale range of 0-1.4km2, the unit networks are 
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extremely fragmented (S close to 0 and low <s> value), have barely any cluster (cc value 

close to 0), and are extremely inefficient (l’ value close to 1). In contrast, beyond the 

characteristic scale of 1.4km2, the unit networks are more cohesive (higher S and <s> 

values), clustered (higher cc value), and efficient (lower l’ value). Collectively, the behavior 

of the random-node network gradually approaches that of the observed network at coarse 

scales.

Dist of the random-node network appears to be independent of scale. While absolute 

quantities of edge distance change, its negatively skewed normal distribution persists across 

all 24 scales (4 are shown in Figure 3e), showing resistance to edge loss. Its peak at 1,200m 

corresponds to the 1.4km2 characteristic scale. The randomization of node locations 

lengthens the edge distance randomly (Table 1), shown as a normal distribution (Figure 3e). 

The random-node network breaks away from the spatially clustered structure in the observed 

network and is a spatially scattered network. Loss offers supplementary evidence to the unit 

network properties as observed in Dist behavior. In contrast to the network structure of the 

random-node network that is scale independent, the spatial structure is independent of scale 

changes.

Regular grids + random-edge network—For the random-edge network (blue lines, 

Figures 3a-d), its network structure, represented by S, <s>, cc, and l’ curves, are in parallel 

to those of the observed network, but considerably deviated from each other. The 

characteristic scale is much finer than that of the observed network. The unit networks of the 

random-edge network are much more cohesive (much higher S and much lower <s>), much 

less clustered (much lower cc), and mostly less efficient (lower l’) (Table 1).

In terms of spatial structure metrics, Dist and Loss, the behavior of the random-edge 

network is almost identical to that of the observed network. The spatial structure seems to be 

independent of scale and resistant to the edge removal.

5.2 Census units

Figures 4a-d show the four network structure metrics, S, <s>, cc, and l’, of all unit networks 

plotted against the size of three types of census units (red symbols in different shape and 

shade). The two spatial structure metrics, Dist and Loss, at each census scale are shown in 

Figures 4e-f, respectively (red solid lines in three shades).

The network structure metrics of all three networks show scale dependence across census 

scales, in terms of S, <s>, cc, and l’ (Figures 4a-d). This trend coincides with the scale 

dependence for regular grids at the corresponding scale range, mostly at fine scales (Figures 

3a-d). The two spatial structure metrics, Dist and Loss, on the other hand, are independent of 

scale. The spatial structure of the three networks, either clustered or scattered, is resistant to 

edge loss (Figures 4e-f). This trend is also consistent with that of the regular grids (Figures 

3e-f). The behaviors of all three networks show good agreement between the regular grids 

and the census units as far as the network structure and the spatial structure are concerned. It 

seems that scale has inherent effects on networks regardless of the shape of areal units used 

to divide the networks. The behaviors of all three networks show good agreement between 

the regular grids and the census units as far as the network structure and the spatial structure 
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are concerned. It seems that scale has inherent effects on networks regardless of the shape of 

areal units used to divide the networks.

5.3 Discussion

The two random networks as references help reveal the unique properties of the observed 

network. When comparing to the reference network with randomized network structure 

(random-edge network), the observed network tends to be ‘dense’, thus cohesive, clustered, 

and efficient, and is sensitive to scale change at fine scales (Section 5.1). When comparing to 

the reference network with randomized spatial structure (random-node network), the 

observed network is spatially clustered, and the clustering pattern is resistant to edge loss, 

thus it is independent of scale (Figure 3e).

The two structures are closely related. Spatially, the co-worker edges are mostly short 

(<800m), in addition to the 0-distance family edges (Figure 3e). This can be attributed to 

urban dwellers’ preference of being in close proximity to schools and workplaces (Ben-

Akiva and Lerman 1985). Those who live close to each other tend to go to the same schools 

or workplaces. In other words, the closer ones are more connected.

These short distance co-worker edges are mostly affected when the network is divided into 

fine scales where the co-worker edges begin to be eliminated (Figures 3e-f). This 800m or 

smaller clustering spatial structure may affect the behavior of the network structure. At the 

characteristic scale at 800m or above, the behavior of the network structure stabilizes 

(Figure 3). Here, the 800m is considered the ‘operational scale’ where the fundamental 

process (co-worker connection) operates at (Bellier et al. 2007; Bian and Walsh 1993; Fortin 

et al. 2012). Scale effects of networks cannot be studied on their network structure alone 

without considering their spatial structure.

However, the spatial structure alone is not sufficient to infer the network structure. The 

observed network and the random-edge network share an identical spatial structure at the 

original scale (Table 1), but their network structures are different at all scales (Figures 4a-d). 

For example, in terms of how nodes are connected, all family nodes (or co-worker nodes) 

are directly connected to all other nodes within a family (or a workplace), resulting in many 

redundant edges in the observed network. Taking a family of five members as an example, 

the observed network requires a total of n(n-1)/2 edges, i.e. 10 edges. A more concise 

network structure requires as few as (n-1), or 4 edges. The random-edge network randomly 

redistributes the redundant family and co-worker edges to connect a greater number of other 

nodes into a greater sized largest component than that of the observed network (Table 1).

Similarly, the network structure alone is not sufficient to infer the spatial structure. The 

observed network and the random-node network possess an identical network structure, but 

their spatial structure differs. The observed network is highly clustered in space, in contrast 

to the scattered spatial structure of the random-node network (Figures 3e). A comprehensive 

understanding of the scale effects requires examination of both structures.

The property of ‘the closer ones are more connected’ discussed above represents the network 

structure, spatial structure, and the relationship between the two structures for contact 
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networks. This property is distinct, but not unique to contact networks. Many other spatially 

embedded networks, such as human mobility networks, mobile phone networks, social 

media networks, and friendship networks, show distance-decay effects similar to the 

observed network discussed in this study, although to different degrees (Brockmann et al. 

2006; Crandall et al. 2010; Eagle et al. 2009; González et al. 2008; Jiang et al. 2009; Liu et 

al. 2012; Liu et al. 2014). The findings about the dual structure and the relationship between 

them may be generalized to these networks, among many others.

The cohesive, clustered, and efficient network structure and highly clustered spatial structure 

of contact networks are vulnerable to disease dispersion. Yet, these properties carry 

important implications in the design of scale-adaptive strategies to control and prevent the 

dispersion of communicable diseases, such as multi-scale household and community 

quarantine strategies (Bajardi et al. 2011; Camitz and Liljeros 2006; Epstein et al. 2007; 

Ferguson et al. 2006; Longini et al. 2005; Mao 2013). The characteristic scale, such as 

0.6km2 (800m), may help determine the scope of quarantine.

6 Conclusions

This study examines the scale effects, in terms of spatial extent, on the network structure and 

the spatial structure of spatially embedded contact networks. Two issues are explored, how 

the two types of structure change in response to scale change, and the range of scale effects. 

In terms of the network structure, the properties of the observed network are sensitive to 

scale changes at fine scales. In comparison, the clustered spatial structure of the observed 

network is scale independent.

Results of this study inform the user of the selection of an appropriate scale for network 

studies. Both the network structure and spatial structure are vital in this selection. Further, 

this study establishes the relationship between the network structure and the spatial structure 

of contact networks. The behaviors of the network structure are affected by the spatial 

structure, but either one is insufficient to infer the other. The analysis of spatial structure of 

contact networks provides valuable information about the spatial pathways of disease 

dispersion and the affected areas. This information helps identify households and 

communities that are vulnerable to health risks and helps deploy intervention strategies to 

spatially targeted areas.
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Highlights

• We evaluate the changes in the network structure and the spatial 

structure of spatially embedded contact networks in response to 

changes in scale, and the ranges of the scale effects.

• Two spatially random networks are generated to serve as references 

with respect to an observed network to study the scale effects.

• The network structure of the observed network is sensitive to scale 

change at fine scales, while the spatial structure is scale independent.

• We establish the relationship between the two structures, the behaviors 

of the network structure are affected by the spatial structure.
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Figure 1. 
The study area and its division (blue lines). Dots are locations of individual nodes. (a) The 

study area divided by the regular grids, (b) the study area divided by census units, (c) co-

worker edges of three different families, and (d) an illustration of family edges (blue) and 

co-worker edges (red). The 0-distance family edges are intentionally exaggerated for 

illustration clarity.
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Figure 2. 
An illustration of the observed network (a), the random-node network (b), and the random-

edge network (c). To illustrate the 0-distance family edges (red edges in 2a), the physical 

distance between family members are intentionally exaggerated.
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Figure 3. 
(a) The relative size of the largest component S (%), (b) the average size of other 

components <s>, (c) the clustering coefficient cc, (d) the relative average path length l’, (e) 

the statistical distribution of edge distance Dist (including that of the three original 

networks), and (f) the statistical distribution of the lost edge distance Loss. Figures 3a-d also 

show S, <s>, cc, and l’, respectively, averaged over census blocks, block groups, and tracts.
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Figure 4. 
(a) The relative size of the largest component S, (b) the average size of other components 

<s>, (c) the clustering coefficient cc, (d) the relative average path length l’, (e) the statistical 

distribution of edge distance Dist, and (f) the statistical distribution of the lost edge distance 

Loss for all three networks using census units. The two inserts in (e) show the enlarged Dist 
for block groups and blocks at their short edge distance portion. The two inserts in (f) are the 

enlarged Loss for block groups and tracks at their short edge distance portion.
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Table 1

Summary statistics of the three networks.

Observed
network

Random-node
network (average)

Random-edge
network (average)

Basic properties

Number of nodes 64,726 64,726 64,726

Number of edges 194,683 194,683 194,683

Average degree 6.01 6.01 6.01

Network
structure

Relative size of
the largest
component (%)

83.70 83.70 92.37

Average size of
other components 1.51 1.51 1.02

Clustering
coefficient 0.43 0.43 0.08

Relative average
path length 0.30 0.30 0.39

Spatial Structure Average edge
distance (m) 327.11 1687.02 327.11
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