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Abstract 

Due to the increasing availability of georeferenced microdata in several fields of research, 

surveys can benefit greatly from the use of the most recent spatial sampling methods. These 

methods allow to select spatially balanced samples, which lead to particularly efficient 

estimates, by incorporating the distances among the exact locations of statistical units into the 

design. Unfortunately, since locations of units are rarely exact in practice due to 

imperfections in the geocoding processes, the implementation of spatial sampling designs is 

actually often limited. This paper aims at demonstrating that spatial sampling designs can be 

implemented even when spatial information is not completely accurate. In particular, by 

means of a Montecarlo sampling simulation study about the estimation of water pollution, it 

is proved that the use of spatial sampling methods still lead to more spatially balanced 

samples, and more efficient estimates, also when the geocoding of population is not exact. 
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1. Introduction 

Thanks to the development of technology for data collection and transmission, the 

availability of georeferenced microdata has increased rapidly over the last decades. Careful 

analysis of this kind of data has led, among other things, to a better understanding of spatial 

interactions essential, for example, to design policies, to study climate and environmental 

phenomena or to predict the diffusion of diseases (see, among others, Burrough, 2001; 

Boulos, 2004; Rushton et al., 2006; Dale and Fortin, 2014). 

More recently, georeferenced microdata have also proved to be very useful in designing 

sample surveys. The spatial information contained in the georeferenced microdata, which is 

the exact point-level geographical coordinates of all subjects in the study population, can 

indeed be exploited to select samples that are spread in the space and/or spatially balanced. It 

has been shown (see e.g. Grafström and Tillé, 2013) that spatially balanced samples lead to 

particularly efficient estimates, especially when dealing with environmental and health data. 

In light of this, a recent stream of literature (Grafström et al., 2011; Grafström, 2012; 

Grafström and Tillé, 2013) proposed spatial sampling procedures that incorporate the 

distances among the exact locations of subjects into the design and assure that the selected 

samples are spatially balanced and spread in the geographic space. 

Unfortunately, however, locations of units are rarely exact in practice, due to two kinds of 

problem. First, especially in studies on populations, it is necessary to protect the privacy of 

individuals (VanWey et al., 2005). Second, the geo-referencing process is not lacking of 

errors due to incomplete geo-coding. The first aspect is particularly significant in health 

studies, in which  protecting form the so-called disclosure risk is a relevant issue (Hunderpool 

et al., 2010). For example, it is important to hide the identity of an individual affected by an 

infectious disease in order to avoid his/her exclusion from the society. In these cases, errors 

in location of units are imposed, while trying to preserve the spatial distribution of variables 

but minimizing in the same time the possibility to identify a unit. Several approaches are used 

to geo-mask positions, such as, among others, truncating, swapping and displacing of 

coordinates (VanWey et al., 2005; Curtis et al., 2006; Allshouse et al., 2010). 

The second above-mentioned problem of geo-referenced data, on whose the present paper is 

focused, concerns locational errors induced by imperfection in data capture procedures. It 

happens especially in zones not perfectly covered by satellite connections to GPS, such as 

isolated or mountainous lands, for which spatial data are missing or they almost invariably 

contain locational errors (Zimmerman, 2008; Zimmerman and Li, 2010). Geocoding 



techniques commonly used are essentially based on the comparison between the observed 

addresses and referenced addresses databases of the area under observation, which require the 

availability of correct reference data and a robust model for the verification of addresses 

(Yang et al., 2004; Zandbergen, 2008; Cozzi and Filipponi, 2012; Jacquez, 2012). 

Sometimes, for various technical reasons, the geocoding process of all records of a dataset 

cannot be exact. Usually, for a share of subjects, that in some cases is not negligible, it is not 

possible to identify the exact spatial coordinates. This should results in georeferenced 

microdata with missing spatial data. However, since normally there is always some spatial 

information coarser than the point-level geographical coordinates observed for the subject 

that fail to be geocoded (e.g. an areal-level location such as the Zip code), the most frequent 

situation in practice is that unprecise georeferenced microdata are collapsed in a single point 

on the map, e.g. centroid of a region (Zimmerman, 2008). 

In principle, spatial sampling designs that make use of the distances among the exact 

locations of subjects cannot be implemented if the population georeferenced microdata are 

characterized by unprecise locations. In such a case, indeed, spatial information are uncertain 

and cannot be used properly within the sample selection procedure and hence a non-spatial 

sampling design should be implemented instead. In spite of this, the present paper aims at 

verifying whether spatial sampling designs may still be implemented, using coarser areal-

level information when the exact location is missing, assessing if they still lead to more 

efficient estimates than the non-spatial sampling designs. In particular, as a case study, we 

investigate the effects of locational errors on total population estimation of water pollutants 

by means of a simulation experiment based on data known in literature.  

The paper is structured as follow. Section 2 contains a detailed explanation of spatial 

sampling methods for georeferenced microdata. Section 3 presents a simulation study based 

on data about the pollution of river water to assess the effects of locational errors on the 

efficiency of spatial sampling designs. Finally, conclusions and suggestions for the use of 

spatial sampling in practice are given in Section 4.  

 

 

2. Spatial sampling designs 

In many environmental and health survey studies, samples characterized by some form of 

spatial autocorrelation in the target variable are not desirable. It is indeed renowned that 



dependence among the subjects can be a nuisance, especially if the focus of the analysis is the 

estimation and inference of a population total. The state-of-the-art of spatial sampling 

methods (such as the Local Pivotal Methods by Grafström et al., 2011 and the Spatially 

Correlated Poisson Sampling by Grafström, 2012) overcomes this problem by selecting 

samples in which the subjects are well spread in space, so that it is likely that the sample 

distribution of the target variable is not spatially autocorrelated (Grafström and Tillé, 2013). 

Well spread, or spatially balanced, samples have proven to lead to relatively more efficient 

estimates (Grafström, 2012).  

Sampling on spatial populations has been implemented for many years by using classic 

sampling schemes including random, clustered and systematic sampling. These techniques, 

which are applicable at multiple levels in a designed spatial hierarchy (e.g. cities, urban areas, 

neighborhoods, regions), do not consider the information about the locations of units in the 

sample selection and hence do not guarantee that samples are spatially balanced. 

In recent years, due to both the availability of georeferenced microdata and the progresses in 

computational statistics, new sampling methods have been proposed in the literature that 

exploit distance between population units. Some examples are traceable in a massive 

literature based on the use of contiguous units (see, among others, Hedayat et al., 1988; 

Wright and Stufken, 2008; Mandal et al., 2009) and particularly in some complex methods, 

described below. 

The DUST (Dependent Areal Units Sequential Technique, Arbia, 1993) is the first sequential 

technique that incorporates spatial correlation in the sample selection. The hypothesis behind 

DUST is to have a first observable variable ! in not-overlapped population units ", which 

must be estimated through sampling experiments and by using auxiliary information about 

second-order properties of a second variable #. The two variables could be linked with 

different kinds of relationships, such as # could be ! in a previous period or # can be a proxy 

of a known variable !, without sampling errors. By using this procedure, sampling units have 

the same probability to be drawn that increases when their distance from the sampled areas 

increases (Arbia, 1993).  

Another sampling method is the GRTS (Generalized Random Tesselation Stratified, Stevens 

and Olsen, 2004), which uses a function that maps the two-dimensional space into one-

dimensional space, preserving the spatial order of units. The area under observation is 

divided into cells and then a mapping function runs to assign an order to the units. The 

sample is then selected in one dimension, using systematic $%& sampling and then mapped 



back in two dimensions. The method could be implemented for point, linear and areal frames 

and it has been the main spatial method used in environmental studies for many years 

(Stevens and Olsen, 2004). 

More recently, some new methodologies that use explicitly the distances between the point-

level locations of units in the selection procedure have been proposed in the statistical 

literature, such as the Local Pivotal Methods (Grafström et al., 2011) and the Spatially 

Correlated Poisson Sampling (Grafström, 2012). These methodologies are described in detail 

below and they will be used in the simulation study presented in Section 4. 

 

 

3.1  Local Pivotal Methods 

Local Pivotal Methods (LPMs, Grafström et al., 2011) are an extension of the Pivotal method 

(Deville and Tillé, 1998) to case of georeferenced microdata. The Pivotal method is a random 

sampling method in " steps. Its working can be briefly described as follows. At each step, 

the inclusion probabilities are updated for two units and the sampling outcome is decided for 

at least one of the two. When the updated inclusion probabilities $'( are equals to 0 or 1, the 

unit * is finished and it may not be chosen again. The updating procedure is repeated with 

these updated inclusion probabilities until all units are finished (Deville and Tillé, 1998). 

Grafström et al. (2011) generalize the pivotal method to include the information about the 

point-level locations of units. LPMs update the inclusion probabilities according to the 

updating rule of Deville and Tillé (1998) but for two nearby units at each step. To choose the 

two nearby units * and +, the authors proposed two different methods, the LPM1, which is 

more balanced, and the LPM2, which is computationally simpler and fast. The LPM1 

randomly chooses the first unit * and then the nearest neighbor unit + (if two or more units 

have the same distance to *, the method randomly choses between them). If + is not the 

nearest neighbor of *, the method restarts from the beginning. When all units have been 

visited, the method stops. To select a sample, LPM1 has an expected number of computations 

at most proportional to ",. LPM2 works similarly to LPM1, but the inclusion probabilities 

are directly updated with the pivotal method updating rule. The expected number of 

computations needed to select a sample is, in this case, proportional to "-, reducing 

consistently the computation time (Grafström et al., 2011). The Local Pivotal Methods are 

two algorithms easy to implement. They both produce samples spread in a space and spatially 

balanced.  



3.2  Spatially Correlated Poisson Sampling 

Grafström (2012) proposed a spatial extension of Correlated Poisson Sampling (Bondesson 

and Thorburn, 2008) to select spatially balanced samples. The aim of Spatially Correlated 

Poisson Sampling (SCPS) is to select equal or unequal inclusion probabilities samples, that 

are spread over a spatial population, by using a distance function ./*, +1 between the point-

level locations of population units. The method visits all units (one by one and all at once) 

and decides whether one should be sampled, with the intent to create negative correlation 

between the inclusion indicators, so that units close in distance rarely appear simultaneously 

in a sample.  

Within the Correlated Poisson Sampling, the sampling outcome is first decided for unit 1, 

then for unit 2, and so on up to unit +. If unit 1 is included with probability $2/31 = $2, the 

method set I2 = 1 and otherwise I2 = 0. After each step, the inclusion probabilities for the 

remaining units in the list are updated, according to a specific rule, described as, for $7
/31 =

$7, with + ≥ 1, $7
/'1 = $7

/'921 − ;<' − $'/'921=>792/'1 , with + ≥ * + 1, and * = 1, 2, … , ", where 

>79'
/'1  are weights, depending on <2,<-, … , <'92, but not on <' (Bondesson and Thorburn, 2008). 

Gradually, the inclusion probability vector is updated in " steps, until it becomes the vector 

of inclusion indicators. Weights >7/'1depend on the previous units sampling outcomes, but not 

on the future outcomes. Positive weights give negative correlations between the inclusion 

indicators and negative weights give positive correlation. The described method uses a 

probability function (Grafström, 2012), which can be written as 

 

Pr/I = x1 =&;π(/(921=
)*;1 − π(/(921=

29)*,				x ∈ -0, 1./
/

(02
. 

 

The SCPS incorporates a known distance between units and it can be definable as a set of 

strategies to choose weights for Correlated Poisson Sampling. Two strategies have been 

suggested to choose weights: maximal weights and Gaussian preliminary weights (for details, 

see Grafström, 2012). 

Samples obtained with SCPS are spread in the space, independently by the order in which the 

units appear, because it considers only the distance between them. 

 



3. A simulation study on water quality 

The ‘Meuse’ dataset is available in the R package ‘gstat’. The dataset contains information 

about top soil heavy metals concentrations and others soil and landscape variables. Each 

observation is also provided with geographical information about the precise locations of the 

collected sample in a flood plain area of approximately 15m x 15m of the river Meuse, near 

the Stein village (Pebesma, 2011). The dataset is composed by 164 units collected in the area. 

The goal of our study is to estimate the total values of zinc, lead, cadmium and copper in 

order to evaluate the pollution of water. The Meuse is one of the biggest rivers in Europe, 

crossing some industrialized areas of three countries and its water is used both for fishing and 

drinking. As it is known, water polluted by heavy metals can cause many problems for 

human and animal health (Alberign et al., 1999; Schilderman et al., 1999). Here we consider 

the 164 samples as the reference population to conduct our study, as seen in Grafström and 

Tillé (2013). 

First of all, it has been verified whether the variables of interest are characterized by 

autocorrelation by means of the empirical semivariogram. For a target variable 2, the 

empirical semivariogram shows the quantity 34.'75 = 2
- 42' − 275

- on the 2-axis, where 

.'7	denotes the spatial distance that separates the units * and +. A variable 2 is characterized 

by spatial autocorrelation if 34.'75 shows some evident peaks. Figure 1 shows the empirical 

semivariograms for the four top soil heavy metals concentrations obtained by averaging the 

34.'75 values within distance bands.  

  



 
Figure 1. Empirical semivariograms of interesting variables (zinc, lead, cadmium and copper). 

 

  

 
 

 

As can be noted, 34.'75 has relevant picks for all four considered variables between 1000 and 

2000 metres. This evidence indicates that exists a small-scale spatial trend amongst units for 

the heavy metals under study. Therefore, in this context, spatial sampling designs may have a 

powerful role in the estimation of population totals because they avoid the selection of close 

units with similar information content by spreading samples in the space. 

The present study focuses on the consequences on the estimation of the total value of a 

variable when the population is a georeferenced microdata with coarsened locations. First, we 



use the dataset provided with geographical locations of units, without any perturbation in 

their positions. Then, after computing the centroid of the region under study, as identified 

with a cross in Figure 2-a, we proceed in perturbing three proportions of locations, such as 

10% (Case A, Figure 2-b), 20% (Case B, Figure 2-c) and 30% (Case C, Figure 2-d). The 

proportions of units incorrectly positioned on the territory have been selected randomly over 

the population and they have been positioned on the centroid of the area under study, in order 

to reproduce real situations in which is not possible to locate all units correctly. 

 

 

Figure 2. Population of units for the Meuse dataset and three proportions of incorrect locations. 
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          (c)               (d) 

 

The simulation study consists on selecting samples of 50 units, with equal inclusion 

probabilities, by using simple random sampling without replacement (SRSWOR) and LPM1, 

LPM2 and SCPS. We compute the Horvitz-Thompson estimator for the total (Horvitz and 

Thompson, 1952) by means of 10,000 Monte Carlo simulations (Robert and Casella, 2004) to 

estimate the population totals of heavy metals concentrations. The Horvitz-Thompson 

estimator has the form 

#678 =92'
$'

:

'02
 

where iy is the value of a target variable in the population (in the present case topsoil metals 

concentrations) and iπ  is the value of the inclusion probability of sample unit *.  
The results of the simulation study are shown in Table 1. We compute, as a measure of 

efficiency, the relative Root Mean Square Error (rRMSE) for all sampling methods and for 

all the different scenarios. The rRMSE has been estimated as 

 

;<=>? =
@∑ 4#6' − #'5

-/"&*C:D'E

#'
 

 



where #' represents the total of the target variable in the population and "&*C represents the 

number of Monte Carlo simulations. 

 

 
Table 1. Relative RMSE results. Sample size equal to 50 units. 

 

  Relative Root Mean Square Error 

Design          zinc  lead cadmium copper 

SRSWOR No Locations 0.0958 0.0884 0.1043 0.0710 

LPM1 Precise Locations 0.0747 0.0655 0.0851 0.0523 

LPM2 Precise Locations 0.0720 0.0633 0.0857 0.0518 

SCPS Precise Locations 0.0680 0.0608 0.0795 0.0487 

LPM1 Case A 0.0745 0.0658 0.0863 0.0524 

LPM2 Case A 0.0740 0.0643 0.0870 0.0521 

SCPS Case A 0.0699 0.0614 0.0816 0.0504 

LPM1 Case B 0.0751 0.0676 0.0857 0.0539 

LPM2 Case B 0.0768 0.0686 0.0879 0.0559 

SCPS Case B 0.0726 0.0660 0.0833 0.0530 

LPM1 Case C 0.0875 0.0777 0.0921 0.0644 

LPM2 Case C 0.0855 0.0754 0.0916 0.0627 

SCPS Case C 0.0832 0.0743 0.0884 0.0616 

 

 

As can be noted, the values of rRMSE gradually increase when the proportion of coarsened 

locations increases, but still remain lower than the values for SRSWOR. Due to these 

considerations, we have made a comparison between spatial designs and SRSWOR, firstly to 

evaluate if and how much it is convenient the use of spatial sampling in case of accurate 

locations, and then to assess if it remains convenient also with increasing proportions of 

inaccurate locations.  

The gain in efficiency could be expressed as 

F1 − G;<=>?DHIJ'IK	LMD'N:;<=>?OPOQRP
ST100/%1 



which represents the percentage improvement in terms of efficiency, with respect to simple 

random sampling without replacement. Results are shown in Table 2. 

 

 
Table 2. Gain in efficiency of spatial sampling designs respect to SRSWOR.  

 

Design          zinc  lead cadmium copper 

LPM1 Precise Locations 22.05% 25.88% 18.40% 26.22% 

LPM2 Precise Locations 24.85% 28.33% 17.85% 27.06% 

SCPS Precise Locations 29.05% 31.18% 23.78% 31.39% 

LPM1 Case A 22.23% 25.57% 17.32% 26.17% 

LPM2 Case A 22.75% 27.19% 16.63% 26.60% 

SCPS Case A 27.06% 30.49% 21.74% 29.01% 

LPM1 Case B 21.62% 23.47% 17.84% 24.08% 

LPM2 Case B 19.88% 22.35% 15.75% 21.22% 

SCPS Case B 24.22% 25.33% 20.11% 25.26% 

LPM1 Case C 8.68% 12.11% 11.68% 9.23% 

LPM2 Case C 10.76% 14.72% 12.20% 11.58% 

SCPS Case C 13.11% 15.88% 15.25% 13.20% 

 

 

The results showed in Table 2 highlight that in all cases the use of spatial sampling designs is 

more efficient than simple random sampling. This evidence confirms the notion that when 

information about the point-level spatial locations of subjects is available, it is always 

convenient and efficient to consider it the in sampling selection procedure (Dickson et al., 

2014). SCPS algorithm gives the best results for these data, both when locations are exact and 

coarsened. As expected, when the proportion of incorrect locations increases, the efficiency 

in total estimation decreases. However, all results are highly efficient with respect to 

SRSWOR. 

Moreover, in case of equal inclusion probability, it is possible to evaluate the 

representativeness index of a design, by computing the spatial balance of samples drawn 

(Grafström and Schelin, 2013). 



The spatial balance could be computed following the Voronoi polygons approach (Stevens 

and Olsen, 2004). If * is a unit of a sample &, a Voronoi polygon contains all units close in 

distance to *. A unit can be included only in one polygon, so that if it has equal distance to 

more units of a sample, it could be located in more than one polygon and its inclusion 

probability will be divided between two polygons. Let 3' the sum of the inclusion 

probabilities of units located in the * − Vℎ Voronoi polygon, then ?/3'1 = 1 and ∑ 3''∈D =
∑ $77∈X = ". A spatially balanced sample is obtained when all 3'& are close to 1. Then it is 

possible to use the variance 

YZ;>[ = 1
"9/3' − 11-
'∈D

 

as a spatial balance measure. For samples drawn in the context of precise locations and for 

SRSWOR, the spatial balance index has been computed in order to assess, over the 10,000 

simulations, the representativeness index of the sampling methods used. The results are 

shown in Table 3. 

 

 
Table 3. Spatial balance of the drawn samples. Lower is the value, higher is the spatial balance.  

 

  Spatial balance index 

Design          zinc  lead cadmium copper 

SRSWOR No Locations 0.3287366 0.3277499 0.3278469 0.3277499 

LPM1 Precise Locations 0.1308928 0.1308611 0.1310522 0.1308611 

LPM2 Precise Locations 0.1355972 0.1349901 0.1353536 0.1349901 

SCPS Precise Locations 0.140915 0.1410384 0.1410912 0.1410384 

 

 

As expected, the SRSWOR leads to a poor spatial balance because it does not consider the 

geographic locations of subjects. Instead, all the others considered designs have a spatial 

balance index that is very low, indicating a good level of spatial balance. The trend of values 

is the same for the four analyzed heavy metals and they do not show significant differences 

between them. Following Grafström and Schelin (2013), with a high level of spatial balance, 

it is possible to establish the existence of a high level of sample representativeness. So that, 



from the results obtained in the present study it is possible to argue that spatial sampling is 

more efficient and more representative with respect to non-spatial sampling methodologies. 

 

4. Conclusion 

On one hand, the increasing availability of georeferenced microdata has opened the 

opportunity to conduct environmental and health survey studies using spatial sampling 

designs that exploit the exact point-level geographical coordinates of all subjects in order to 

select samples that are spatially balanced and hence lead to more efficient estimates. On the 

other hand, the state-of-the-art of geocoding procedures and technologies have limited this 

opportunity because the locations of subjects are rarely exact in practice and the 

georeferenced microdata researchers have to typically deal with have a non-negligible 

proportion of coarsened locations. 

By means of a simulation study, based on real environmental data, this article has shown that 

the use of spatial sampling designs is still preferable to the use of non-spatial methods even 

though the georeferenced microdata are characterized by a high proportion of coarsened 

locations. The evaluation has been conducted by a comparison in terms of relative RMSE and 

spatial balance. Samples drawn with spatial designs showed an important reduction of 

rRMSE and an increase in spatial balance, leading to the conclusion that spatial sampling is 

more efficient than classic methods, also when not all the locations of population units are 

exact.  
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