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Abstract:  28 

Global Positioning System (GPS) technology has changed the world. We now depend on it for 29 

navigating vehicles, for route finding and we use it in our everyday lives to extract information 30 

about our locations and to track our movements. The latter use offers a potential alternative to 31 

more traditional sources of movement data through the construction of trip trajectories and, 32 

ultimately, the construction of origin-destination flow matrices.  The advantage of being able 33 

to use GPS-derived movement data is that such data are potentially much richer than traditional 34 

sources of movement data both temporally and spatially. GPS-derived movement data 35 

potentially allow the calibration of spatial interaction models specific to very short time 36 

intervals, such as daily or even hourly, and for user-specified origins and destinations.  37 

Ultimately, it should be possible to calibrate continuously updated models in near real-time. 38 

However, the processing of GPS data into trajectories and then origin-destination flow matrices 39 

is not straightforward and is not well understood.  This paper describes the process of 40 

transferring GPS tracking data into matrices that can be used to calibrate spatial interaction 41 

models. An example is given using retail behaviour in two towns in Scotland with an origin-42 

constrained spatial interaction model calibrated for each day of the week and under different 43 

weather conditions (normal, rainy, windy). Although the study is small in terms of individuals 44 

and spatial context, it serves to demonstrate a future for spatial interaction modelling free from 45 

the tyranny of temporally static and spatially predefined data sets. 46 

Keywords:  47 

GPS movement data, spatial interaction modelling, retail analysis 48 
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3. Introduction 50 

The measurement and recording of human mobility is vital for understanding many important 51 

elements of society such as the demand for transportation services, the optimal location of 52 

facilities and the redistribution of population. Until recently, exploring human mobility in detail 53 

was challenging because personal trip data collection methods consisted of expensive and time-54 

consuming paper-and-pencil interviews, computer-assisted telephone interviews and 55 

computer-assisted self-interviews (Wolf, Guensler, & Bachman, 2001). As well as being 56 

expensive to collect, these data are also typically limited in terms of their spatial and temporal 57 

resolution. The development of sensors such as GPS trackers that capture movement data in 58 

real-time and at detailed spatial and temporal scales has transformed our ability to collect 59 

mobility data (M.-P. Kwan & Neutens, 2014). However, even though GPS trackers record an 60 

individual's location and movement very accurately, they do not record essential characteristics 61 

of travel behaviour such as travel mode or trip purpose (Shen & Stopher, 2014). To overcome 62 

this problem, various attempts have been made  to  infer individual behavioural  from GPS 63 

trajectories (inter alia Wolf et al. 2001; Patterson et al. 2003;Di Lorenzo et al. 2012; Gong et 64 

al. 2012; Sila-Nowicka et al. 2016; and Xiao et al. 2016). However, the overwhelming majority 65 

of studies using GPS data simply report visual descriptions of movement patterns rather than 66 

exploring the deeper understanding of what factors might have been responsible for these 67 

patterns. 68 

Over the past decade there have been many attempts to adapt other technologies such as Radio 69 

Frequency Identification (RFID), WiFi, Bluetooth, smart cards or GSM to study aspects of 70 

human mobility. The tracking applications of RFID technology related to mobility have been 71 

reported in transportation and logistics (inter alia Eckfeldt & Bruce 2005; Zuo et al. 2010 and  72 

Zacharewicz et al. 2011) and in the tracking of patients in hospitals (Cangialosi, Monaly Jr., & 73 

Yang, 2007). Most research relating to the use of location information obtained via Bluetooth 74 



and WiFi technologies within mobile phones focusses on predicting movement patterns by 75 

asking a few fundamental questions about future location, time spent there and social 76 

interactions during time spent in location (inter alia Anastasi & Borgia 2004: Vu et al. 2011). 77 

Yet another modern method of capturing travel behaviour is via smart cards which are used in 78 

most of the world's major cities to automatically pay for travel fares. Data collected from these 79 

cards provide an opportunity to study human mobility patterns, as well as the efficiency and 80 

other aspects of transportation services, but are necessarily limited to the on and off points of 81 

the public transportation service and do not necessarily capture the real origins and destinations 82 

of the movement (inter alia Long & Thill 2015; Zhong et al. 2015; Tonnelier et al. 2016). In 83 

recent years increasing effort has been put into the analysis of mobile phone data (recording 84 

movements between GSM towers) showing the potential of these data in identifying fine-85 

grained variations in urban flows over time, for estimating movements in urban spaces, and 86 

identifying potential social interactions and significant places for individuals (inter alia   Ratti 87 

et al. 2006; Kwan 2007; Ratti et al. 2010; Calabrese et al. 2013; Calabrese et al. 2014; Ahas et 88 

al. 2015; Behadili 2016). 89 

Currently, however, these advances in movement data collection technologies are well ahead 90 

of the existing methods for extracting meaningful information from such data (Laube, Dennis, 91 

Forer, & Walker, 2007; J. Long & Nelson, 2012). Furthermore, there have been very few 92 

studies that have tried to analyse decision-making processes related to mobility using data from 93 

emerging technologies. There is a need therefore to determine if new forms of movement data 94 

can be translated into new insights about mobility behaviour. We do this through an 95 

examination of the calibration of spatial interaction with GPS data. 96 

To crystalize the rationale for this paper, we turn to a quote by Golledge & Stimson (1997, p.5) 97 

about an earlier era of geography as the quantitative revolution was dawning: “geographers 98 

became experts on describing `what' was there and are now seeking to explain `why' or `how' 99 



things were there". This sentiment is pertinent today with a new wave of descriptive analysis 100 

breaking over the geographical shores propagated by emerging technologies that generate huge 101 

quantities of spatial data. As yet, these data have yet to yield much insight with the bulk of 102 

research limited to a description of patterns rather than an analysis of human behaviour. Our 103 

goal therefore is to move beyond description and to present a demonstration of the potential 104 

inherent in GPS-derived data for analysing and understanding human behaviour. We do this by 105 

focussing on two specific questions: 106 

(i) What has to be done in order to transform GPS tracking data into origin-destination 107 

matrices that can be used for the calibration of spatial interaction models? 108 

(ii) Is it possible to draw meaningful insights into mobility decision-making from the 109 

calibration of spatial interaction models with GPS-derived data? In particular we will 110 

investigate the possibility of calibrating spatial interaction models for different days of the 111 

week and for different weather conditions. 112 

In order to answer the questions posed above, two preparatory steps need to be undertaken and 113 

which have been described elsewhere (Authors, 2016). These involve the initial collection of 114 

the GPS traces and the classification of these traces into semantically enriched trajectories. 115 

Here we concentrate on the transformation of the GPS movement data into origin-destination 116 

matrices and on the use of these matrices to calibrate interaction models of shopping behaviour 117 

for different days of the week and under different weather conditions. 118 

4. Spatial Interaction Models in Retailing 119 

 Spatial interaction refers to movement or communication over space that results from a 120 

decision-making process (Batten & Boyce, 1987; Fotheringham & O’Kelly, 1989; A. Wilson, 121 

1967, 1970). It can be defined in terms of the movement of people, goods or information and 122 

it covers behaviours such as migration, commuting, shopping, recreation, trips for educational 123 



purposes, airline passenger movement, the choice of health care services and patterns of 124 

telephone calls (more examples of spatial interactions are given by Haynes & Fotheringham 125 

(1984)). These behaviours are characterised by a common and fundamental principal whereby 126 

individuals trade off the benefit of interaction with the cost of overcoming the distance 127 

(separation) to a  destination (Fischer, 2002).  This trade-off is at the heart of all spatial 128 

interaction models.  For instance, the most common form of spatial interaction model employed 129 

in retail analyses is often referred to as an origin-constrained spatial interaction model and has 130 

the form: 131 

𝑇𝑖𝑗 =
𝑂𝑖 𝑤𝑗

𝛼𝑑𝑖𝑗
𝛽

∑  𝑤𝑗
𝛼𝑑𝑖𝑗

𝛽
𝑗

 132 

or, equivalently,   133 

𝑇𝑖𝑗 = 𝐴𝑖𝑂𝑖 𝑤𝑗
𝛼𝑑𝑖𝑗

𝛽
 134 

where 135 

𝐴𝑖 =
1

∑  𝑤𝑗
𝛼𝑑𝑖𝑗

𝛽
𝑗

 136 

and where Tij represents the number of retail trips from origin i to outlet j,  Oi is the total number 137 

of trips originating at i, Ai is a balancing factor which ensures that the total number of predicted 138 

trips from i  is equal to Oi, wj represents the attractiveness of outlet j which can be measured 139 

by a number of variables but is often measured by size which reflects the range of goods 140 

available and sometimes price levels, dij is the network distance between i and j, β indicates the 141 

sensitivity of the number of trips between i and j to the distance between them, and α is a  142 

parameter reflecting consumers’ sensitivity to variations in store sizes. Examples of the use of 143 

this model to understand consumer spatial choice include Lakshmanan & Hansen, 1965; 144 

Fotheringham & Trew 1993; Clarke et al. 1998; Bhat et al. 2004; Rodriguez & Joo 2004; 145 



Preston & McLafferty 2016; de Vries et al. 2009; Dolega et al. 2016; Nakaya et al. 2007; and 146 

Merino & Ramirez-Nafarrate 2015.  147 

Common to most applications of spatial interaction models in retailing, however, is the dearth 148 

of appropriate trip data with which to calibrate the models.  Quite often the data are just not 149 

available and so models cannot be calibrated. The parameters in the model are then guessed at 150 

or borrowed from other studies to allow the models to be used to estimate flows from residential 151 

areas to a set of stores under varying conditions to examine questions such as “Where is the 152 

optimal location for a new store? or “If I locate a store here, how much custom will it 153 

cannibalise from my exiting stores?” Where flow data are available it is then possible to 154 

estimate the model’s parameters which will yield more accurate predictions of flows and will 155 

also yield behavioural information on consumer spatial choice.  Estimates of α describe 156 

consumers’ utility from selecting larger stores with a greater variety of products and possibly 157 

lower prices while estimates of  β reflect consumers’ sensitivities to distance as a deterrence in 158 

selecting a store.  For example if β were zero then consumers would not be constrained by 159 

distance at all in their selection of a store to patronise and increasingly negative values of β 160 

reflect greater deterrence in overcoming longer distances. 161 

Even when data are available on consumers’ shopping patterns and when spatial interaction 162 

models can be calibrated, the models typically yield limited information on consumer 163 

behaviour. This is because the data on individuals’ movements over space are traditionally 164 

based on travel diaries or questionnaires which, besides being expensive to conduct, 165 

provide only a very limited snapshot of people’s behaviour.  They typically only represent 166 

behaviour over a broad period of time and often only for prescribed destination sets which 167 

are defined for the purposes of the survey. Recent years have brought new perspectives to 168 

spatial interaction modelling showing that using data from loyalty cards from major 169 

shopping retailers can improve forecasts concerning store patronage and store revenues 170 



(Newing, Clarke, & Clarke, 2015). Nevertheless, until very recently it has not been possible 171 

to provide, for example, information on consumer behaviour at different times of the day 172 

or on different days of the week or during different weather conditions. Do consumers make 173 

different choices and exhibit different spatial behaviour, for example, during the week 174 

compared to the weekend, during the morning compared to the afternoon, or on days when 175 

it is raining compared to when it is dry? Traditional consumer surveys very rarely yield the 176 

data necessary to answer these questions.  177 

However, the recent technological advances in recording the locations of individuals 178 

through their phones or with dedicated GPS trackers has the potential to radically change 179 

the spatial interaction modelling landscape by allowing the calibration of models for fine 180 

time intervals and for multitudes of different types of movement. These new forms of 181 

movement data have already begun to be employed in retailing. For instance,  Yue et al. 182 

(2012) use GPS trajectories of taxi flows to compute trading areas around  shopping centres 183 

in  China; Lovelace et al.(2016) present a comparison of estimating shopping flows from  184 

a major mobile phone service provider, a commercial consumer survey and geotagged 185 

Twitter messages. Most recently, Lloyd & Cheshire (2017) investigate the feasibility of 186 

using geo-tagged Twitter data to define catchment areas for retail centres in part of the 187 

United Kingdom  However, to date, there has been very limited  discussion of the use of 188 

GPS trajectory data to calibrate spatial interaction models to better understand the dynamics 189 

of consumer spatial behaviour.  This paper fills this gap in the literature and heralds a new 190 

era of spatial interaction modelling by showing the potential to calibrate models with new 191 

forms of geocoded data which allow variations in behaviour to be modelled over very short 192 

time intervals allowing us to better understand the dynamics of consumer behaviour.  193 



5. Preliminaries 194 

In order to investigate the feasibility of using GPS movement data to calibrate spatial 195 

interaction models, a sample of 150 individuals in two towns in Fife, Scotland were asked to 196 

carry GPS tracking devices (I-Blue 747 ProS ) for a period of seven consecutive days (further 197 

details  about the data collection methodology, ethical approval and data processing can be 198 

found in Authors’ previous publication (2016). This generated 2,863,410 raw GPS points, with 199 

each location record containing participant ID, latitude, longitude, elevation, date and time. 200 

The data collection took place over a 4-month period in 2013 (September - December) and the 201 

movement data of 91 individuals in Dunfermline and 59 individuals in Glenrothes were 202 

tracked.  203 

To extract information from these GPS traces, we filtered, pre-processed, segmented, classified 204 

and contextually enriched the data using a framework for mobility patterns analysis (travel 205 

mode and activity places) from a combination of GPS movement data and contextual 206 

information. The data processing schema (Figure 1) was designed following the methodologies 207 

of Yan et al. (2013) and  Spaccapietra (2009).   208 

Figure 1 somewhere here 209 



 210 

Figure 1. Visual flowchart for GPS data processing. The idea for visualisation is obtained 211 

from  Yan et al. (2013) and  Spaccapietra (2009) with steps of data processing modified in 212 

order to contextually enrich GPS movement data for this study. 213 

The collected GPS movement data were first cleaned and filtered  to minimise the number of 214 

erroneous records (those with low precision caused by the satellites’ geometry).Then we 215 

segmented trajectories into homogeneous sub-trajectories using a procedure based on a new 216 

statistical measure implemented into a machine learning algorithm – a Spatio-Temporal Kernel 217 

Window  developed by Authors (2016).  Subsequently we applied a two-step feedforward 218 

neural network with a general backpropagation algorithm for segment classification; first to 219 

distinguish movement from non-movement segments and then to classify movement segments 220 

into specific travel modes (driving, walking, bus and train). The non-movement segments were 221 



classified based on their importance to a user into “home” and set of significant locations such 222 

as “work”, ”school”, “third place” and others which were compared to a Points/Places of 223 

Interest dataset (a combination of Ordnance Survey, OSM and self-created POI dataset) in 224 

order to contextually enrich them with functions such as: shopping, leisure, school/health or 225 

transport related.  226 

From the semantically enriched trajectories we created individual trip chains for each 227 

participant which involved  linking spatially and temporally interrelated trips (Zhao, Chua, & 228 

Zhao, 2012, p. 2). Each segment in the GPS dataset is labelled with either travel mode, possible 229 

activity or as an unidentified stop. By running a set of SQL queries, the travel chains can be 230 

retrieved. Using the trip chain structures, individual-thematic trips, such as commuting, 231 

shopping or leisure trips can be extracted. An example of the resulting database is given in 232 

Table 1. 233 

Table 1. An example of a trip chain derived from GPS trajectories 234 

Participant_id 

Start 

tstamp 

Stop 

tstamp 

Time 

spent 

[seconds] Mode/purpose Geographic unit 

8 06:22 06:39 995 Home Datazone A 

8 06:58 15:25 30421 Work Datazone B 

8 15:42 15:55 780 Shopping Datazone C 

8 16:12 17:55 6169 Home Datazone A 

8 17:55 18:32 2236 Walk Datazone A 

8 18:32 20:21 6551 Home Datazone A 

8 20:25 20:29 210 Shopping Datazone B 

8 20:34 21:26 3133 Home Datazone A 

 235 

Places of residence were then aggregated to administrative units (datazones) to prevent privacy 236 

problems and so that it was possible to link the flow data with census variables. Finally, in 237 

order to calibrate a retail spatial interaction model, data are needed on distances between 238 

consumers and stores and on the size of stores or shopping centres. Road distances between 239 



datazone centroids and either stores or shopping centres were obtained from the 240 

OpenStreetMap (OSM) road network in both Dunfermline and Glenrothes. A set of possible 241 

shopping alternatives in both towns was created from a self-created POI dataset which 242 

combined three different POI datasets: the Ordnance Survey POI dataset; the Google Maps 243 

POI set; and the OSM POI dataset. From this amalgamated POI database, we identified the 244 

main supermarkets and shopping centres in both towns. We created these retail locations as 245 

polygons rather than points in order to decrease incorrect linking of trajectories with a shopping 246 

destination. The distributions of the datazones and the retail stores for both towns are shown in 247 

Figure 2. 248 

Figure 2 somewhere here 249 

A 

 



B 

 
 

Figure 2. Retail stores in the two towns: A- Dunfermline, B- Glenrothes. 

 

The size of each retailing opportunity is used as a measure of store attractiveness in the model 250 

and is created by obtaining a building floor area from the digitised building layer from 251 

OpenStreetMap as a proxy of retail area. The sites were verified with Google Street view to 252 

confirm retail activity and to identify whether retail area occupied more than one floor. 253 

Furthermore, to identify only the actual shopping trips we used opening times for shops to filter 254 

out retail-related trips from outside the time range. 255 

Because the GPS data are time and date stamped, this provides the opportunity to calibrate 256 

models separately by time of the day, day of the week and for different weather conditions. In 257 

order to identify the weather conditions on different days for which the GPS traces were 258 

collected, we referred to the local weather conditions for Dunfermline and Glenrothes given by 259 

the website Weatherunderground ( www.wunderground.com). This contains data on date, time, 260 

temperature, humidity, pressure, visibility, wind direction, wind speed and occurrences of rain 261 



at locations with meteorological stations nearest Dunfermline and Glenrothes (Edinburgh 262 

airport and Leuchars, respectively) 263 

6. Origin-destination matrices 264 

Without further processing trip chains from GPS traces are useful and can provide valuable 265 

information on people’s activity patterns.  However this information is largely limited to 266 

visualisations representing spatial patterns of activities along with some descriptive statistics. 267 

To be of more use, the data need to be transformed into origin-destination matrices which then 268 

can form the basis of calibrating spatial interaction models. Figure 3 represents an origin-269 

destination matrix for an interaction system with m origins and n destinations. The elements, 270 

Tij, of this (m x n) matrix indicate the number of flows between origin i and destination j. Each 271 

row of the matrix represents flows from origin i and the columns represent flows into 272 

destination j. The total number of flows from origin i and the total flows into destination j are 273 

given by the marginal totals,  Oi and Dj respectively and  the sum of all flows in the system is 274 

given by T. 275 

Figure 3 somewhere here 276 

For the calibration of models of retail behaviour, we use only the home-based shopping trips 277 

derived from the trip-chaining individual datasets in accord with usual practice (Newing et al., 278 

2015). The GPS traces yielded 280 and 290 individual home-based shopping trips in 279 

Dunfermline and Glenrothes respectively (Figure 4). 280 

 281 



 282 

Figure 3: An example of origin-destination matrix. 283 

Figure 4 somewhere here 284 
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B 

 

Figure 4. Origin-Destination matrices for A- Dunfermline, B- Glenrothes 285 

7. Results 286 

The primary goal of this paper is to provide evidence that GPS data can be used to calibrate 287 

spatial interaction models. In doing so we also highlight the potential for calibrating more 288 

temporally disaggregate models to produce new insights into spatial decision-making. To 289 



calibrate the models, we use the OD matrices derived from the GPS data of individual home-290 

based shopping trips as described above and a python-based version of the SIMODEL-code 291 

(Williams & Fotheringham, 1984) called PySI. In order to compare the distance-decay 292 

parameter estimates between the two towns we used a power function of distance rather than 293 

an exponential form; the former allows consistent comparison of the estimates because they 294 

are elasticities and hence unaffected by scale. 295 

We began by calibrating the origin-constrained spatial interaction model presented in equation 296 

(1) with shopping flow data to all stores in both towns. These results are shown in Table 2A 297 

which includes parameter estimates and standard errors from this calibration along with the r-298 

squared value.  299 

Table 2 A and 2 B  somewhere here 300 

Full set of trips 
 Dunfermline Glenrothes 

Parameter  Est. value  Std error t-value p-value Est. value Std error t-value p-value 

R2 0.776       0.711       

α 0.635 0.074 8.542 0.000 0.514 0.040 12.383 0.000 

β -0.943 0.078 -12.038 0.000 -0.921 0.137 -6.731 0.000 

α- trade area, β- distance decay parameter, *-insignificant 

Reduced set of trips 
 Dunfermline Glenrothes 

Parameter  Est. value  Std error t-value p-value Est. value Std error t-value p-value 

R2 0.817     0.708       

α 0.614 0.000 7.645 0.000 0.862 0.111 7.780 0.000 

β -1.023 0.093 -10.903 0.000 -1.322 0.193 -6.833 0.000 

α- trade area, β- distance decay parameter, *-insignificant 

 301 

Table 2: Origin-constrained spatial interaction model calibrated for shopping trips from GPS 302 

trajectories. A- model calibrated for all the trips; B- model calibrated for a reduced set of 303 

trips. 304 



For both towns, the estimated parameters for store size and distance are significant with a p-305 

value < 0.001. The estimated store size parameters for Dunfermline and Glenrothes are 0.635 306 

and 0.514, respectively, indicating that a store’s perceived attractiveness by consumers 307 

increases at a decreasing rate as size increases so there are diminishing returns to adding to a 308 

store’s size. The estimated distance decay parameters are -0.943 for Dunfermline and -0.921 309 

for Glenrothes indicating a reasonably strong degree of distance-deterrence in shopping 310 

behaviour. These values are in line with results from the calibration of retail shopping models 311 

based on traditional survey data (Dolega et al., 2016; Nakaya et al., 2007). The predictive power 312 

of the calibrated models, represented by R2, is 0.78 for Dunfermline and 0.71 for Glenrothes 313 

indicating that the model fits the data reasonably accurately. A difference in means test 314 

indicates suggests that there is a significant difference (p˂0.0001) between the two store size 315 

parameters but no significant difference between the estimated distance-decay parameters 316 

(p=0.019). 317 

In both towns there is a one dominant retail complex which is multifunctional and contains not 318 

only food but also bookstores, boutiques, pharmacies and other possible stores  and the 319 

inclusion of this multipurpose centre in modelling purely grocery shopping is therefore likely 320 

to bias the results. For this reason we excluded the trips to the multifunctional centre in both 321 

towns and recalibrated the model. The removal of the two shopping centres reduced the number 322 

of flows to 174 in Dunfermline and 212 in Glenrothes. Table 2B contains the results obtained 323 

from calibrating the model with this reduced data set.  324 

Again all the estimated parameters are significant with p-values < 0.001. When solely grocery 325 

trips are analysed, the size of the store becomes a more important factor for consumers in 326 

Glenrothes but not in Dunfermline. There is an increase in the strength of the distance-decay 327 

effect in both towns but more noticeably so in Glenrothes suggesting that trips to the large 328 

multipurpose centre in both towns are less constrained by distance than are pure grocery 329 



shopping trips. The R-squared value is relatively unchanged for Glenrothes but increases to 330 

0.82 for Dunfermline suggesting that here the model provides a more accurate representation 331 

of grocery decision-making that for general shopping. A difference of means test on both the 332 

estimates of the store size and distance-decay parameters suggest there is a significant 333 

difference in shopping behaviour in the two towns (p˂0.0001)    The predicted and observed 334 

flow patterns for both data sets in both towns are shown in Figure 4.  335 

  
a) Observed shopping flows in 

Dunfermline 

b) Predicted shopping flows in 

Dunfermline 

  
c) Observed shopping flows in Glenrothes d) Predicted shopping flows in Glenrothes 

  

 

 
 

Legend 

 

 

Figure 5: Observed and predicted flows from the initial models (all stores included). 336 



  
a) Observed shopping flows in 

Dunfermline 

b) Predicted shopping flows in 

Dunfermline 

  
c) Observed shopping flows in Glenrothes d) Predicted shopping flows in Glenrothes 

  

 

 
 

Legend 

 

Figure 6: Observed and predicted flows from the initial models (reduced number of stores). 337 

5.1. A comparison of retail behaviour at weekends compared to during the week 338 

An important feature of using GPS traces to study retail behaviour is the ability to examine 339 

behaviour at different times of the day or on different days during the week. Here, because of 340 

the relatively small sample size, we demonstrate this feature by comparing shopping patterns 341 

during the week and on the weekend1. For both towns we calibrate the spatial interaction model 342 

separately for the two origin-destination matrices representing flows that take place Monday 343 

to Friday and those which take place on either Saturday or Sunday. In all cases we use the full 344 

                                                           
1 In theory with GPS-derived data it is possible to calibrate spatial interaction models separately for each hour 
of the day or for periods such as rush hour and non-rush hour and also to disaggregate by consumer type. 



set of retail stores. The results are given in Table 3 and indicate some interesting differences in 345 

retail behaviour.  In both towns the perceived attractiveness of large stores is much greater at 346 

the weekend than during the week (α increases from 0.40 to 0.85 in Dunfermline and from 0.41 347 

to 0.90 in Glenrothes) suggesting that shopping trips on the weekend either have more of a 348 

social component to them whereby larger stores offer greater opportunities for diverse types of 349 

shopping or that the shopping trips are longer and more products are bought. In Dunfermline 350 

the perception of distance as a deterrent to shopping increases at the weekend (β decreases from 351 

-0.97 during the week to -1.22 at the weekend) whereas in Glenrothes there is relatively little 352 

distance deterrence at the weekends compared to during the week (β increases from -1.00 353 

during the week to -0.12 at weekends. In all comparisons of parameter estimates between 354 

weekday shopping and weekend shopping, the differences are significant at p˂0.0001. The 355 

ability of the spatial interaction to replicate flows is slightly better when those flows take place 356 

during the week compared to on the weekend. The patterns of both observed and predicted 357 

flows for the weekend and during the week are shown in Figures 7 and 8. 358 

Table 3 somewhere here 359 

 Week   Weekend   

Parameter  Est. value  Std error t-value p-value Est. value Std error t-value p-value 

  Dunfermline 

R2 0.788       0.670    

α 0.394 0.095 9.449 0.000 0.850 0.156 5.447 0.000 

β -0.968 0.041 -3.013 0.000 -1.218 0.151 -8.083 0.000 

  Glenrothes 

R2 0.611       0.568       

α 0.406 0.046 0.308 0.000 0.900 0.095 9.449 0.000 

β -1.001 0.147 -10.523 0.003 -0.124 0.041 -3.013 0.000 

α- trade area, β- distance decay parameter, *-insignificant 

 360 

Table 3: Weekend versus weekday shopping behaviour 361 



Figures 7 and 8 about here 362 

  
a) Observed shopping flows in 

Dunfermline  during the weekdays 

b) Predicted shopping flows in 

Dunfermline during the weekdays 
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Figure 7: Observed and predicted patterns of shopping during the week and on weekends in 363 

Dunfermline. 364 

  
a) Observed shopping flows in Glenrothes  

during the weekdays 

b) Predicted shopping flows in Glenrothes 

during the weekdays 



  
c) Observed shopping flows in Glenrothes 

during the weekends 

d) Predicted shopping flows in Glenrothes  

during the weekends 

  

 

 
 

Legend 

 

 

Figure 8: Observed and predicted patterns of shopping during the week and on weekends in 365 

Glenrothes 366 

5.2. A comparison of shopping behaviour under different weather conditions 367 

The effect of weather on consumer behaviour and spending has received only limited attention 368 

in the marketing literature (Bruyneel, Dewitte, Franses, & Dekimpe, 2005; Murray, Muro, 369 

Finn, & Leszczyc, 2010; Niemira, 2005) and to our knowledge has not received any attention 370 

when using GPS movement data in conjunction with spatial interaction models. Here we 371 

demonstrate how weather-specific spatial interaction models can be calibrated through the use 372 

of GPS-derived flow matrices.  To do this we developed a methodology to assign weather 373 

conditions to each of the GPS points in the study area.  Readings from meteorological station 374 

at Edinburgh Airport were used to annotate the GPS trajectories for Dunfermline and data from 375 

the meteorological station at the RAF base in Leuchars were used to assign weather conditions 376 

for each of the GPS trajectories in Glenrothes. These data were obtained through the 377 

wunderground.com website and the selection of these two meteorological stations was based 378 

on their proximity to the two towns. The weather data were collected in 30 minutes - 1 hour 379 



intervals, so we “interpolated" the values to make them match the trajectory points which were 380 

collected for much finer time intervals.  Figure 9 highlights the method of assigning the weather 381 

data (i.e. rain occurrence and wind speed) to each of the trajectories. The process of transferring 382 

weather condition values to a GPS point (xi; yi; ti) is based on the annotation of binary rain 383 

reading R (1 for the rain, 0 for no rain) and strength of the wind W. Having a GPS point x1 384 

from 17:59 which happens to be in between two weather readings from 17:50 385 

(R=1,W=120km/h) and 18:20 (R=0, W=100km/h), we would assign the rain condition R1 to 386 

the time of the nearest weather reading, therefore R1= 1 as R17:50. Wind values represented by 387 

W are calculated as an average of the two nearest readings to the time of the GPS point so W1 388 

would be equal to an average between W17:50 and W18:20 which is (120+100)/2=110km/h. 389 

Figure 9 somewhere here 390 

 391 

 392 

Figure 9: The process of assigning weather condition values to a GPS point (xi; yi; ti). R 393 

represents the binary rain reading (1 for the rain, 0 for no rain), W represents strength of the 394 

wind. Rain values are assigned to a GPS point based on the existence of rain in any of the two 395 



nearest readings. Wind values represented by W are calculated as an average of the two 396 

nearest readings to the time of the GPS point (xi; yi). 397 

Having assigned weather conditions to each trajectory and hence to each individual shopping 398 

trip, we were able to disaggregate the flow matrix in each town into four sub-matrices: one 399 

containing only those trips that took place when it was raining; one when it was dry; one 400 

containing only those trips when it was deemed very windy (wind speeds in excess of 35 km/h); 401 

and one containing trips taking place when the conditions were relatively still. A summary of 402 

the average distances in metres of shopping trips that took place under these four weather 403 

conditions is given in Table 4. In both towns shopping trips in both the rain and when it is 404 

windy are shorter on average than when it is not raining and not windy.  405 

Table 4 about here 406 

Table 4: Comparison of the mean observed distances [m] for the shopping trips during 407 

different weather conditions in the two towns. 408 

Mean observed distance [m] 

Town  All trips* 

Trips in 

the rain 

Trips with no 

rain 

Trips when 

windy 

Trips when no 

wind 

Dunfermline 1641 1515 1924 1515 1746 

Glenrothes 1600 1616 1832 1707 1784 
*All home-based shopping trips within each city without disaggregating an OD matrix into sub-matrices 

based on weather condition. 

 409 

The   results of calibrating the retail spatial interaction model on each of the four origin-410 

destination matrices including flows to the multipurpose shopping centre in both towns are 411 

given in Table 5. The results indicate that aspects of shopping behaviour do change according 412 

to weather conditions.  For instance in both Dunfermline and Glenrothes shoppers are more 413 

attracted to larger stores and perceive distance to be more of deterrent when it is raining (all 414 

comparisons of parameter estimates are significant at least at p=0.0017). Windy conditions also 415 



have a significant impact on shopping behaviour. In both towns there is a significant increase 416 

(p˂0.0001) in distance decay under windy conditions. However, the results of varying wind 417 

conditions on the attractiveness of large retail outlets is less convincing.  Although in 418 

Dunfermline there is a significant increase in the attractiveness of large stores when it is windy, 419 

the reverse is the case in Glenrothes with a significant decrease in the attractiveness of large 420 

stores (in both tests, p˂0.0001).   421 

Table 5 somewhere here 422 

Table 5: Calibration results for different weather condition - full choice set of stores. 423 

 Full choice set of stores 

 Dunfermline 

Parameter  Est. value  Std error t-value p-value Est. value Std error t-value p-value 

  Rain No Rain 

R2 0.693       0.746       

α 0.805 0.110 7.306 0.000 0.494 0.101 4.862 0.000 

β -0.972 0.110 -8.822 0.000 -0.930 0.112 -8.238 0.000 

  Wind No Wind 

R2 0.760       0.683       

α 0.670 0.105 6.378 0.000 0.593 0.106 5.599 0.000 

β -1.000 0.105 -9.462 0.000 -0.867 0.117 -7.370 0.000 

  Glenrothes 

 Rain No Rain 

R2 0.658    0.738    

α 0.472 0.065 7.243 0.000 0.544 0.151 10.679 0.000 

β -1.233 0.201 -6.142 0.000 -0.645 0.192 -3.352 0.001 

  Wind No Wind 

R2 0.533    0.564    

α 0.483 0.058 8.347 0.006 0.538 0.055 9.680 0.000 

β -1.083 0.195 -5.554 0.000 -0.785 0.194 -4.040 0.000 

α- trade area, β- distance decay parameter, *-insignificant 

 424 

The above calibrations were repeated with the multipurpose shopping centre in each town 425 

removed from the analysis. The results are given in Table 6. These results reinforce those 426 



above. Under rainy and windy conditions, consumers tend to have a greater preference for 427 

larger stores and for stores in close proximity to their residences.  This is most clearly seen in 428 

Glenrothes where the estimated distance-decay parameter is -0.86 in dry conditions and -2.06 429 

in wet conditions. In still conditions, the estimated distance-decay parameter is -0.82 whereas 430 

in windy conditions it is -2.19.  Similar, although less dramatic, effects are seen in Dunfermline. 431 

These results are important because they demonstrate the use of GPS-derived flow data to 432 

calibrate disaggregated spatial interaction models and that shopping behaviour varies according 433 

to weather conditions. 434 

Table 6 about here 435 

Table 6: Calibration results for different weather conditions - grocery only stores 436 

 Reduced choice set of stores 

 Dunfermline 

Parameter  Est. value  Std error t-value p-value Est. value Std error t-value p-value 

  Rain No Rain 

R2 0.776       0.759       

α 0.778 0.123 6.302 0.000 0.484 0.107 4.511 0.000 

β -1.042 0.138 -7.307 0.000 -1.017 0.129 -7.883 0.000 

  Wind No Wind 

R2 0.788       0.739       

α 0.659 0.117 5.606 0.000 0.566 0.111 8.098 0.000 

β -1.092 0.126 -8.691 0.000 -0.923 0.142 -6.476 0.000 

  Glenrothes 

 Rain No Rain 

R2 0.610    0.617    

α 1.132 0.222 5.098 0.000 0.776 0.127 4.511 0.000 

β -2.061 0.362 -5.697 0.000 -0.855 0.246 -7.883 0.000 

  Wind No Wind 

R2 0.520    0.398    

α 1.307 0.217 6.016 0.000 0.626 0.131 4.755 0.000 

β -2.191 0.368 -5.948 0.000 -0.821 0.235 -3.501 0.001 

α- trade area, β- distance decay parameter, *-insignificant 

 437 



Comparing the above results with those from the set of destinations including the multipurpose 438 

centres, consumers in Glenrothes appear to be much more sensitive to weather conditions when 439 

it comes to deciding on choice of grocery store than consumers in Dunfermline.  The estimated 440 

distance-decay parameters from Glenrothes become much more negative in rainy and windy 441 

conditions when the multipurpose shopping centre is removed from the analysis whereas the 442 

equivalent estimates for Dunfermline are much more stable. The observed and predicted flow 443 

patterns for Dunfermline shoppers under various weather conditions are shown in Figure 10 444 

and the equivalent flows for Glenrothes are shown in Figure 11.  445 

Figure 10 and 11 about here 446 

  
a) Observed shopping flows in 

Dunfermline on rainy days 

b) Predicted shopping flows in 

Dunfermline on rainy days 

  
c) Observed shopping flows in 

Dunfermline on dry days 

 

d) Predicted shopping flows in 

Dunfermline on dry days 

 



e) Observed shopping flows in 

Dunfermline on windy days 

 
f) Observed shopping flows in 

Dunfermline on non-windy days 

 

 

g) Observed shopping flows in 

Dunfermline on windy days 

 
h) Observed shopping flows in 

Dunfermline on non-windy days 

 

 

 

Figure 10: Observed and predicted patterns of shopping in different weather conditions in 447 

Dunfermline 448 

  
a) Observed shopping flows in Glenrothes 

on rainy days 

b) Predicted shopping flows in Glenrothes 

on rainy days 

  
c) Observed shopping flows in Glenrothes 

on dry days 

d) Predicted shopping flows in Glenrothes 

on dry days 



  
e) Observed shopping flows in Glenrothes 

on windy days 

 
f) Observed shopping flows in Glenrothes 

on non-windy days 

 

 
 

 

g) Observed shopping flows in Glenrothes 

on windy days 

 
h) Observed shopping flows in Glenrothes 

on non-windy days 

 

Figure 11: Observed and predicted patterns of shopping in different weather conditions in 449 

Glenrothes 450 

8. Discussion and conclusions 451 

In this paper we introduce a framework for calibrating spatial interaction models using flows 452 

derived from GPS data. We focus on one type of model commonly employed in retailing – a 453 

production-constrained spatial interaction model– which we use to investigate shopping 454 

behaviour in two towns in Scotland, Dunfermline and Glenrothes. To demonstrate the potential 455 

of GPS traces for the calibration of spatial interaction models, we calibrate separate models for 456 

weekend shopping trips and weekday shopping trips and for shopping trips taking place in 457 

different weather conditions.  For the latter, we designed a methodology to assign weather 458 

conditions to the GPS traces and then calibrated models for rainy versus dry conditions and for 459 

windy versus calm conditions. Significant differences in shopping behaviour were measured 460 



for both different periods of the week and under different weather conditions. To our 461 

knowledge, such differences have not been identified previously in the calibration of retail 462 

choice models because of a lack of suitable data. . This study takes advantage of increasingly 463 

available GPS trajectory data to produce origin-destination flow matrices which are used to 464 

calibrate spatial interaction models. 465 

One of the recurring issues with the use of GPS trajectories for studies about spatial behaviour 466 

is the `noisiness' of the data caused by the unpredictability of how the trackers were used. In 467 

our study, participants were asked to carry their fully charged trackers with them at all times. 468 

In practice, trackers occasionally ran out of charge for various reasons, participants forgot to 469 

take them with them for certain trips, and the trackers occasionally lose the GPS signal 470 

connection. These issues need to be addressed to increase the utility of such data but it would 471 

seem inevitable that as GPS-based tracking becomes more reliable and the traces become more 472 

available, this form of data collection  will replace conventional  methods for understanding 473 

human spatial behaviour.. Because current GPS trackers have limitations regarding 474 

convenience and reliability, this study is only at the forefront of the use of such technology in 475 

the field of spatial interaction modelling and has clear limitations in terms of sample size and 476 

potential bias.  However, as people become increasingly used to sharing their locational 477 

information and GPS trackers become more universal (such as through reporting apps on smart 478 

phones), these limitations will diminish in importance and the value added by having 479 

movement data which is time-stamped and spatially comprehensive will be increasingly 480 

recognised. GPS-based technology is changing how we are able to view and understand the 481 

world and how people interact with their environment. It is part of the broader concepts of 482 

’Citizens as Sensors’, ‘Collective Sensing’ and ‘Citizen Science’ (Goodchild, 2007), in which 483 

“people act as non-technical sensors with contextual intelligence and comprehensive 484 

knowledge" (Resch, 2013, p. 393). GPS-based technology has already changed the world in 485 



major ways: we now depend on it for navigation and for finding out information on our 486 

surroundings. It is not difficult to imagine a world in which everyone is a sensor relating 487 

information about our movement patterns and our environment to central repositories. We are 488 

just at the beginning of such developments. Hence, this paper is very timely. There is a need to 489 

understand the necessary steps involved in transforming raw GPS data from individuals into 490 

usable trip trajectories and origin-destination matrices and to understand the limitations and 491 

potential uses of such data. Consequently, although the methods and results discussed in this 492 

paper are drawn from rather crude and relatively small samples in a limited spatial context, two 493 

relatively small towns in Scotland, they have the potential to guide future analysis of movement 494 

patterns and spatial behaviour using volunteered geographic information.  495 

9. References 496 

Ahas, R., Aasa, A., Yuan, Y., Raubal, M., Smoreda, Z., Liu, Y., … Zook, M. (2015). 497 
Everyday space–time geographies: using mobile phone-based sensor data to monitor 498 

urban activity in Harbin, Paris, and Tallinn. International Journal of Geographical 499 
Information Science, 29(11), 2017–2039. 500 

http://doi.org/10.1080/13658816.2015.1063151 501 

Anastasi, G., & Borgia, E. (2004). Wi-fi in ad hoc mode: a measurement study. PerCom 502 
2004. 503 

Batten, D., & Boyce, D. (1987). Spatial interaction, transportation, and interregional 504 
commodity flow models. 505 

Bhat, C., Guo, J., Srinivasan, S., & Sivakumar, A. (2004). Comprehensive Econometric 506 
Microsimulator for Daily Activity-Travel Patterns. Transportation Research Record, 507 

1894(1), 57–66. http://doi.org/10.3141/1894-07 508 

Bruyneel, S., Dewitte, S., Franses, P., & Dekimpe, M. (2005). Why consumers buy lottery 509 
tickets when the sun goes down on them. The depleting nature of weather-induced bad 510 
moods. ERIM Report Series Research in Management ERS-2005-045-MKT. 511 

Calabrese, F., Diao, M., Di Lorenzo, G., Ferreira, J., & Ratti, C. (2013). Understanding 512 
individual mobility patterns from urban sensing data: A mobile phone trace example. 513 

Transportation Research Part C: Emerging Technologies, 26, 301–313. 514 
http://doi.org/10.1016/j.trc.2012.09.009 515 

Calabrese, F., Ferrari, L., & Blondel, V. D. (2014). Urban Sensing Using Mobile Phone 516 

Network Data: A Survey of Research. ACM Computing Surveys, 47(2), 1–20. 517 
http://doi.org/10.1145/2655691 518 

Cangialosi, A., Monaly Jr., J., & Yang, S. (2007). Leveraging RFID in hospitals: Patient life 519 



cycle and mobility perspectives. IEEE Communications Magazine, 45(9), 18–23. 520 

http://doi.org/10.1109/MCOM.2007.4342874 521 

Clarke, G., Langley, R., & Cardwell, W. (1998). Empirical applications of dynamic spatial 522 

interaction models. Computers, Environment and Urban Systems, 22(2), 157–184. 523 
http://doi.org/10.1016/S0198-9715(98)00021-0 524 

de Vries, J. J., Nijkamp, P., & Rietveld, P. (2009). Exponential or power distance-decay for 525 
commuting? An alternative specification. Environment and Planning A, 41(2), 461–480. 526 

http://doi.org/10.1068/a39369 527 

Di Lorenzo, G., Reades, J., Calabrese, F., & Ratti, C. (2012). Predicting personal mobility 528 
with individual and group travel histories. Environment and Planning B: Planning and 529 

Design, 39(5), 838–857. http://doi.org/10.1068/b37147 530 

Dolega, L., Pavlis, M., & Singleton, A. (2016). Estimating attractiveness , hierarchy and 531 
catchment area extents for a national set of retail centre agglomerations. Journal of 532 

Retailing and Consumer Services, 28, 78–90. 533 
http://doi.org/10.1016/j.jretconser.2015.08.013 534 

Eckfeldt, B., & Bruce. (2005). What does RFID do for the consumer? Communications of the 535 
ACM, 48(9), 77. http://doi.org/10.1145/1081992.1082024 536 

Fischer, M. M. (2002). Neural Spatial Interaction Modeling. In M. M. Fischer∗ & Y. Leung 537 
(Eds.), Geocomputational modelling: Thechniques and appliactions (Vol. 34, pp. 195–538 
219). Berlin: Springer. 539 

Fotheringham, A. S. (1983). Some theoretical aspects of destination choice and their 540 

relevance to production-constrained gravity models. Environment and Planning A, 541 
15(8), 1121–1132. http://doi.org/10.1068/a151121 542 

Fotheringham, A. S., & O’Kelly, M. E. (1989). Spatial Interaction Models. International 543 

Encyclopedia of the Social & Behavioral Sciences. Elsevier. http://doi.org/10.1016/B0-544 
08-043076-7/02519-5 545 

Fotheringham, A. S., & Trew, R. (1993). Chain image and store-choice modeling: the effects 546 
of income and race. Environment and Planning A, 25(2), 179–196. 547 

http://doi.org/10.1068/a250179 548 

Golledge, R. G., & Stimson, R. J. (1997). Spatial behaviour: a geographic perspective. 549 

Spatial behaviour: a geographic perspective. Guilford Press. 550 

Gong, H., Chen, C., Bialostozky, E., & Lawson, C. T. (2012). A GPS/GIS method for travel 551 
mode detection in New York City. Computers, Environment and Urban Systems, 36(2), 552 
131–139. http://doi.org/10.1016/j.compenvurbsys.2011.05.003 553 

Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. 554 
GeoJournal, 69(4), 211–221. http://doi.org/10.1007/s10708-007-9111-y 555 

Haynes, K., & Fotheringham, A. S. (1984). Gravity and Spatial Interaction Models. Vol. 2. 556 
Beverly Hills: Sage publications. 557 

Kwan, M.-P., & Neutens, T. (2014). Space-time research in GIScience. International Journal 558 
of Geographical Information Science, 28(5), 851–854. 559 
http://doi.org/10.1080/13658816.2014.889300 560 



Kwan, M. P. (2007). Mobile communications, social networks, and urban travel: Hypertext as 561 

a new metaphor for conceptualizing spatial interaction. Professional Geographer, 59(4), 562 
434–446. http://doi.org/10.1111/j.1467-9272.2007.00633.x 563 

Lakshmanan, J. R., & Hansen, W. G. (1965). A retail market potential model. Journal of the 564 
American Institute of Planners, 31(2), 134–143. 565 
http://doi.org/10.1080/01944366508978155 566 

Laube, P., Dennis, T., Forer, P., & Walker, M. (2007). Movement beyond the snapshot - 567 

Dynamic analysis of geospatial lifelines. Computers, Environment and Urban Systems, 568 
31(5), 481–501. http://doi.org/10.1016/j.compenvurbsys.2007.08.002 569 

Lerman, S., & Liu, T. (1984). Microlevel econometric analysis of retail closure. London 570 

Papers of the Regional Science Association, 14. 571 

Lloyd, A., & Cheshire, J. (2017). Deriving retail centre locations and catchments from geo-572 
tagged Twitter data. Computers, Environment and Urban Systems, 61, 108–118. 573 

http://doi.org/10.1016/j.compenvurbsys.2016.09.006 574 

Long, J., & Nelson, T. (2012). A review of quantitative methods for movement data. 575 
International Journal of Geographical Information Science, 27(2), 1–27. 576 
http://doi.org/10.1080/13658816.2012.682578 577 

Long, Y., & Thill, J. C. (2015). Combining smart card data and household travel survey to 578 
analyze jobs-housing relationships in Beijing. Computers, Environment and Urban 579 

Systems, 53, 19–35. http://doi.org/10.1016/j.compenvurbsys.2015.02.005 580 

Lovelace, R., Birkin, M., Cross, P., & Clarke, M. (2016). From Big Noise to Big Data: 581 
Toward the Verification of Large Data sets for Understanding Regional Retail Flows. 582 

Geographical Analysis. 583 

Merino, M., & Ramirez-Nafarrate, A. (2015). Estimation of retail sales under competitive 584 

location in Mexico. Journal of Business Research, 1–7. 585 

http://doi.org/10.1016/j.jbusres.2015.06.050 586 

Murray, K., Muro, F. Di, Finn, A., & Leszczyc, P. (2010). The effect of weather on consumer 587 
spending. Journal of Retailing and Consumer Services, (17.6), 512–520. 588 

Nakaya, T., Fotheringham, S. A., Hanaoka, K., Clarke, G., Ballas, D., & Yano, K. (2007). 589 

Combining microsimulation and spatial interaction models for retail location analysis. 590 
Journal of Geographical Systems, 9(4), 345–369. http://doi.org/10.1007/s10109-007-591 
0052-2 592 

Newing, A., Clarke, G. P., & Clarke, M. (2015). Developing and Applying a Disaggregated 593 
Retail Location Model with Extended Retail Demand Estimations. Geographical 594 
Analysis, 47(3), 219–239. http://doi.org/10.1111/gean.12052 595 

Niemira, M. (2005). Weather matters. The Impact of Climate, Weather and Seasons on …. 596 

Patterson, D. J., Lin, L. A., Fox, D., & Kautz, H. (2003). Inferring high-level behavior from 597 
low-level sensors. Ubicomp 2003: Ubiquitous Computing, 2864, 73–89. 598 
http://doi.org/10.1007/b93949 599 

Preston, V., & McLafferty, S. (2016). Revisiting Gender, Race, and Commuting in New 600 
York. Annals of the American Association of Geographers, 1–11. 601 

http://doi.org/10.1080/00045608.2015.1113118 602 



Ratti, C., Frenchman, D., Pulselli, R. M., & Williams, S. (2006). Mobile Landscapes: Using 603 

Location Data from Cell Phones for Urban Analysis. Environment and Planning B: 604 
Planning and Design, 33(5), 727–748. http://doi.org/10.1068/b32047 605 

Ratti, C., Sobolevsky, S., Calabrese, F., Andris, C., Reades, J., Martino, M., … Strogatz, S. 606 
H. (2010). Redrawing the Map of Great Britain from a Network of Human Interactions. 607 
PLoS One, 5(12), e14248. http://doi.org/10.1371/journal.pone.0014248 608 

Resch, B. (2013). People as sensors and collective sensing-contextual observations 609 

complementing geo-sensor network measurements. In Progress in Location-Based 610 
Services (pp. 391–406). Springer Berlin Heidelber. 611 

Rodriguez, D. A., & Joo, J. (2004). The relationship between non-motorized mode choice and 612 

the local physical environment. Transportation Research Part D: Transport and 613 
Environment, 9(2), 151–173. http://doi.org/10.1016/j.trd.2003.11.001 614 

Shen, L., & Stopher, P. R. (2014). Review of GPS Travel Survey and GPS Data-Processing 615 

Methods. Transport Reviews, 34(3), 316–334. 616 
http://doi.org/10.1080/01441647.2014.903530 617 

Siła-Nowicka, K., Vandrol, J., Oshan, T., Long, J. A., Demšar, U., & Fotheringham, A. S. 618 
(2016). Analysis of human mobility patterns from GPS trajectories and contextual 619 
information. International Journal of Geographical Information Science, 30(5), 881–620 

906. http://doi.org/10.1080/13658816.2015.1100731 621 

Spaccapietra, S. (2009). Semantic Trajectories Stefano Spaccapietra SeCoGIS 2009, 622 
Gramado GeoPKDD. - ppt download. 623 

Timmermans, H. (1984). Discrete Choice Models versus Decompositional Multiattribute 624 

Preference Models: A Comparative Analysis of Model Performance in the Context of 625 
Spatial Shopping-behaviour. 626 

Tonnelier, E., Baskiotis, N., Guigue, V., & Gallinari, P. (2016). Smart card in public 627 

transportation: Designing a analysis system at the human scale. In 2016 IEEE 19th 628 
International Conference on Intelligent Transportation Systems (ITSC) (pp. 1336–1341). 629 

IEEE. http://doi.org/10.1109/ITSC.2016.7795730 630 

Vu, L., Do, Q., & Nahrstedt, K. (2011). Jyotish: A novel framework for constructing 631 
predictive model of people movement from joint wifi/bluetooth trace. Pervasive 632 

Computing. 633 

Williams, P., & Fotheringham, A. (1984). The calibration of spatial interaction models by 634 

maximum likelihood estimation with program SIMODEL. 635 

Wilson, A. (1967). A statistical theory of spatial distribution models. Transportation 636 
Research, 1(3), 253–269. http://doi.org/10.1016/0041-1647(67)90035-4 637 

Wilson, A. (1970). Entropy in Urban and Regional Modelling. Pion Ltd. 638 

Wilson, J. P., & Fotheringham,  a S. (2008). The Handbook of Geographic Information 639 
Science. The handbook of geographic. John Wiley & Sons. 640 
http://doi.org/10.1002/9780470690819 641 

Wolf, J., Guensler, R., & Bachman, W. (2001). Elimination of the travel diary: Experiment to 642 
derive trip purpose from global positioning system travel data. Transportation Research 643 

Record, 1768(1), 125–134. http://doi.org/10.3141/1768-15 644 



Xiao, G., Juan, Z., & Zhang, C. (2016). Detecting trip purposes from smartphone-based travel 645 

surveys with artificial neural networks and particle swarm optimization. Transportation 646 
Research Part C: Emerging Technologies, 71, 447–463. 647 
http://doi.org/10.1016/j.trc.2016.08.008 648 

Yan, Z., Chakraborty, D., & Parent, C. (2013). Semantic trajectories: Mobility data 649 
computation and annotation. ACM Transactions on Intelligent Systems and Technology 650 
(TIST), 4(3), 49. 651 

Yue, Y., Wang, H. dong, Hu, B., Li, Q. quan, Li, Y. guang, & Yeh, A. G. O. (2012). 652 
Exploratory calibration of a spatial interaction model using taxi GPS trajectories. 653 
Computers, Environment and Urban Systems, 36(2), 140–153. 654 
http://doi.org/10.1016/j.compenvurbsys.2011.09.002 655 

Zacharewicz, G., Deschamps, J.-C., & Francois, J. (2011). Distributed simulation platform to 656 
design advanced RFID based freight transportation systems. Computers in Industry, 657 

62(6), 597–612. http://doi.org/10.1016/j.compind.2011.04.009 658 

Zhao, Z., Chua, G., & Zhao, J. (2012). Evolution of trip chaining patterns in London from 659 
1991 to 2010. In Innovations in Improving the Sensitivity of Models. 660 

Zhong, C., Manley, E., Müller Arisona, S., Batty, M., & Schmitt, G. (2015). Measuring 661 
variability of mobility patterns from multiday smart-card data. Journal of Computational 662 

Science, 9, 125–130. http://doi.org/10.1016/j.jocs.2015.04.021 663 

Zuo, Y., Pimple, M., & Lande, S. (2010). A Framework for RFID Survivability Requirement 664 
Analysis and Specification. Innovations in Computing Sciences, (5), 26–34. 665 

 666 

 667 

  668 



List of tables 669 

1. Table 1. An example of a trip chain derived from GPS trajectories 670 

2. Table 2: Origin-constrained spatial interaction model calibrated for shopping trips 671 

from GPS trajectories. A- model calibrated for all the trips; B- model calibrated for a 672 

reduced set of trips. 673 

3. Table 3: Weekend versus weekday shopping behaviour 674 

4. Table 4: Comparison of the mean observed distances [m] for the shopping trips during 675 

differ weather conditions in the two towns. 676 

5. Table 5: Calibration results for different weather condition - full choice set of stores. 677 

6. Table 6: Calibration results for different weather conditions - grocery only stores 678 

  679 



List of figures 680 

1. Figure 1. Visual flowchart for GPS data processing. The idea for visualisation is 681 

obtained from  Yan et al. (2013) and  Spaccapietra (2009) with steps of data 682 

processing modified in order to contextually enrich GPS movement data for this 683 

study. 684 

2. Figure 2. Retail stores in the two towns: A- Dunfermline, B- Glenrothes. 685 

3. Figure 3: An example of origin-destination matrix. 686 

4. Figure 4. Origin-Destination matrices for A- Dunfermline, B- Glenrothes 687 

5. Figure 5: Observed and predicted flows from the initial models (all stores included). 688 

6. Figure 6: Observed and predicted flows from the initial models (reduced set of stores). 689 

7. Figure 7: Observed and predicted patterns of shopping during the week and on 690 

weekends in Dunfermline. 691 

8. Figure 8: Observed and predicted patterns of shopping during the week and on 692 

weekends in Glenrothes 693 

9. Figure 9: The process of assigning weather condition values to a GPS point (xi; yi; ti). 694 

R represents the binary rain reading (1 for the rain, 0 for no rain), W represents 695 

strength of the wind. Rain values are assigned to a GPS point based on the existence 696 

of rain in any of the two nearest readings. Wind values represented by W are 697 

calculated as an average of the two nearest readings to the time of the GPS point (xi; 698 

yi). 699 

10. Figure 10: Observed and predicted patterns of shopping in different weather 700 

conditions in Dunfermline 701 

11. Figure 11: Observed and predicted patterns of shopping in different weather 702 

conditions in Glenrothes 703 

 704 


