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Sensitivity of a common Land Use Cover Change (LUCC) model to the 
scale (Minimum Mapping Unit and Minimum Mapping Width) of input 

vector maps 

Abstract

 

Input maps are one of the main sources of uncertainty in

 

Land Use Cover Change (LUCC) 

models.

 

Such

 

models

 

are usually raster-based. Although extensive research has assessed 

the impact of the scale of input raster data in the modelling exercise, few studies have

 

focused

 

on the scale of input vector maps. This paper aims to investigate the effect that 

the Minimum Mapping Unit (MMU) and Minimum Mapping Width (MMW) of input 

vector maps have on a specific modelling application. To this end, we have set up 

different exercises

 

with two input maps (SIOSE and CORINE) that have different MMU 

and MMW. Results prove the influence of these

 

components

 

of the scale on the 

simulations

 

produced by the models.

 

Modelled changes and quantities vary

 

depending on 

the input maps. The modelled pattern is, however, very similar, despite the big differences

 

between the

 

reference maps.

 

Keywords

 

Uncertainty, Minimum Mapping Unit, Minimum Mapping Width, Scale, Land Use Cover 

Change Modelling

 

1.

 

Introduction

 

Models are just abstractions of the real world

 

(Clarke 2004)

 

and as

 

abstractions, they 

inevitably come with uncertainty, understood as the difference between the world as it 

really

 

is and

 

the world as

 

represented through geospatial data or tools (García-Álvarez et 

al. 2019). We need to deal with

 

and communicate this uncertainty in a way that offers the

 

best possible results,

 

while making

 

users aware of the limits of our analysis.

 

In spatial analysis, the degree of abstraction is closely related to the

 

scale. Scale is a wide 

term that has no consistent, standard definition

 

(Fassnacht et al. 2006). Generally

 

speaking,

 

scale can be understood as a window of perception through which we view the 

world or some specific process (Marceau 1999). This window reflects the limitations 

within which that world or process can be studied (Quattrochi and Goodchild 1997)

 

and 

therefore

 

constitutes

 

part of the uncertainties of our analysis

 

(Lloyd 2014).

 

A study of the

 

sensitivity of Land Use Cover Change (LUCC)

 

models to changes in the scale is therefore 

a key step towards improving

 

our understanding of these tools and gaining

 

the confidence 

required to encourage

 

their use.

 

There is extensive research on the sensitivity of LUCC models

 

to changes in scale. 

However, scale is differently understood in each case. Some papers study the sensitivity 

of LUCC models to changes in the spatial (Veldkamp and Fresco 1997)

 

and temporal 

(Rosa et al. 2015; Paegelow 2018)

 

extent, while others focus on the thematic detail of the 

maps

 

(Dietzel and Clarke 2004b; Conway 2009; Gallardo 2014).

 

Most of the literature 

analyses

 

the sensitivity of these models to changes in the spatial resolution, i.e.

 

the degree 

of spatial detail

 

of

 

a raster map

 

(Dietzel and Clarke 2004a; Evans and Kelley 2004; Jantz 

and Goetz 2005; Blanchard et al. 2015). In the case of Cellular Automata models, these

 

studies usually consider the type and extent of the neighbourhood as part of the sensitivity 

analysis (Kocabas and Dragicevic 2006; Pan et al. 2010; Morais Viana 2014).
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Relatively few studies have considered the scale problem of vector data when calibrating 

a LUCC model. The spatial detail of vector data depends on its Minimum Mapping Unit 

(MMU) and Minimum Mapping Width (MMW). MMU is the size of the smallest feature 

to be drawn in a map, whereas MMW is the width of the narrowest feature to be drawn 

in this map (Manakos and Braun 2014). In raster data, MMU and MMW are usually equal 

to the pixel size, although larger MMU and MMW may be decided by the map-maker on 

the basis of other factors. In vector data, their value varies according to the cartographic 

scale of the map and the decision of the map-makers. 

Most of the available LUCC models are raster-based (Barreira-González et al. 2015). If 

vector data is used in these models, the original dataset must be rasterized. The influence 

of the MMU and MMW of the input data on the simulation will depend on how this 

rasterization is carried out. Rasterizations at coarser spatial resolutions using methods that 

generalize the landscape being rasterized (e.g. majority rule) will simplify most of the 

detail of vector maps at small MMU and MMW. By contrast, rasterizations at finer spatial 

resolutions using methods that preserve the landscape pattern will keep the different level 

of detail provided by each source. 

Dendoncker et al. (2008) found that the differences in outputs between the datasets 

rasterized at different resolutions and through different methods were bigger than the 

differences between several scenarios produced by a research project for the same area. 

Díaz-Pacheco et al. (2018) also found that rasterization techniques at certain spatial 

resolutions produced closer results to the original dataset than others. García-Álvarez 

(2018b) assessed how a model simulated different changes when varying the scale of 

input maps (MMU and MMW). However, these results were due in part to important 

differences between the input maps, stochasticity of the model and the different spatial 

resolution selected when rasterizing each pair of input maps. 

None of the previous studies have therefore fully answered the research question 

regarding the impact of the MMU and MMW of the input maps on LUCC modelling. In 

this paper, we aim to fill this research gap by specifically assessing how the different 

degrees of detail provided by changes in the MMU and MMW of the input vector maps 

affect the calibration and performance of the model concerned. Although the evaluation 

of the influence of the rasterization process on LUCC modelling practice is very much 

part of the problem, it is beyond the scope of this paper and must be addressed in future 

research. 

With that objective in mind, we set up the same LUCC model with two input LUC maps 

at different scales: CORINE Land Cover (MMU: 25ha, MMW: 100m) and SIOSE 

(MMU: 0.5-2ha, MMW: 15m). MMU and MMW are therefore related consistently in our 

analysis. They vary at the same time: bigger MMU correspond with wider MMW and 

smaller MMU correspond with narrower MMW. 

Although testing the sensitivity of a model to different datasets with different MMU and 

MMW would be closer to real practice, it would prevent us from achieving our objective, 

in that the differences between the datasets would not only be due to scale, but also to the 

different methods of production, classifications, etc. In this regard, the only difference 

between our input maps was their scale, as CORINE was obtained from a generalization 

of SIOSE (García-Álvarez and Camacho Olmedo 2017).  
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The two input maps were rasterized at the same spatial resolution (50m) so as to make 

sure that the rasterization process did not interfere with the analysis. In addition, we opted 

for the Metronamica LUCC modelling software package to carry out the analysis. It 

reflects common practice in LUCC modelling (Santé et al. 2010). Moreover, user may 

control the randomness in this model, so preventing it from influencing the analysis. 

According to the calibration approaches defined by Van Vliet et al. (2016), the calibration 

of Metronamica can be either manual or based on expert knowledge. This makes 

calibration more dependent on user decisions (and their related uncertainties), so making 

it unrepeatable (Botterweg 1995; Clarke 2018). The conclusions of this study may 

therefore be considered case-specific. However, they provide a general guide to the 

effects and implications that these decisions can have on the simulated landscape to those 

users that opt for similar modelling approaches.  

The paper is structured as follows: we begin by describing the study area we modelled 

and the materials we used. We also outline the method for conducting the sensitivity 

analysis. This is followed by the presentation and discussion of the results of our analysis. 

2. Study area 

The Asturias Central Area (ACA) is the most dynamic space in the Spanish region of 

Asturias and is located in its geographical heart (Fig. 1). According to the boundaries 

defined by the Asturias Territorial Plan (Gobierno del Principado de Asturias 1991), it 

encompasses the main urban centres and the main industrial and commercial clusters in 

Asturias.  

 

Figure 1. Map showing the location of the Asturias Central Area (ACA). Source: National Topographic 

Map 1:200.000; Digital Elevation Map 25m 
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Whereas the south of the ACA suffers sharp economic and demographic decline, most 

recent industrial and commercial development locates in the north, around Oviedo and 

Gijón and on either side of the highway that connects them. The area to the east of Oviedo 

is also increasingly attracting new developments. Nonetheless, changes in Asturias, even 

in the ACA, are scarce and mostly driven by public investment and, therefore, political 

decisions (García-Álvarez 2018b). Accordingly, zoning plays a key role in the allocation 

of new land uses. This makes modelling of the changes in this region less organic and 

more uncertain, as they mainly depend on single decisions made by politicians or civil 

servants. 

3. Materials  

3.1 Metronamica 

Metronamica (RIKS 2012) is a constrained Cellular Automata model built on the theory 

and model proposed by White and Engelen (1993, 1997) and White et al. (1997), which 

provided a practical application of the theoretical approaches of Ulam (1950), Couclelis 

(1985) and Tobler (2011). The model distinguishes three types of classes: vacants, 

functions and features. Features are not modelled because they remain invariant. Function 

classes are modelled actively and vacants are modelled passively, after all function classes 

have been allocated. 

The allocation of land to the function and vacant classes at each time stage is made on the 

basis of the values of their transition potential maps (RIKS 2012). The pixels with the 

highest transition potential values are allocated to the function classes and, the remaining 

space is then allocated to the vacant classes according to the same procedure. The 

transition potential of the function classes is the result of a multiplication of the 

neighbourhood, accessibility, suitability and zoning factors, plus a random component. 

The transition potential of vacant categories is defined more simply by multiplying their 

suitability by an inertia/conversion factor.  

For function classes, neighbourhood is manually defined by the user as a combination of 

the inertia of a particular cell to maintain the same land use and the neighbourhood 

influence on that cell of all the other categories. When the neighbourhood factor has a 

strong weight, most of the changes are allocated next to cells of the same category. 

Notwithstanding, reducing the importance of this factor and by means of the random 

component, the model can simulate isolated new patches, far from existing ones. In our 

exercises, neighbourhood factor plays a similar role to the other factors and a random 

component was considered to allow to model to simulate the leapfrogging. 

Calibration is undertaken manually in Metronamica, according to the calibration 

approaches defined by Van Vliet et al. (2016). Demands for the quantities of different 

land uses are also introduced manually. 

3.2 LUC maps 

We selected two maps at two different cartographic scales and with different MMU and 

MMW (Fig. 2): CORINE  Land Cover (CLC), from now on referred to simply as 

CORINE, and SIOSE. These maps are the most important input into the LUC model. 
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They set out the initial land use composition and configuration of the landscape to be 

modelled. 

 

Figure 2. Comparison between the two LUC maps for an example area (Lugones-Llanera) in the centre of 

the ACA. Source: CORINE and SIOSE 2005 

SIOSE is a land use map of Spain produced at the regional level (Equipo Técnico 

Nacional SIOSE 2015). It is made by photointerpretation at a scale of 1:25.000 or by 

generalization of more detailed maps (Gil et al. 2010). Its MMU is variable depending on 

the particular land cover being considered (between 0.5 and 2ha). Its MMW is 15m, 

although some exceptions below this threshold are accepted (Equipo Técnico Nacional 

SIOSE 2015). When updating the map to a new time point, only LUC changes affecting 

areas of more than 0.4ha are drawn. 

CORINE is the European reference LUC map. At a national level this map is obtained by 

generalization of more detailed national maps or by photointerpretation at a scale of 

1:100.000 (Büttner 2014). The MMU is 25ha and the MMW 100m. Only LUC changes 

affecting areas of more than 5ha are included on the maps’ updates. Since 2011, CORINE 

has been obtained in Spain via the generalization of SIOSE (García-Álvarez and Camacho 

Olmedo 2017), which ensures the compatibility of both maps for the analysis we will be 

conducting. Nonetheless, this change has led to many uncertainties when using the 

historical series of CORINE maps (García-Álvarez and Camacho Olmedo 2017). 

A pair of maps for the years 2005 and 2011 were chosen from each source. Although the 

CORINE years of reference are 2006 and 2012, the data refers to the same years as SIOSE 

(2005, 2011), as in both cases CORINE was obtained by generalization of SIOSE. The 

dates were chosen according to the dynamism of the study area. Most changes happened 
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before the crisis of 2008, that brought most of the development of the area to a halt 

(Gobierno del Principado de Asturias 2016; García-Álvarez 2018b). 

A common legend was agreed for both maps according to the their compatibility and 

disagreements detected by previous studies (García-Álvarez 2018a) (Table 1). In this way 

we ensured that any differences between the two maps were due above all to the different 

scale and not to other factors. The fine scale profile of the two maps confirms their 

similarities and limited uncertainty (see appendix A).  

Table 1. Selected common legend for SIOSE and CORINE input maps. 

Vacant classes Features 

Agricultural areas  Mineral extraction sites 

Natural vegetation areas  Dump sites 

 Road and rail networks 

Function classes Port areas 

Urban fabric  Airports 

Industrial and commercial areas Artificial green urban areas 

 Open spaces with little or no vegetation 

 Water bodies 

 

Both vector maps were rasterized using the same spatial resolution so as to ensure that 

this component of scale did not influence our comparison of the maps. The selected spatial 

resolution (50m) was chosen in the light of the authors’ previous experience with the 

same application and in line with the conclusions of other studies for similar models and 

datasets (Díaz-Pacheco et al. 2018). Large interference is not expected because of the 

spatial resolution chosen. The MMU of SIOSE and CORINE fitted the pixel size of the 

rasterized maps. The smallest polygons in SIOSE (5000m2) and CORINE (5ha for 

changes) were at least twice the smallest cell to be drawn (2500m2).  

3.3 Driving forces of change 

Variables for the LUCC model were chosen according to the input provided by experts 

in the area being analysed and according to common practice in urban modelling for 

similar environments and models. The expert opinions were collected in unstructured 

interviews of a selection of researchers and stakeholders who work in the analysis and 

planning of the Asturias Central Area. Common practice in urban modelling was obtained 

through a review of international research on urban land use change modelling. The 

selected variables were grouped into three categories: accessibility, suitability and zoning. 

Accessibility to residential and industrial uses was defined by closeness to national and 

regional roads, highways, port areas, urban centres and train stations. Areas closer to these 

features were considered more accessible and, therefore, more prone to change.  Layers 

of these features were obtained from the National Topographic Map of Spain, provided 

by the Spanish National Geographic Institute (IGN). The layers for urban centres and 

train stations were manually edited to classify urban centres and train stations according 

to their population and train frequency respectively.  
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A slope map calculated from a Digital Elevation model provided by the IGN was the 

suitability driver. Finally, the zoning drivers were the different planning maps provided 

by the Regional Government of Asturias.  

Accessibility, suitability and zoning maps for the first year of the modelling exercise are 

provided as supplementary material to this paper. 

4. Methods  

4.1 Model calibration 

One exercise for each pair of input maps (CORINE and SIOSE) was calibrated for the 

period 2005-2011 following the standard calibration procedure of Metronamica (Hewitt 

et al. 2014; Van Delden et al. 2018). Location agreement was tested through Kappa 

indices and pattern agreement by means of two spatial metrics (clumpiness and fractal 

dimension). Qualitative validation was also performed through visual inspection. 

Kappa Simulation (KSim) shows the agreement between the changes in two categorical 

maps as compared to a third one used as a reference, corrected by the agreement expected 

by chance (Van Vliet et al. 2011). Fuzzy Kappa Simulation (FKSim) calculates the same 

agreement, but uses the fuzzy set theory to account for the degree of spatial mismatch 

(Van Vliet et al. 2013). Kappa shows the agreement between two categorical maps, based 

on the proportions of their classes and corrected by the agreement expected by chance 

(Cohen 1960). Kappa accounts well for persistence, whereas Ksim accounts well for 

change (García-Álvarez et al. 2019). Clumpiness measures the (dis)aggregation between 

patches, whereas fractal dimension measures the complexity of the patches’ shape 

(Botequilha Leitao et al. 2006). 

Initial parameters for the two exercises were set up according to expert knowledge and 

previous modeller experience on the same application. Then, based on the metrics and 

methods described above, the model was manually calibrated on a trial-and-error basis 

by comparing the simulated maps with the reference maps for the year 2011. 

Demands were extracted from the changes measured by each pair of input maps (SIOSE 

2011 – 2005, CORINE 2011 – 2005). This means that demands will vary depending on 

the input maps used. Calibration is also dependent on the particular input map used: each 

exercise has been calibrated to fit its corresponding reference map. 

4.2 Model testing 

Once the initial exercises were fully calibrated, we set up four extra ones (Fig. 3). Two 

for each pair of maps: one with the demands for the other exercise (SIOSE CDemands, 

CORINE SDemands), and one with the parameters for the other exercise and the demands 

for CORINE maps (SIOSE CParameters, CORINE SParameters). These four exercises 

were not calibrated any further, as they were set up purely for comparison and analysis 

purposes. 
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Figure 3. Flowchart for the modelling exercises. SIOSE refers to the modelling exercise set up with SIOSE 

input maps, demands and parameters. CORINE refers to the modelling exercise set up with CORINE input 

maps, demands and parameters. SIOSE CDemands refers to the modelling exercise set up with SIOSE input 

maps and parameters and CORINE demands. CORINE SDemands refers to the modelling exercise set up 

with CORINE input maps and parameters and SIOSE demands. SIOSE CParameters refers to the modelling 

exercise set up with SIOSE input maps and CORINE demands and parameters. CORINE SParameters 

refers to the modelling exercise set up with SIOSE parameters and CORINE input maps and demands. 

The two calibrated exercises allow us to assess whether the model is capable of replicating 

the quantity and pattern of the LUC changes measured by each pair of input maps, while 

the other four exercises allow us to assess the sensitivity of the model to changes in the 

MMU and MMW of the input maps. 

4.3 Analysis of results 

We began by comparing the information provided by each pair of input maps (CORINE 

and SIOSE). This comparison was made globally and only considering the changes 

measured by these maps (2011 – 2005). Maps were compared in terms of their pattern, 

quantity and allocation (dis)agreement and qualitatively through visual inspection. This 

comparison highlighted the initial differences between the input maps and gave us a 

reference to assess the model simulations. 

Simulated landscapes and changes (simulation – reference map) were also compared to 

check for differences between them (pattern, quantity and allocation (dis)agreement, 

visual inspection). To avoid the influence of randomness in the allocation (dis)agreement 
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analysis, compared changes were in this case obtained from simulations run with a 

random factor of 0. In all other cases, compared simulations were obtained from models 

considering a random component. In addition, we calculated the Ksim for each simulation 

with respect to the reference maps to assess their goodness of fit. 

Pattern and Ksim, together with visual inspection, inform us about the ability of the model 

to simulate the landscape composition and configuration. These methods, together with 

the quantity and allocation (dis)agreement, also allow us to test the sensitivity of the 

model to changes in the scale of input maps. 

Quantity and allocation (dis)agreement was calculated using the matrix proposed by 

Pontius Jr. (2019). Quantity (dis)agreement is the difference between the quantities or 

proportions of the categories that make up two maps. Allocation (dis)agreement refers to 

the difference in the allocation of the categories that make up two maps. It is divided into 

two components: exchange and shift, the first referring to pairwise confusions and the 

second to nonpairwise confusions (Pontius Jr. and Santacruz 2014). 

The pattern of maps was evaluated through a series of spatial metrics at the class level 

calculated with Fragstats 4.0. An initial range of metrics was selected to assess the area, 

edge, shape and aggregation of the patches. This selection was based on the particular 

aspect being compared and the meaningfulness of the metrics for evaluating this aspect, 

as evidenced by Li et al. (2005) and Šímová and Gdulová (2012). As all indicated the 

same pattern differences, we just included in this paper those ones that gave us more 

information about pattern variability (Table 2). 

Table 2. Spatial metrics used in the comparative analyses  

Spatial metric Acronym Description 

Percentage of 

Landscape 

PLAND 
Percentage of each class with respect to the whole map 

Number of 

patches 

NP Number of different patches (4 cell neighbourhood, 4cN) in each 

class 

Largest patch 

index 

LPI Proportion of the whole map taken up by the largest patch (4cN) 

in each class 

Patch cohesion 

index 

COHESION Estimate of the cohesion of the patches (4cN) in each class, 

measured as the relation between the area and perimeter of the 

patches and the map area 

 

5. Results 

Section 5.1 describes the differences between input maps because of their different MMU 

and MMW. The differences are first considered by comparing the maps as a whole 

(CORINE 2005 vs SIOSE 2005) and then by focusing only on the changes measured by 

each pair of maps (CORINE 2011-2005 vs SIOSE 2011-2005). Section 5.2 describes the 

differences between simulations when calibrating the model with each pair of maps. Full 

input maps, changes and simulations are provided as supplementary material.  

5.1 Input maps 

Overall, there was a high level of agreement between the maps used as input for the 

calibration of the models (87%) (Fig. 4). At the category level, the agreement is high for 

the vacant categories (agricultural and natural vegetation areas), lower for the ones 

actively modelled (urban fabric and industrial and commercial areas) and very low in the 
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case of the road and rail networks, dump sites and open spaces with little or no vegetation 

(Fig. 5). 

Only a very small part of the road and rail networks is wider than 100m, which means 

that a lot of these features are not drawn in CORINE because they not fit with its MMW. 

Due to its narrower MMW, almost all of them appear in SIOSE. Dump sites and open 

spaces with little or no vegetation are made up of a great deal of small patches and, 

therefore, deeply generalized when changing the scale. Nevertheless, all categories are 

affected by this generalization. E.g. the urban fabric category is made up of just 89 patches 

in CORINE but has 955 patches in SIOSE. Industrial and commercial areas show a similar 

behaviour: 63 vs 590 patches. These differences can be checked visually in Figure 6. 

 
Figure 4. Components of disagreement of the input maps and the changes they measure 

 

Figure 5. (Dis)agreement bars at the category level between CORINE and SIOSE maps. CORINE 

and SIOSE disagreement refer to the pixels in one particular category on one map that appear in 

a different category on the other map 
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Figure 6. CORINE (B, D) and SIOSE (A, C) maps and changes in an example area within the Asturias 

Central Area (Gijón). Above, input maps for the year 2005. Below, changes measured by each pair of input 

maps for the period 2005-2011. Source: CORINE and SIOSE (2005, 2011) 

As a rule, SIOSE maps, because of their smaller MMU, are much more fragmented than 

CORINE . Despite these differences, shape complexity is similar in both cases. CORINE 

is generalized from SIOSE, which means that the perimeters remain the same. Changes 

measured by each pair of input maps (CORINE 2011-2005 vs SIOSE 2011-2005 ) also 

show this pattern: higher fragmentation in SIOSE and similar complexity (Fig. 6). 

Regarding those changes, there was little agreement (14%) between them (Fig. 4). The 

most important disagreement was in terms of quantity. SIOSE maps detected more 

changes for all categories because of their smaller MMU. At the category level, there was 

very little or no agreement at all between CORINE and SIOSE in terms of the changes in 

vacant classes (Fig. 7). Although higher, the agreement of changes in the function classes 

is also low (24% for the urban fabric and 14% for the industrial and commercial areas).  

There are important differences between the maps in terms of the change in each category 

as a proportion of all measured changes. Most of the changes in the SIOSE maps (47.4%) 

refer to one specific category: natural vegetation areas. The remaining 52.6% of the 

changes correspond to other categories in relative proportions similar to those identified 

in CORINE. In CORINE, by contrast, the changes at category level are more equally 

shared between the different categories, with no single dominant category. 
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Figure 7. (Dis)agreement bars at the category level between changes measured by CORINE and SIOSE 

maps. CORINE and SIOSE disagreement refer to the pixels that appear in one particular category on one 

map and a different category on the other map.  

5.2 Simulated maps 

According to Kappa Simulation (KSim) values, Metronamica was better able to simulate 

changes in CORINE than changes in SIOSE (Table 4). Nevertheless, some differences 

can be observed at the class level. Generally, the CORINE exercises obtained better Ksim 

values for the urban fabric simulation, whereas the SIOSE exercises modelled the 

industrial and commercial areas better than CORINE. Poor Ksim values were obtained 

for the natural vegetation areas in all the exercises regardless of the maps used, which 

means that this class was not properly modelled in either case. 

Table 4. Performance of the model in each of the six modelling exercises set up according to the Ksim 

values. Ksim is calculated globally and at the class level for function and vacant categories. S11 refers to 

simulations run with SIOSE as input maps. C11 refers to simulations run with CORINE as input maps. 

 Global 
Urban 

fabric 

Industrial and 

commercial areas 

Agricultural 

areas 

Natural vegetation 

areas 

SIOSE demands 

S11 0.087 0.229 0.192 0.137 0.034 

C11 SDemands 0.148 0.266 0.177 0.218 0.025 

      

CORINE demands 

S11 CDemands 0.057 0.155 0.177 0.087 0.023 

C11 0.111 0.213 0.189 0.175 0.013 

      

S11 CParameters 0.055 0.180 0.123 0.095 0.013 

C11 SParameters 0.106 0.180 0.189 0.161 0.045 

 

When we exchanged the parameters for the exercises using SIOSE and CORINE maps, 

the Ksim showed opposite results at the class level to those obtained previously. The 

SIOSE exercise (S11 CParameters) simulated better the urban fabric (0.180 vs 0.155) and 

worse the industrial and commercial areas (0.177 vs 0.123). For the CORINE exercise 
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(C11 SParameters) the trend is inverse. The pattern assessed by the spatial metrics is also 

the opposite when changing the parameters (Table 5). Nevertheless, when the demands 

and parameters were changed, the CORINE simulation of industrial and commercial areas 

did not behave in the same expected way as in the other categories and exercises. When 

the demands were reduced, instead of the Ksim increasing, it fell. When using the SIOSE 

parameters, the Ksim remained constant. 

On the other hand, the modelled pattern of the simulated changes is similar (fragmented) 

in all cases regardless of the input maps employed. The degree of fragmentation is similar 

or even greater than that observed in the changes measured by the SIOSE maps (SIOSE 

2011 - SIOSE 2005) (Fig. 6 and 8).  

 

Figure 8. Simulated changes (2011) for an example area within the Asturias Central Area (Gijón): SIOSE 

(A), CORINE (B), SIOSE CDemands (C), CORINE SDemands (D), SIOSE CParameters (E) and CORINE 

SParameters (F). Source: CORINE and SIOSE 2005 
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Table 5. Spatial metrics of the changes modelled by each of the six modelling exercises. For a description 

of the metrics, see Table 2 

 

NP LPI COHESION 

Urban 

fabric 

Industrial 

commercial 

areas 

Urban 

fabric 

Industrial 

commercial 

areas 

Urban 

fabric 

Industrial 

commercial 

areas 

S11 183 275 0.020 0.028 82.95 79.58 

C11 SDemands 154 303 0.021 0.010 83.52 72.40 

S11 CDemands 156 143 0.006 0.018 71.44 77.17 

C11 121 172 0.008 0.008 78.48 70.32 

       

S11 CParameters* 156 180 0.016 0.008 80.16 70.40 

C11 SParameters* 147 158 0.007 0.007 72.71 72.71 

 

 

 

Figure 9. (Dis)agreement bars for each pair of simulations. S11 and C11 refer to simulations made 

respectively with SIOSE and CORINE as input maps. AG refers to agreement between maps; QD to 

quantity disagreement; and EX to exchange. 

The agreement between simulations is very similar in all cases (30-35%), regardless of 

the demands considered or even of the parameters used in the exercise (Fig. 9). This 

agreement is only higher when comparing exercises conducted using the same input 

maps, but with different parameters. 

The exercises run with the original SIOSE and CORINE demands showed an important 

disagreement in terms of quantity (43%) (Fig. 9). As each pair of maps measured a 
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different quantity of changes, they also simulated different quantities. There was also a 

small quantity disagreement between the exercise run with SIOSE maps and CORINE 

parameters and the exercises run with CORINE and SIOSE maps with CORINE 

demands. This is because of the simulation of unwanted transitions from function 

categories to vacant categories (e.g. urban fabric to agricultural areas). The modeller did 

not define a sufficiently high level of inertia for these classes which meant that the model 

allocated the demands of these function categories to other cells with a higher transition 

potential to change. 

6. Discussion and conclusions 

The analysis carried out has revealed important differences between simulations when 

using input maps with different Minimum Mapping Unit (MMU) and Minimum Mapping 

Width (MMW). We have grouped these differences into three blocks, according to their 

nature: differences in the modelled landscape and changes (6.1), differences in the pattern 

(6.2), and differences in the performance of the model (6.3). 

6.1 Modelled landscape and changes 

Variations in the MMU and MMW of the maps do not vary the landscape shown by the 

input maps to any great extent. However, the agreement between the areas that changed 

in each pair of maps was low, with each map measuring a very different quantity of 

changes. Changes measured by input maps are therefore scale-dependent, like processes 

of change (O’Sullivan and Perry 2013). 

Maps at finer scales always detect more changes, as proved by Conway (2009) and 

Blanchard et al. (2015) for other components of scale (thematic and spatial resolution). If 

we extract the simulated quantities from input maps, like in our exercise or when using 

Markov-based models, the chosen scale of input maps will affect the modelled quantities. 

It will also affect the model performance. The knowledge we have to explain and replicate 

these changes is usually the same when working at similar regional scales, like the ones 

of CORINE and SIOSE maps. Accordingly, the bigger demands because of the different 

MMU mostly increase the chances the model has to guess to right location of the modelled 

changes, as showed in our exercises and pointed out by Conway (2009) when changing 

the thematic resolution of the employed maps. 

When choosing between maps with different MMU and MMW, we must pay special 

attention to the changes these maps show. A coarser or more detailed scale should be 

selected depending on how many of these changes we are able to explain and which ones 

best reflect the dynamics we want to model. Maps at finer scales are better for the study 

and modelling of the details, whereas maps at coarser scales are more suitable for the 

study and modelling of macro-structure and macro-changes (Wu and Li 2009).  

When working at similar regional scales, as in our case, those differences are subtler. 

Carefully studying the changes each pair of maps show and making sensitivity analysis 

with each source is then advisable. E.g. in our case, changes measured by maps at a finer 

scale did not refer to the categories we want to model actively (natural vegetation areas 

in SIOSE maps represent 47.4% of all measured changes). 
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As a general rule, the generalization process due to MMU and MMU variation ends with 

dominant classes prevailing over the rest of the categories (Nol et al. 2008). If we want 

to model these dominant categories, a generalized map (large MMU), is a good option. 

In other cases, maps at finer scales are advisable. Selecting finer or coarser spatial 

resolutions when rasterizing the input vector maps may be another way of dealing with 

this issue and obtaining the desired level of generalization. 

Notwithstanding, when making use of fine-scale maps, we must consider that they are 

more likely to be affected by mapping mistakes (Blanchard et al. 2015). On the other 

hand, coarse-scale maps will more likely make use of mixed categories (Castilla and Hay 

2007), which are usually more difficult to interpret (Villa et al. 2008). In addition, some 

categories are more affected by changes in the MMU and MMW than others (e.g.  rail 

and road networks). Depending on the relative importance of these categories in 

explaining the pattern or dynamics of the classes of interest, one or other scale should 

also be selected.  

Finally, we must consider the needs and requirements of both stakeholders and audience 

as well (Van Delden et al. 2011). Excessively simple approaches, in which just a few 

important changes are modelled, as in CORINE, may not satisfy the requirements and 

needs of agents and audience. 

6.2 Modelled pattern 

The simulated pattern was similar in all the simulations, despite the different patterns 

shown by each pair of input maps. Modelled changes were in all exercises very 

fragmented, in a similar level of fragmentation to the one of the changes measured by 

input SIOSE maps. Thus, there is a disassociation between the scale and by extension the 

pattern of the input maps and the modelled pattern, as pointed out by García-Álvarez 

(2018). 

The pattern of the input maps and the changes they measure (CORINE 2011-2005, SIOSE 

2011-2005) is affected by the MMU and MMW of the input maps. However, the pattern 

of the simulated changes is determined by the neighbourhood rules and the spatial 

resolution of the model. Although specific for each case, neighbourhood rules were 

similar in CORINE and SIOSE exercises, especially regarding the self-attraction of land 

use functions. In addition, both maps were rasterized at the same resolution. As a result, 

the simulated changes show a comparable pattern in all exercises. 

6.3 Model performance 

In our exercises, the maps at a coarser scale provided better modelling results than those 

at a finer scale. Metronamica was therefore better able to simulate the CORINE reference 

landscape than the SIOSE one. This is due to the simplicity of CORINE maps and the 

changes they show, which fit better with the simple rules that govern a system in a 

modelling environment. This agrees with the conclusions of previous sensitivity analysis 

of other components of the scale (Kok and Veldkamp 2001; Kocabas and Dragicevic 

2006; Chen and Pontius Jr. 2011; Blanchard et al. 2015). 

The aforementioned simplicity of CORINE maps is mainly the result of the smaller 

number of changes we need to correctly simulate. Although fewer changes may be easier 
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to replicate, sometimes they are not enough to understand the dynamics of the class of 

interest. This was the case of the industrial and commercial areas in the exercises run with 

CORINE. Increasing the demands did not improve the simulation of this class, whereas 

changing the parameters did not affect the simulated landscape. The unsensitivity of the 

class to the model tuning reveals that the model was just able to replicate the allocation 

of a few patches, but not the real dynamics of this category. 

The allocation agreement between the different simulations is very similar in all cases, 

even when comparing the exercises that were run with the parameters employed for the 

other input maps. It is a low agreement: 30-35%. This means that changes in the input 

maps result in very different simulations, with bigger differences than those that occur 

when changing the parameters of the calibrated exercises. That makes sense in a context 

in which the inertia of land uses to maintain the same cells is assumed, which is a common 

assumption in LUCC modelling (Van Vliet et al. 2011). In the other cases, input maps 

would play a minor role, and other factors would be the main drivers behind agreement 

between simulations. Nonetheless, part of the agreement detected in our simulations (30-

35%) is also a consequence of the importance of zoning in our model.  

All in all, input maps are one of the main decisive factors in the drawing of the simulation, 

which also agrees with the conclusions of Syphard et al. (2011) and Prestele et al. (2016). 

Therefore, simulations for the same area run with different maps may not be directly 

comparable. When compared, modellers must provide additional information about the 

uncertainty of the input data and the general uncertainty of the modelling exercises.  

Finally, we must also consider the uncertainties in the validation process produced by 

scale issues when assessing the performance of the model. Most of the commonly used 

validation indices are based on comparisons between the simulated map of changes and 

the reference map of changes for the same date (Van Vliet et al. 2016). Because of the 

lack of connection between the scale (MMU, MMW) of the input maps and the one used 

for the simulated changes, these validation approaches may not be valid. In these cases, 

qualitative validation approaches, like visual inspection, may be preferable. 
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Appendix A. Fine scale profile of input LUC maps 

In order to assess the uncertainty of input LUC data, we carried out a fine scale profile of 

the different categories within the dataset (Table 1). This meant assessing the composition 

of the categories of a map using highly detailed, accurate data (Gallego 2001). We used 

the raw SIOSE database for these purposes.  

In SIOSE, land cover homogeneous polygons are photointerpreted at a 1:25.000 scale, 

with a MMU of between 0.5 and 2ha, depending on the considered land cover, and a 

MMW of 15m. The SIOSE database provides, without limitations, the proportions of the 

different land covers that make up each polygon (Fig. A.1). In this case, the real detail of 

land cover information is maintained and generalization is kept to a minimum. We 

therefore used the information from the SIOSE database to carry out the proposed 

analysis. 

 

Figure A1. Example of the thematic information provided by the SIOSE database to characterize a polygon 

(perimeter marked in red) in the Asturias Central Area. Sources: SIOSE 2005; PNOA historical images. 

We began by combining the CORINE and SIOSE maps for the year 2005 in vector format 

together with raw SIOSE polygons with land use proportions. We then calculated the area 

of the different land uses in each polygon in the CORINE and SIOSE maps, according to 

the information provided by the SIOSE database. Finally, for each map, we summed up 

the total area of the land use categories that make up each category in the CORINE and 

SIOSE maps. A flowchart of the method we followed for making the fine-scale profile 

for the SIOSE and CORINE input maps classes can be found in Figure A2. Results are 

presented as a percentage of the total area (Table A). 

The categories show a similar composition in both maps (Table A1). This is especially 

true for the most important categories in both maps, which together represent more than 

95% of the surface area of the maps: agricultural areas (around 40% of the area), natural 

vegetation areas (≈38%), water bodies (≈10%), urban fabric (≈4%) and industrial and 

commercial areas (≈3%). The only significant differences are in the categories for 

artificial uses (urban fabric and industrial and commercial areas). The urban fabric is 

made up of a higher proportion of buildings in SIOSE than in CORINE (Table A1). On 

the other hand, up to 10% of the industrial and commercial areas of CORINE are made 

up of natural vegetation and agricultural areas, which are residual for this category in 

SIOSE. 
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Figure A2. Flowchart of the methodology we followed to make the fine-scale profile of CORINE and 

SIOSE input maps classes 

Larger differences between the composition of the categories in CORINE and SIOSE can 

be observed in those classes that represent just a small proportion of the two maps. In 

SIOSE these classes are usually made up of land uses with greater affinity to that of the 

class being considered. e.g. 61.7% of the road and rail network maps in SIOSE is made 

up of big avenues, car parks and pedestrian areas without vegetation. In CORINE this 

proportion is much lower at 36.7% (Table A1).  

As CORINE is more generalized, class composition is more heterogeneous. It is more 

likely to find a mixture of different land uses within the same land use polygon in 

CORINE than SIOSE. Usually, agricultural and natural vegetation areas, like forests, 

shrubland and meadows, occupy a small proportion (≥ 10%) of class composition in 

CORINE (Table A1). At the same time, these classes are non-significative for defining 

the class composition of SIOSE. 

Because of its greater detail, SIOSE enables us to define more homogeneous patches of 

land use. Even so, there is some level of generalization in all cases. Thus, although SIOSE 

classes are usually more homogeneous, they also cover a mixture of land uses. This means 

there is uncertainty in the land use and cover representation of both maps. However, this 

uncertainty is low. As shown by Table A1, the classes in the two maps are mostly 

composed of land uses and covers that match the definition of the class being considered.  
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Table A1. Fine scale profile of CORINE (C) and SIOSE (S) classes (rows). The columns show the land covers defined by the SIOSE 

database: PST: pastures, FRT: forest, SHR: shrubland, BDS: beaches, dunes and sandy areas; RCK: rocky areas; BSL: bare soil; AGR: 

artificial green area and urban woodland; AVE: big avenues, parking or pedestrian area without vegetation; NBG: non-built ground, OCT: 

other constructions; MED: mining, extractive or dumps; HCP: herbaceous crops; WCP: woody crops, MDW: meadows; BLD: buldings; 

WTR: water bodies. Results are shown in percentages. e.g. CORINE agricultural areas are made up of 3.8% of pastures. 

 PST FRT SHR BDS RCK BSL AGR AVE 

 C S C S C S C S C S C S C S C S 

Agricultural areas 3.8 3.5 7.1 4.3 4.7 3.0 0.0 0.0 0.1 0.0 0.2 0.1 0.3 0.0 1.5 0.3 

Natural vegetation 

areas 
11.1 11.5 46.4 50.3 32.3 34.6 0.1 0.0 1.0 0.8 1.0 0.5 0.1 0.0 0.6 0.2 

Urban fabric 0.5 0.2 2.0 1.3 0.9 0.8 0.2 0.0 0.1 0.0 0.0 0.1 15.1 13.9 23.6 20.8 

Industrial and 

commercial areas 
0.6 0.0 3.1 0.1 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.6 7.8 25.4 24.9 

Mineral extraction sites 1.2 0.0 3.3 0.0 2.4 0.0 0.0 0.0 1.0 0.0 0.2 0.0 0.8 1.3 3.5 5.8 

Dump sites 1.5 0.0 2.6 0.5 4.0 2.0 0.0 0.0 0.0 0.0 1.3 0.1 1.4 0.2 14.3 4.0 

Road and rail networks 1.7 0.0 4.2 0.0 2.3 0.0 0.4 0.0 0.0 0.0 0.0 0.0 2.8 0.3 36.7 61.7 

Port areas 0.1 0.0 0.2 0.0 0.4 0.0 2.3 0.0 0.4 0.0 0.0 0.0 0.1 0.3 36.7 46.0 

Airports 52.8 0.0 1.0 0.0 2.7 0.0 0.0 0.0 0.0 0.0 5.9 0.0 1.7 4.4 31.7 90.0 

Artificial green and 

leisure areas 
2.5 0.0 7.9 0.0 5.2 0.0 0.4 0.0 0.2 0.0 0.1 0.0 39.6 57.1 11.3 17.7 

Open spaces with little 

or no vegetation 
14.9 19.7 1.0 2.0 19.1 13.5 18.0 11.9 41.3 28.2 0.6 24.1 0.2 0.0 0.4 0.3 

Water bodies 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

 NBG OCT MED HCP WCP MDW BLD WTR 

 C S C S C S C S C S C S C S C S 

Agricultural areas 0.6 0.1 0.3 0.0 0.5 0.3 9.7 10.4 4.4 4.8 62.8 69.9 3.8 3.3 0.1 0.0 

Natural vegetation 

areas 
0.2 0.0 0.1 0.0 0.4 0.1 0.3 0.1 0.2 0.1 5.6 1.8 0.2 0.0 0.3 0.0 

Urban fabric 9.8 9.8 2.3 0.6 4.2 3.1 1.2 1.7 0.8 0.9 8.2 8.6 30.6 37.9 0.3 0.0 

Industrial and 

commercial areas 
14.4 18.5 7.0 6.1 10.3 10.6 0.4 0.0 0.3 0.0 4.0 0.1 24.8 31.5 2.2 0.0 

Mineral extraction sites 6.4 7.2 0.5 1.8 71.2 79.6 0.5 0.0 0.1 0.0 4.8 0.0 3.6 3.9 0.0 0.0 

Dump sites 8.4 5.6 0.0 0.0 53.2 82.3 0.4 0.0 0.4 0.0 5.1 0.5 5.8 1.6 1.6 0.0 

Road and rail networks 20.9 19.3 2.3 13.8 7.8 4.1 0.8 0.0 0.8 0.0 10.0 0.0 6.6 0.8 2.5 0.0 

Port areas 13.0 17.1 5.9 6.4 16.8 18.4 0.0 0.0 0.0 0.0 0.0 0.0 4.7 5.7 14.4 0.0 

Airports 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 1.8 5.6 0.0 0.0 

Artificial green and 

leisure areas 
5.7 7.3 3.9 9.9 6.5 1.3 0.9 0.0 0.5 0.0 7.8 0.0 6.1 5.6 0.7 0.0 

Open spaces with little 

or no vegetation 
0.7 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 1.4 0.1 0.2 0.0 1.8 0.1 

Water bodies 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.4 99.8 
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