
HAL Id: inria-00518005
https://inria.hal.science/inria-00518005

Submitted on 16 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An offset algorithm for polyline curves
Xu-Zheng Liu, Jun-Hai Yong, Guo-Qin Zheng, Jia-Guang Sun

To cite this version:
Xu-Zheng Liu, Jun-Hai Yong, Guo-Qin Zheng, Jia-Guang Sun. An offset algorithm for polyline curves.
Computers in Industry, 2007, 15p. �inria-00518005�

https://inria.hal.science/inria-00518005
https://hal.archives-ouvertes.fr


mailto:liu-xz02@mails.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.compind.2006.06.002


X.-Z Liu et al. / Computers in Industry 58 (2007) 240–254 241

Fig. 1. The offset results from (a) AutoCAD2004, (b) AutoCAD2002, and (c)

the algorithm in this paper.

Fig. 3. The part to be machined.
segments of a polyline curve may organize complicatedly. On

the one hand, the two neighboring segments of a polyline curve

are connected with only G0 continuity. On the other hand, there

may be self-intersection and overlapping among its segments.

Although the offset curves of arcs and line segments are arcs

and line segments, respectively, there still exist some problems

to calculate the offsets of polyline curves. For instance,

sometimes only parts of offset curves can be obtained or the

offset curves may intersect with the original polyline curves. To

address the problems clearly, we take Figs. 1 and 2 as examples.

In these examples, the thick curves are original polyline curves

and the thin curves are the offset curves on both sides of the

original curves. In Fig. 1, the original curve is a closed polyline

curve that contains two small arcs. As shown in Fig. 1(a), the

commercial software AutoCAD 2004 produces two offset

curves, and AutoCAD 2002 cannot produce any offset curves

(Fig. 1(b)). In Fig. 2, the original polyline curve is more

complex than that in Fig. 1, and it has many self-intersection

points. The offset curves from AutoCAD 2004 have some

obvious errors since they have intersection points with the

original curve (Fig. 2(a)). And only parts of the offset curves

can be obtained from AutoCAD 2002 (Fig. 2(b)). A probable

reason for this phenomenon may come from the difficulty to

deal with complex organization among the segments of a

polyline curve. Therefore, a better offset algorithm for polyline

curves is needed to solve the above problems.

In CNC machining, many boundaries of the parts are

polyline curves or approximated by polyline curves. For

example, the internal boundary of the part illustrated in Fig. 3 is

a polyline that is composed of three circular arc and five line

segments. If the offsets of the boundary are obtained, the tool

paths can be generated easily. And we will give two examples to

generate tool paths in Section 6. Furthermore, the offset

algorithm for polyline curves is not limited to the polyline

curves themselves and it can also provide a blue print for the
Fig. 2. The offset results from (a) AutoCAD2004, (b) AutoCAD2002, and (c)

the algorithm in this paper.
approximation offsets of other complex planar curves. Actually,

the methods mentioned in Refs. [12,13] and [15] have adopted

the strategy that the offsets of complex planar curves are

replaced by the offsets of polyline curves.

However, to our best knowledge, there are not many research

works [20,21] aiming at the offset algorithm for polyline curves

except for the commercial software AutoCAD. Choi and Park

[20] give an algorithm for point-sequence curves (PS-curves)

obtained by intersecting a sculptured surface with a plane. PS-

curves including only line segments can be regarded as polyline

curves. Li and Ye [21] study the method on non-self-

intersection polyline curves which do not involve curves that

are self-intersection, overlapping or containing small arcs.

In this paper, an offset algorithm for polyline curves is

presented and its target is to obtain all the offset curves. And the

offset algorithm can deal with polyline curves that are closed,

self-intersection, overlapping or containing small arcs. For

example, Figs. 1(c) and 2(c) illustrate the offset results from the

algorithm proposed in this paper. These results are much better

than those from AutoCAD.

The main idea of this offset algorithm is described briefly as

follows. Firstly, the offsets of all the segments of a polyline curve

are calculated. Then the offsets are joined into a polyline curve

that is called an untrimmed offset curve. The untrimmed offset

curve includes all the offsets of the original curve. But it may

contain many self-intersecting loops or intersect with the original

curve. Finally, the offset results are obtained after the application

of a clipping algorithm to the untrimmed offset curve. We also

prove that the clipping algorithm does not cut out the untrimmed

offset curve overmuch. Thus the offset algorithm is guaranteed

theoretically to gain all the offset curves.

The remaining part of the paper is organized as follows.

Some basic definitions are given in Section 2. An algorithm to

get an untrimmed offset curve is proposed in Section 3, where

only the polyline curves that are open and not overlapping

are considered. Section 4 presents a clipping algorithm for

untrimmed offset curves and Section 5 discusses complex
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polyline curves that are closed, overlapping or containing small

arcs. In Section 6, some illustrative examples are given and the

conclusions are drawn in the final section.

2. Basic concepts

Definition 1 (Polyline curve).

A polyline curve is composed of line segments and arcs which

are joined together with G0 continuity. The line segments and

arcs are called as segments of a polyline curve. For each

segment, we define a uniform structure SEG:

SEG ¼ f point; bulgeg
where the variable point denotes the starting point of this

segment. The variable point of the next SEG can present the

ending point of this segment. And the variable bulge describes

whether this segment is an arc or not. If bulge ¼ 0, the segment

denotes a line segment. Otherwise, it is an arc. For an arc, the

value of bulge can be calculated by the expression tan ðu=4Þ,
where u is the central angle of the arc. And the sign of bulge is to

determine how to select the arc segment. For example, if

bulge< 0, we take the arc segment from the starting point to

the ending point clockwise. Using the uniform structure, a

polyline curve can be written as a sequence fs1; s2; . . . ; sng,
where siði ¼ 1; . . . ; nÞ are the objects defined by SEG. If it is an

open curve, the last SEG sn does not represent a segment, but a

point with the position stored in the variable point of sn. The

point is the ending point of sn�1. Therefore, the polyline curve

comprises n� 1 segments. If the polyline curve is a closed

curve, it is composed of n segments and sn represents a segment

from sn �point to s1 �point.
Definition 2 (Local self-intersection point (LSIP)).

For a point p on a polyline curve, the parameter of p can be

defined as the arc length from the starting point of the polyline

curve to the point p. If a point on a polyline curve has no less

than two different parameters, then the polyline curve is called a

self-intersection curve, and this point is named as a self-

intersection point (SIP). That the polyline curve is local self-

intersection means the SIP is the intersection point between the

two neighboring segments. And the SIP is denoted as a local

self-intersection point (LSIP). It is easy to find that the set of

LSIPs is a subset of the set of self-intersection points.
Definition 3 (Extended intersecting).

For a line segment, extended intersecting means using the line

containing the line segment to calculate the intersection points.

Similarly, for an arc, it means using the circle containing the arc

to calculate the intersection points.
Fig. 4. Comparison between (a) the untrimmed offset curve and (b) the offset

curves after clipping.
Definition 4 (False intersection point (FIP), true intersection

point (TIP)).

If the intersection point obtained by extended intersecting is on

the line segment/arc, then the point is called a true intersection

point (TIP). Otherwise, it is called a false intersection point (FIP).

For a line segment, we construct a ray whose starting point is the

starting point of the line segment and the direction is from the line
segment’s starting point to its ending point. If the FIP is on the ray,

it is called a positive false intersection point (PFIP). Otherwise, it

is called as a negative false intersection point (NFIP).
Definition 5 (Local overlapping).

If two segments of a polyline curve overlap partly, or one

segment is a part of the other segment, the polyline curve is

called an overlapping curve. If the overlapping part occurs

between successive segments, then the polyline curve is called a

local overlapping curve.

For two fully overlapping neighboring segments, the outer

side direction can be defined as follows. Moving a point on each

segment from its starting point to ending point, the left side

direction is called as the outer side direction. We only give the

offset curves on the outer side direction for two fully

overlapping neighboring segments.
Definition 6 (General closest point pair (GCPP)).

Assume that s is a set of line segments and arcs and that d is a

positive real number. For arbitrary s1 and s2 in s, we calculate the

closest distance from the starting (ending) point of s1 to s2. If

there is only one closest point on s2, the point is denoted as p. If

there exist many closest points on s2, we select an arbitrary

closest point on s2 and denote it as p. If the closest distance is less

than d, then the starting (ending) point of s1 and p is called a

general closest point pair (GCPP) from s1 to s2. We can conclude

there are no general closest point pairs from s1 to s2 if the closest

distance between s1 and s2 is greater than d. The number of

GCPPs from s1 to s2 is no more than 2 and the number of GCPPs

from s1 to s2 may not equal to that from s2 to s1.

For two polyline curves p1 and p2, the number of general

closest point pairs from p1 to p2 is the sum of the number of

general closest point pairs from p1’s segments to p2.
Definition 7 (Untrimmed offset curves).

Given a polyline curve, we firstly calculate all the offset curves

of its segments. Then using different rules, these offset curves

can be connected into a new polyline curve which is called an

untrimmed offset curve. For some simple cases, the untrimmed

offset curves are the offset results. But in most cases, they need

further clipping because they may intersect with the original

polyline curves. Take Fig. 4 as an example. In Fig. 4(a), the

thick curve is the original polyline curve and the thin one is an

untrimmed offset curve. The untrimmed offset curve intersects
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with the original curve and it needs further clipping to get the

offset results. Applying the clipping algorithm proposed in

Section 4 to the untrimmed offset curve, we can obtain the

offset results illustrated in Fig. 4(b).
3. Untrimmed offset curves

In this section, all the polyline curves considered are open

and not overlapping. If they contain arcs, we assume the radii of

the arcs are greater than the offset distance. Other polyline

curves that are closed, overlapping or containing small arcs will

be discussed in Section 5.

3.1. Pretreatment

The pretreatment is to convert a local self-intersection

polyline curve into the one that is not local self-intersection.

Although a polyline curve may have many self-intersection

points, here we do care whether it is local self-intersection or

not.

If a polyline curve is local self-intersection, from Definition

2, there exist two neighboring segments that have two

intersection points. On one of these two segments, we select

an arbitrary point lying between these two intersection points.

And this point can split the segment into two new segments.

Then the three segments form a new polyline curve that has the

identical shape with the old one and is not local self-

intersection.

Fig. 5 illustrates several cases in which a polyline curve is

local self-intersection. The polyline curve can be written as

fsa; sb; scg, and the segments sa and sb have two intersection

points. Firstly we calculate the meanvalue (denoted as param) of

the parameters of the two intersection points. The point evaluated

from param is denoted as p. If p is on a line segment, we construct

a new SEG s p with s p �point ¼ p and s p �bulge ¼ 0. If p is on an

arc, we construct a new SEG s p with s p � point ¼ p, and s p �bulge
determined by the arc length from point p to point b. At the same

time the value of the variable bulge of sa must be modified. Then

we can get a new polyline curve fsa; s p; sb; scg. The new polyline

curve has the identical shape with the old one and is not local self-

intersection. In Fig. 5(a), two neighboring segments of the local

self-intersection polyline curve are a line segment and an arc, the

new segment s p is a line segment. In Fig. 5(b), two neighboring

segments are an arc and a line segment, and s p is an arc. And two

neighboring segments and s p are all arcs in Fig. 5(c).
Fig. 5. The pretreatment for local self-intersection polyline curves. The two

neighboring segments are (a) a line segment and an arc; (b) an arc and a line

segment; (c) two arcs.
3.2. The trim/joint rules between two neighboring offset

segments

For a polyline curve that is not local self-intersection, we

firstly obtain all the offset curves of its segments. These offset

curves form a set of arcs and line segments. After trimming or

joining all the offset curves we can get an untrimmed offset

curve of the polyline curve.

To describe the algorithm for the untrimmed offset curve

conveniently, we introduce the following denotations. An original

polyline curve can be written as pline0 ¼ fs1; s2; . . . ; sng, and

the offset curve of its segment si is denoted as ŝi

(i ¼ 1; 2; . . . ; n� 1). Then we construct a polyline curve pline1

without segments originally. And the first SEG of pline1 can be

constructed with ŝ1 �point and ŝ1 �bulge. Other succeeding

segments of pline1 are constructed by the following trim/joint

rules.

The combination of two neighboring segments si and siþ1

can be classified into three different types: the combination

between two line segments, the combination between two arcs

and the combination between a line segment and an arc. For

these types, we propose four algorithms to trim or connect their

offset curves ŝi and ŝiþ1. Algorithm 1 applies to the combination

between two line segments. Algorithms 2 and 3 fit the

combination between a line segment and an arc and Algorithm

4 is for the combination between two arcs.

In each algorithm, the first step is to calculate the intersection

points of extended intersecting between ŝi and ŝiþ1. If there are

more than one intersection points, we select the point closer to

si �point as the base intersection point. Then we determine the

type of the base intersection point such as TIP, FIP, PFIP or NFIP

and adopt different trim/joint rules for different point types.

Figs. 6, 8, and 10 give some cases of the different combination

between two neighboring segments, and the point p is the vertex

of pline, p0 is the base intersection point of ŝi and ŝiþ1,

i ¼ 1; 2; . . . ; n� 1. In these figures, the dashed thin curves are

the extended parts of ŝi, ŝiþ1 and the thick curves are the original

curves. The thin curves are ŝi and ŝiþ1. Figs. 7, 9 and 11 illustrate

the trim/joint results correspondingly. The thin curves are the

offset curves and the thick ones are the original polyline curves.

Algorithm 1 processes the trim/joint between two line

segments. For different types of the base intersection point,

there are different rules.

Algorithm 1. Get the intersection points of extended inter-

secting between the offset curves ŝi and ŝiþ1;
Case 1. I
f the two extended lines overlap, construct a new SEG

s, where s�point is the ending point of ŝi and s�bulge
equals 0. Then add s to pline1;
Case 2. I
f there is one intersection point p0, determine the type

of p0 for the curve ŝi, ŝiþ1:

Case 2a. If the point p0 is a TIP for both ŝi and ŝiþ1,

construct a new SEG s with s�point ¼ p0 and

s�bulge ¼ 0. Then add s to p line1;

Case 2b. If the point p0 is an FIP for both ŝi and ŝiþ1:

for ŝi, if it is a PFIP, construct a new SEG s
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Fig. 6. The combination between two line segments and some cases of the types of the base intersection point p0 for ŝi and ŝiþ1: (a and e) a TIP for both ŝi and ŝiþ1; (b)

a PFIP for ŝi and an FIP for ŝiþ1; (c) an FFIP for ŝi and an FIP for ŝiþ1; (d) an FIP for ŝiðŝiþ1Þ and a TIP for ŝiþ1ðŝiÞ.
with s�point ¼ p0 and s�bulge ¼ 0. Then add

s to pline1; otherwise, let bulge ¼ 0, with the

ending point of ŝi, the starting point of ŝiþ1,

construct two SEGs, respectively and add

them to pline1 sequently;

Case 2c. If p0 is a TIP for ŝi (or ŝiþ1) and an FIP for ŝiþ1

(or ŝi), let bulge ¼ 0, with the ending point of

ŝi, the starting point of ŝiþ1, construct two

SEGs, respectively and add them to pline1

sequently;
Case 3. I
f i ¼ n� 1, let bulge ¼ 0, with the ending point of

ŝn�1, construct a SEG and add it to pline1.
As an example, Fig. 6 illustrates some cases of the

combination between two line segments. In Fig. 6(a), the base

intersection point p0 is a TIP for both ŝi and ŝiþ1, so we break ŝi

and ŝiþ1 into two segments, respectively, and obtain the joint

result (Fig. 7(a)). If p0 is an FIP point for both ŝi and ŝiþ1, we

must determine if it is a PFIP for ŝi. In Fig. 6(b), we extend both

ŝi and ŝiþ1 to form the joint result (Fig. 7(b)). In Fig. 6(c), p0 is a

NFIP for ŝi, we add a line segment to join ŝi and ŝiþ1 (Fig. 7(c)).

The base intersection point p0 is a TIP for ŝi and an FIP for ŝiþ1

in Fig. 6(d), we also add a line segment to connect them

(Fig. 7(d)). If the two extended lines overlap (Fig. 6(e)), we do

not add any additional process (Fig. 7(e)).

Algorithm 2 processes the trim/joint between a line segment

and an arc. For different types of the base intersection point,

there are different trim or joint results. In this algorithm, we

assume si is a line segment and siþ1 is an arc.

Algorithm 2. Calculate the intersection points of extended

intersecting between the line segment ŝi and the arc ŝiþ1;
Case 1. I
f there exists a base intersection point p0:
Case 1a. If the base intersection point p0 is a TIP for

both ŝi and ŝiþ1, with s�point ¼ p0 and the
Fig. 7. The trim/joint results from Algori
s�bulge determined by the arc length,

construct a SEG s and add it to pline1;

Case 1b. If the base intersection point is a PFIP for

both ŝi and ŝiþ1, construct an arc to connect ŝi

and ŝiþ1. The center point of the arc equals

si �point, the starting point and ending point

of the arc are the ending point of ŝi and the

starting point of ŝiþ1. At the same time,

determine the sign of bugle of the arc;

Case 1c. If p0 is an FFIP of the line segment and a TIP

of the arc, construct a line segment to connect

ŝi and ŝiþ1;

Case 1d. If p0 is a TIP of the line segment and an FIP of

the arc, construct a line segment to connect ŝi

and ŝiþ1;
thm 1 for F
Case 2. I
f there is no base intersection points, then construct an

arc similarly in Case 1b to connect ŝi and ŝiþ1;
Case 3. I
f i ¼ n� 1, let bulge ¼ 0, with the ending point of

ŝn�1, construct a SEG and add it to pline1.
Fig. 8 gives some cases of the combination between a line

segment and an arc. In Fig. 8(a) and (b), the base intersection

point p0 is a TIP for ŝi and ŝiþ1, and we obtain the joint results

displayed in Fig. 9(a) and (b). If there is no base intersection

points or p0 is an FIP for both ŝi and ŝiþ1 (Fig. 8(c), (b) and (d)),

we construct an arc to connect ŝi and ŝiþ1 (Fig. 9(c), (b) and (d)).

If p0 is an FIP for ŝi and a TIP for ŝiþ1 (Fig. 8(e)), we add a line

segment to connect them (Fig. 9(e)). If p0 is a TIP for ŝi and an

FIP for ŝiþ1 (Fig. 8(f)), we add the same process (Fig. 9(f)).

If a polyline changes the direction, we get the case that si is

an arc and siþ1 is a line segment. We propose Algorithm 3 to

process this case. Algorithm 3 is similar with Algorithm 2

except for the following changes. In case 1b in Algorithm 3, the

condition of PFIP is modified as FFIP. In Case 1c in Algorithm

3, the condition of FFIP is modified as PFIP.
ig. 6.
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Fig. 8. The combination between a line segment and an arc. And some cases of the types of the base intersection point p0 for ŝi and ŝiþ1: (a and b) a TIP for both ŝi and

ŝiþ1; (b and d) a PFIP for ŝi and an FIP for ŝiþ1; (e) an FFIP for ŝi and a TIP for ŝiþ1; (f) a TIP for ŝi and an FIP for ŝiþ1; (c) there is no base intersection point between ŝi

and ŝiþ1.
Algorithm 3. Calculate the intersection points of extended

intersecting between the arc ŝi and the line segment ŝiþ1;
Case 1. I
f there exists a base intersection point p0:
Case 1a. If the base intersection point p0 is a TIP for

both ŝi and ŝiþ1, with s�point ¼ p0 and the

s�bulge determined by the arc length,

construct a SEG s and add it to pline1;

Case 1b. If the base intersection point is an FFIP for

both ŝi and ŝiþ1, construct an arc to connect ŝi

and ŝiþ1. The center point of the arc equals

si �point, the starting point and ending point

of the arc are the ending point of ŝi and the

starting point of ŝiþ1. At the same time,

determine the sign of bugle of the arc;

Case 1c. If p0 is a PFIP of the line segment and a TIP

of the arc, construct a line segment to connect

ŝi and ŝiþ1;
Fig. 9. The trim/joint results from Algori
Case 1d. If p0 is a TIP of the line segment and an FIP of

the arc, construct a line segment to connect ŝi

and ŝiþ1;
thm 2 for Fi
Case 2. I
f there is no base intersection points, then construct an

arc similarly in Case 1b to connect ŝi and ŝiþ1;
Case 3. I
f i ¼ n� 1, let bulge ¼ 0, with the ending point of

ŝn�1, construct a SEG and add it to pline1.
If the polyline curves change the direction, Algorithm 2 or 3

is chosen to calculate their offset curves. And the direction does

not affect the final result.

For the combination between arcs, Algorithm 4 is proposed

to get the trim or joint results for different types of the base

intersection point.
Algorithm 4. Get the intersection points of extended inter-

secting between the arcs ŝi and ŝiþ1;
Case 1. I
f there exists a base intersection point p0:
g. 8.
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Fig. 10. The combination between two arcs and some cases of the types of the base intersection point p0 for ŝi and ŝiþ1: (a and b) a TIP for both ŝi and ŝiþ1; (b and c) a

PFIP for ŝi and an FIP for ŝiþ1; (d) an FFIP for ŝi and an FIP for ŝiþ1. (e) There is no base intersection point between ŝi and ŝiþ1.
Case 1a. If the base intersection point p0 is a TIP or an

FIP for both ŝi and ŝiþ1, with s�point ¼ p0

and the s�bulge determined by the arc length,

then construct a SEG s and add it to pline1,

modify the bulge of the previous SEG of

pline1.

Case 1b. If p0 is a TIP for ŝi (or ŝiþ1) and an FIP for ŝiþ1

(or ŝi), then construct an arc to connect ŝi and

ŝiþ1;
Case 2. I
f there is no base intersection point, then construct an

arc to connect ŝi and ŝiþ1;
Case 3. I
f i = n � 1, let bulge ¼ 0, with the ending point of

ŝn�1, construct a SEG and add it to pline1.
Fig. 10 illustrates some cases of the combination between

two arcs. If there is no base intersection point (Fig. 10(e)) or the

base intersection point is a TIP for ŝi and an FIP for ŝiþ1

(Fig. 10(d)), we construct an arc to connect ŝi and ŝiþ1

(Fig. 11(e) and (d)). If the base intersection point is a TIP or an

FIP for both ŝi and ŝiþ1 (Fig. 10(a)–(c)), we break/extend the

arcs to get the trim results (Fig. 11(a)–(c)).

4. Clipping algorithm

For an arbitrary curve mentioned in Section 3, we can get an

untrimmed offset curve using Algorithms 1–4. In many cases,

untrimmed offset curves may intersect with the original polyline

curves and need further clipping. In this section, a clipping
Fig. 11. The trim/joint results fr
algorithm is proposed and the final offset results can be obtained

after applying it to untrimmed offset curves. Because the clipping

algorithm may cut out some parts of the untrimmed offset curves,

the final results may contain several polyline curves.

The clipping algorithm comprises two main steps. The first

step is called as dual clipping that cuts an untrimmed offset

curve into several segments using its self-intersection points

and intersection points with another untrimmed offset curve on

the other direction. The second step is general closest point pair

(GCPP) clipping. After applying the GCPP clipping algorithm

to the preserved segments from the first step, we can get the

final results. In the following parts, the clipping algorithm will

be interpreted in detail.

To describe the clipping algorithm conveniently, we denote

the original polyline curve as pline ¼ fs1; s2; . . . ; sng, and

Array, tmpArray1, tmpArray2 are three arrays to save polyline

curves.

Clipping algorithm.

Step 1. Dual clipping:

Step 1a. With the direction and the offset distance d, using

the Algorithms 1–4, we can obtain an untrimmed offset

curve which can be denoted as pline1. Similarly, we can get

another untrimmed offset curve pline2 on the other direction

with the same offset distance;

Step 1b. Calculate the intersection points between

pline1 and pline2, the self-intersection points of pline1,
om
 Algorithm 4 for Fig. 10.
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respectively. A self-intersection point can be regarded as two

points with different parameters:

Case 1. If there is no intersection point and self-

intersection point, then add pline1 to tmpArray1 and turn

to Step 2;

Case 2. If there exists N intersection points, those points

sorted by their parameters on pline1 can split pline1 into

N þ 1 segments, and each segment can be denoted as pi,

i ¼ 1; 2; . . . ;N þ 1;

For all pi:

Calculate the intersection point between pi and pline;

If there is no intersection point, add pi to tmpArray1;

If there exist intersection points and all the points are not on

s1 or sn�1, reject pi;

Otherwise, add pi to tmpArray2;

For all pi in tmpArray2:

Construct a circle which center is the intersection point and

the radius is the offset distance. The circle splits pi into at

most three segments. Preserve the segments outside of the

circle and add them to tmpArray1;
Step 2. General closest point pair clipping:

For all curves pi in tmpArray1

Let d equal the offset distance, calculate the GCPPs

from pline to pi. For each GCPP, construct a circle which

center is the general closest point on pline. Then pi can

be divided into several segments by these circles.

Preserve the segments outside of the circles and add

them to Array.
The curves in Array are the final results we need.

Lemma 8. In Step 1b, Case 1 of the clipping algorithm, if pi

has an intersection point with pline, and the intersection point

is not on s1 or sn�1, then rejecting pi is reasonable.
Proof. If pi has an intersection point with pline, and the

intersection point is not on s1 or sn�1, from the dual clipping

algorithm to get pi, we can conclude that the starting (ending)

point of pi is the self-intersection point of pline1 or the

intersection point with pline2, then pi lies in the zonal region

enveloped by pline1 and pline2. Therefore, pi should be

rejected. &
Fig. 12. The procedure of the clip algorithm: (a) two untrimmed offset curves are

general closest point is obtained; (d) the offset result after Step 2 (general closest
Lemma 9. In Step 2 of the clipping algorithm, for all the curve
segments obtained by general closest point pair clipping, except

for their starting points and ending points, the closest distances

from the segments to pline are either greater or less than the

offset distance.

Proof. For all curves pi in tmpArray1 mentioned in Step 2, if

there exist general closest point pairs from pline to pi, without

lose the generality, suppose there exist GCPPs from si of pline

to pi. We construct two circles which radii are the offset

distance and centers are the starting point, ending point of

si. The two circles and the offset curves on both sides of si form

a closed region R. R can cut pi at most three segments. The

closest distance from each segment to pline is greater or less

than the offset distance except for its starting (ending) point.

Here, two GCPPs mean that pi may extend out the region R on

its both ends. One GCPP means that at most one end of pi may

extend out the region R. And if there is no GCPP, pi lies in or

outside R fully. So the conclusion on GCPP clipping algorithm

stands. &

Theorem 10. For all the curves in Array obtained by the

clipping algorithm, their closest distances to pline are greater

or equal the offset distance. At the same time, this clipping

algorithm could not reject the curves overmuch.

Proof. From Step 2 of the clipping algorithm, the closest

distances from the preserved curves to pline are no less than

the offset distance. And the clipping algorithm could not cut the

pline1 overmuch from Lemmas 8 and 9. &

From Theorem 10, we can conclude all the offset curves of

the open curves mentioned in Section 3 can be obtained by the

offset algorithm.

Fig. 12 demonstrates the validity of the clipping algorithm.

In Fig. 12(a), an arrowhead indicates the direction the curve

offsets. Use Step 1a of Clipping algorithm, two untrimmed

offset curves are obtained. After dual clipping, the offset result

is illustrated in Fig. 12(b). In Step 2 of Clipping algorithm, one

general closest point is obtained (a circle in Fig. 12(c)). And the

final offset results are illustrated in Fig. 12(d) after general

dustry 58 (2007) 240–254 247
obtained after Step 1a; (b) the offset result after Step 1 (dual clipping); (c) one

point pair clipping); (e) the offset results on both sides of the polyline.
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Fig. 13. The original polyline curves with many self-intersection loops are composed of: (a) line segments; (b) arcs; (c) both line segments and arcs. And the thin

curves are the offset results on both sides of the original curves.
closest point pair clipping. Fig. 12(e) presents the offset results

on both sides of the polyline.

5. Complex cases

5.1. Closed curves

For a closed polyline curve, if it includes only one loop, we

can easily distinguish its internal and outer region. But it is

difficult to do this if the polyline curve has more than one loop.

Namely many self-intersection loops make it harder to determine

the offset direction of the curve. In this case, AutoCAD can

produce parts of the offset curves, as shown in Fig. 1(a).

Our idea to process a closed polyline curve consists of two

steps. The first step transforms a close polyline curve into an

open one, then the algorithms proposed in Sections 3 and 4 can

be used here to obtain the offset curves of the open curve. The

second step adds some closing processes to the offset curves.

Given a closed polyline curve pline ¼ fs1; s2; . . . ; sng,
where sn describes the segment from sn �point to s1 �point. We

construct an open curve pline1 ¼ fs01; s02; . . . ; sn; s
0
nþ1g, where

s0i ¼ siði ¼ 1; 2; . . . ; nÞ and s0nþ1 �point ¼ s1 �point. Using the

algorithm in Sections 3 and 4, we can get the offset curves for

pline1. To get the final offset curves of the closed polyline

curve, we must add some closing processes to the offset curves

of pline1. Firstly we have to determine if an offset curve needs

joint process. If so, the joint rule is similar with that in Section
Fig. 14. (a) The new position relationships between the two neighboring offset curv

arcs, and the thin curves are the offset results on both sides of the original curves
3. Then the offset curve appears closing shape, but it is not a real

closed one. From the definition of a closed polyline curve, we

can delete the last SEG of the offset curve, and set its closed flag

to make it a real closed curve.

Fig. 13 illustrates some offset results for closed polyline

curves. The original curves in Fig. 13(a)–(c) are composed of line

segments, arcs, both line segments and arcs, respectively, and

these curves have more than one self-intersection loops. The thick

curves are original curves and the thin curves are the offset curves

on both sides of them. From the examples, we can conclude the

offset algorithm is valid to process closed polyline curves.

For the original curves in Fig. 13, AutoCAD can only

produce some parts of the offset curves just like Fig. 1(a), and

we do not list the results here.

5.2. Curves with small arcs

If the radius of an arc is less than the offset distance, it has no

offset curves on its internal direction. Therefore, if a polyline

curve contains such arcs, the algorithm to get the untrimmed

offset curve presented in Section 3 must be modified. On the

one hand, there is no one-one mapping from the offset curves to

original curve segments, we must record the mapping

additionally. On the other hand, the position relationships

between two adjacent offset curves become more complex.

Taking Fig. 14(a) as an example, the two neighboring offsets of

line segments lie on the same line and two offsets of arcs lie on
es. (b and c) The thick curves are the original polyline curves with many small

.
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Fig. 15. Three cases of successive overlapping line segments: (a) three successive overlapping line segments BC, CD and DE; (b) two successive overlapping line

segments BC and CD; (c) three successive overlapping line segments BC, CD and DE.
the same circle, but they have no common points. These

position relationships do not appear in Section 3. So we have to

modify the trim/joint algorithm to process such cases. Because

the mainframes of the modified algorithms are similar with

those in Section 3, we do not give the details here.

Fig. 14(b) and (c) give the offset results of two curves

including many small arcs. The thick curves are the original

curves and the thin curves are the offset results on both sides of

them. We can conclude the offset algorithm can produce all the

offset curves for polyline curves with many small arcs.

5.3. Local overlapping curves

Because the overlapping parts occur between two segments

which are not neighboring can be processed by the algorithm

presented in Sections 3 and 4, in this section, we consider the

polyline curves when the overlapping part is between the

successively segments (namely, local overlapping).

If two successive segments overlap fully, we give the offset

curves on the outer side direction (Definition 5) of the original

curve and the two offset curves is connected by an arc. If there

are more than two successive segments overlapping, using the

following algorithm we transform such a polyline curve into the

one whose overlapping parts are between two successive

segments. The algorithm comprises two steps. The first step is

to break the overlapping segments into smaller segments and

these segments form a new polyline curve. Then some

unwanted segments are deleted from the new curve in the

second step. And the offset curves of the new curve can be

regarded as the offset results of the original curve.

We introduce some denotations to describe the transforming

algorithm. Denoting a polyline curve as pline ¼ fs1; s2; . . . ; sng
and a new polyline curve as pline1. In the algorithm, s, s̄, s̄1 and s̄2

are four temporary variables of the structure SEG.

Transforming algorithm. Construct a polyline curve

pline1 ¼ fs̄g, where s̄ ¼ s1;
Fig. 16. The thin curves are the offset results on
Step 1: Break the segments

for all siði ¼ 2; . . . ; nÞ
Let s equal the last SEG of pline1;

If (s overlaps with si)

Case 1: The starting point of s is on si:

Construct s̄1 and s̄2 with the points si �point and s�point;
If s is a line segment, set s̄1 �bulge ¼ 0 and s̄2 �bulge ¼ 0;

If s is an arc, the bulges of s̄1 and s̄2 must be calculated

according to the arc length;

Add s̄1 and s̄2 to pline1 sequently.

Case 2: The ending point of si is on s:

Construct s̄1 and s̄2 with the ending point of si and si �point;
If s is a line segment, set s̄1 �bulge ¼ 0 and s̄2 �bulge ¼ 0;

If s is an arc, the bulges of s̄1 and s̄2 must be calculated

according to the arc length;

Add s̄1 and s̄2 to pline1 sequently.

Else

Let s̄1 ¼ si and add it to pline1.

Step 2: Delete unwanted segments

If there are more than two successive segments between

point p1 and p2:

Delete a segment from p1 to p2 and a segment from p2 to

p1.

Until there are no more than two successive segments

between p1 and p2.
In order to interpret the transforming algorithm clearly, we

take Figs. 15 and 17 as examples to execute the transforming

algorithm. Because a line segment cannot overlap with an arc,

so the local overlapping can only happen between successive

line segments or arcs. Fig. 15 gives three local overlapping

cases for successive line segments. The curves are composed of

segments AB, BC, CD, DE, (EF). In Fig. 15(a), three successive

segments BC, CD and DE overlap. From Step 1 of the

transforming algorithm, we obtain a new polyline curve

plinea ¼ fsA; sB; sD; sC; sD; sC; sEg. Then two unwanted seg-
both sides of the original curves in Fig. 15.
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Fig. 17. Three cases of successive overlapping arcs: (a) three successive overlapping arcs BC, CD and DE; (b) two successive overlapping arcs BC and CD; (c) three

successive overlapping arcs BC, CD and DE.

Fig. 18. The thin curves are the offset results on both sides of the original curves in Fig. 17.
ments sD and sC are deleted by Step 2, we get the curve

plinea ¼ fsA; sB; sD; sC; sEg and the curve is not overlapping.

In Fig. 15(b), two successive segments BC and CD

overlap, similarly we obtain a new polyline curve plineb ¼
fsA; sB; sD; sC; sD; sEg by the transforming algorithm. Two

segments of plineb between the two points sD �point
and sC �point overlap fully. In Fig. 15(c), three successive

segments BC, CD and DE overlap. And a new polyline curve
Fig. 19. The offset curves are obtained step by step: (a) the original polyline which co

of the original curve; (c) the untrimmed offset curve is obtained by Algorithms 1–

Fig. 20. The comparison between the offset results of an overlapping polyline curve

offset results from our offset algorithm; (c) the offset results from AutoCAD 2004
plinec ¼ fsA; sB; sC; sB; sE; sD; sE; sFg can be obtained from

the transforming algorithm. Its segments between the two

points sB � point and sC �point, sE �point and sD �point overlap

fully.

Two successive fully overlapping segments can be regarded

as a special segment of a polyline curve. This special segment is

processed similarly as the small arc segment of a polyline curve

because it has an offset curve only on the outer side direction.
mprises four line segments and two arcs; (b) the offset curves of all the segments

4; (d) the final offset results after applying the clipping algorithm.

: (a) the original curve with two overlapping line segments AB and BC; (b) the

.
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Fig. 21. The thick original polyline curve is closed and contains six self-

intersection loops. The thin offset curves on both sides of the original curve are

from (a) our offset algorithm and (b) AutoCAD 2004 with the offset distances

15, 25, 35 and 45 mm, respectively.

Fig. 22. The thick original polyline curve is an open curve. The thin offset

curves on both sides of the original curve are from (a) our offset algorithm and

(b) AutoCAD 2004 with the offset distances 15, 25, 35 and 45 mm, respectively.
Algorithms 1–4 are modified slightly to produce untrimmed

offset curves of the new polyline curves. And the clipping

algorithm in Section 4 can be used without modifications.

Fig. 16(a)–(c) are the offset curves on both sides of polyline

curves in Fig. 15.

Fig. 17 gives three local overlapping cases for successive

arcs. The curves are composed of segments AB, BC, CD, (DE,

EF). In Fig. 17(a), three successive segments BC, CD and DE

overlap. In Fig. 17(b), two successive segments BC and CD

overlap. And in Fig. 17(c), three successive segments BC, CD

and DE overlap. Similarly as the processing for line segments,

we obtain new polyline curves for Fig. 17(a)–(c) by the

transforming algorithm. Fig. 18(a)–(c) illustrate the offset

curves on both sides of the polyline curves in Fig. 17. The offset

results in Figs. 16 and 18 demonstrate that the offset algorithm

is valid to process the local overlapping polyline curves.

Summarizing the processes for complex curves in this

section, we get the untrimmed offset curves of polyline curves
Fig. 23. The original polyline curve is closed and contains small arcs. The thin offse

(b) AutoCAD 2004 with the offset distances 15, 25, 35 and 45 mm, respectively.
which are closed, overlapping or containing small arcs. And the

clipping algorithm in Section 4 can also be applied to these

untrimmed offset curves to obtain the final offset results.

6. Illustrations

In this section, firstly an example is given to show offset

generation step by step using our offset algorithm. Secondly,

four examples are illustrated to compare the offset results

between our offset algorithm and AutoCAD. Finally, two more

examples on pocket machining are presented to show the tool

path generation using the offset results.

In Fig. 19(a), the thick curve is the original polyline curve

that comprises four line segments and two arcs. The thin curves

in Fig. 19(b) are the offset curves of the segments of the

polyline curve. Then an untrimmed offset curve is obtained by

Algorithms 1–4 in Section 3(Fig. 19(c)) and the untrimmed

offset curve intersects with the original curve. Using the

clipping algorithm in Section 4, the final offset results are

obtained (Fig. 19(d)).

Fig. 20 gives the comparison between the offset results of an

overlapping polyline curve. The thick curve in Fig. 20(a) is the

original polyline curve. It is composed of segments AB, BC, CD

and DE, where the segments AB and B C overlap fully. The

offset curves on both sides of the original curve are thin curves.

Fig. 20(b) and (c) are the offset results from our offset algorithm

and AutoCAD 2004, respectively.

For a closed polyline curve, the offset results are compared

in Fig. 21. The thick curve is the original polyline curve that

comprises line segments, and contains six self-intersection

loops. The thin curves are the offset curves on both sides of the

original curve with the offset distances 15, 25, 35 and 45 mm,

respectively. The offset results from our offset algorithm are in

Fig. 21(a) and those from AutoCAD 2004 are in Fig. 21(b).

For an open polyline curve that comprises both line

segments and arcs, the offset results are compared in Fig. 22.

The thick curve is the original polyline curve and the thin

curves are the offset curves on both sides of the original curve

with the offset distances 15, 25, 35 and 45 mm, respectively.

The offset results from our offset algorithm are in Fig. 22(a) and

those from AutoCAD 2004 are in Fig. 22(b).

The original curve in Fig. 23 is closed and contains small

arcs. Fig. 23(a) and (b) illustrate the offset curves from our

offset algorithm and AutoCAD 2004. The thin offset curves are
t curves on both sides of the original curve are from (a) our offset algorithm and



X.-Z Liu et al. / Computers in Industry 58 (2007) 240–254252

Fig. 24. Offset results with the distances 5, 10, 15, 20, 25, 30, and 35 mm.

Fig. 25. Tool paths for pocket machining.

Fig. 27. Offset results with the distances 5, 10, 15, and 20 mm.
the results on both sides of the original curve with the offset

distances 15, 25, 35 and 45 mm, respectively.

In the following part, we will provide two more examples

on pocket machining. As shown in Fig. 3, the internal

boundary curve of the part is a polyline curve that is

composed of five line segments and three circular arcs. And
Fig. 26. Test pocket (all dimensions are in mm).
the length of the boundary is 499.44 mm. With the offset

distances that are 5, 10, 15, 20, 25, 30 and 35 mm, the offset

curves can be obtained using the offset algorithm proposed in

this paper (thin curves in Fig. 24). On a personal computer

with a 1.7 GHz Intel Pentium IV CPU and 512 MB RAM,

the execution times to calculate these offset curves are 21,

27, 26, 25, 28, 28 and 27 ms, respectively. We have

calculated each offset curve for one thousand times. And the

execution time is obtained by averaging. Next, we show how

to generate the tool paths for pocket machining if the

contour-parallel pattern is adopted. We use a cutter to

machine the part illustrated in Fig. 3. And the tool path for

the cutter can be constructed by connecting all the offset

curves. As shown in Fig. 25 (thin curves), the length of the

tool path is 2013.05 mm.

Lim et al. [24] discuss the automatic tool selection for 2.5D

machining and give an example for pocket machining (Fig. 10

in Ref. [24]). Here we use this example (Fig. 26) to illustrate the

tool path generation using the offset results. Fig. 26 shows the

drawing with all dimensions in mm. The boundary curve of the

component is a polyline curve that is composed of eight line

segments and nine circular arcs. And the length of the boundary

is 384.42 mm. With the offset distances that are 5, 10, 15 and

20 mm, the offset curves can be obtained as shown in Fig. 27

(thin curves). Using the same personal computer, the execution

times to obtain these offset curves are 49, 47, 69 and 69 ms.

Similarly, the tool path for pocket machining can be obtained.

As shown in Fig. 28 (thin curves), the length of the tool path is

958.34 mm.
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Fig. 28. Tool paths for pocket machining.
7. Conclusions

In the paper, an offset algorithm for polyline curves is

proposed. The offset algorithm firstly obtains an untrimmed

offset curve of a polyline curve using the trim or joint algorithm

for offset curves of its segments. Then the offset results are

gained after applying the clipping algorithm to the untrimmed

offset curve. From the examples illustrated in Figs. 20–23, we

can conclude the new offset algorithm can deal with polyline

curves that are closed, self-intersection, overlapping or

containing small arcs. From the algorithm to obtain the

untrimmed offset curves, we know the untrimmed offset curves

include all the offset curves of polyline curves. And the clipping

algorithm in Section 4 does not cut out the untrimmed offset

curves overmuch. Therefore, the offset algorithm is guaranteed

theoretically to gain all the offset curves of polyline curves.

From the examples to generate tool paths for pocket machining,

we can conclude offset algorithms are fundamental for CNC

machining. And the correctness of offsets can make the tool

path generation simpler in CNC machining. At the present time,

the offset algorithm has been implemented in a commercial

system TiOpenCAD 8.0 and its reliability is verified by a great

number of examples.
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