
Computers in Industry 63 (2012) 482–499
A model driven development approach based on a reference model for predicting
disruptive events in a supply process

Erica Fernández a,*, Enrique Salomone a, Omar Chiotti a,b

a INGAR-CONICET, Avellaneda 3657, Santa Fe 3000, Argentina
b CIDISI-UTN FRSF, Lavaisse 610, Santa Fe 3000, Argentina

A R T I C L E I N F O

Article history:

Received 22 December 2010

Received in revised form 28 September 2011

Accepted 7 February 2012

Available online 13 March 2012

Keywords:

SCEM systems

Disruptive event

Event management

Monitoring system

A B S T R A C T

Due to the impossibility of predicting with certainty the occurrence of disruptive events, buffers defined

to obtain a robust schedule could not absorb all the changes. Then, local modifications of the schedule are

usually performed to avoid a new planning task. For this task, obtaining disruptive event information in

advance can help to make better decisions. As a result, ability to predict disruptive events that affect the

execution of the supply process an order represents is required. With the objective of satisfying this

requirement, this work proposes a model driven development approach based on a reference model to

automate the generation of the monitoring model of a supply process able to anticipate the occurrence of

a disruptive event by monitoring variables that can explain it.

The approach proposes both a reference model to represent the monitoring model independently of

the implementation platform, and a specific model to represent the monitoring model with the

particular language of the implementation platform. An engine based on transformation rules allows

automating the generation of a platform dependent monitoring model from an instance of a platform

independent metamodel. The monitoring component of a SCEM system has been developed, which

implements the transformation engine as a Bayesian Network model, and uses an appropriate tool to

execute it. For an empirical validation of the model three case studies are presented.

� 2012 Elsevier B.V. All rights reserved.

Contents lists available at SciVerse ScienceDirect

Computers in Industry

jo ur n al ho m epag e: ww w.els evier . c om / lo cat e/co mp in d
1. Introduction

Logistic planning systems, as enterprise resource planning
systems, distribution requirements planning systems and ad-
vanced planning and scheduling systems, generate as output a
schedule of both orders and critical resources, where each order
represents a supply process (production or distribution) [1,2]. As a
result of the uncertainty inherent in any supply process [3], a
schedule may be affected by disruptive events [4] that could
produce negative effects that propagate throughout the supply
chain [5,6].

In this work, a disruptive event is defined as a significant change
in planned values of the order attributes, which could be advance
or delay in the start or end date, and changes in the amount
specified. They can be produced by changes in the planned values
of the resource attributes associated with an order and/or in the
expected value of the environmental variables. For example,
* Corresponding author at: INGAR-CONICET, Avellaneda 3657, S3002GJC Santa

Fe, Argentina. Tel.: +54 342 4 535 568; fax: +54 342 4 553 439.

E-mail addresses: ericafernandez@santafe-conicet.gov.ar (E. Fernández),

salomone@santafe-conicet.gov.ar (E. Salomone), chiotti@santafe-conicet.gov.ar

(O. Chiotti).

0166-3615/$ – see front matter � 2012 Elsevier B.V. All rights reserved.

doi:10.1016/j.compind.2012.02.002
equipment breakdowns, breakage of materials, change of material
specification, weather conditions, port congestion, etc.

The paradigm of robust planning recognises and explores the
inherent uncertainty in supply chains [7], defining levels and
locations of buffers (material, capacity and time) to achieve a
robust schedule most likely to remain stable during implementa-
tion. These buffers can absorb some variability that may occur
during the execution of a supply process an order represents. In the
absence of robustness, any deviation can affect the schedule, so
that a new planning task is necessary. This can be costly and time
consuming, since all the business units involved in the supply
process should agree on a new plan.

The benefits of having a robust schedule are indisputable, but
despite the effort in term of resource buffers done to provide
robustness, operation managers know that it is not easy to
effectively use these buffers in a systematic way maintaining the
execution adherence to planned targets. The objective is to repair a
schedule through limited and localised modifications. To perform
this task, obtaining disruptive event information in advance can
help to make better decisions. As a result, ability to predict
disruptive events that will affect the execution of an order is
required.

A model to predict disruptive events has to be able to get
information about internal and external changes that can affect a

http://dx.doi.org/10.1016/j.compind.2012.02.002
mailto:ericafernandez@santafe-conicet.gov.ar
mailto:salomone@santafe-conicet.gov.ar
mailto:chiotti@santafe-conicet.gov.ar
http://www.sciencedirect.com/science/journal/01663615
http://dx.doi.org/10.1016/j.compind.2012.02.002

E. Fernández et al. / Computers in Industry 63 (2012) 482–499 483
supply process execution, use it to infer changes that will affect
order specification, and predict a disruptive event that can affect
the schedule execution when it has enough evidence that this will
occur.

The objective of this paper is to present an alternative to the
approaches of reactive monitoring of an order, trying to anticipate
the occurrence of disruptive events by monitoring variables that
can explain (predict) them. To this aim, due to each supply process
associated with a production or distribution order requires a
particular prediction function, this work proposes a model driven
development approach based on a reference model to automate
the generation of the monitoring model able to perform the
prediction function each supply process requires. The model
driven approach for software development can increase develop-
ment productivity and quality by describing important aspects of a
solution through user-friendly abstractions [8].

The approach proposes both a reference model as a platform
independent metamodel, which allows describing the monitoring
model without any knowledge of the final implementation
platform; and a specific model as a platform specific metamodel,
which allows describing the monitoring model with full knowl-
edge of the final implementation platform. Based on appropriate
transformation rules an engine that allows automatically generat-
ing an instance of a specific model from an instance of the reference
model has been developed. The specific model instance defines a
platform dependent monitoring model that can be executed using
an appropriate tool. Based on the reference model and on a specific
model, particularly a Bayesian Network model, the monitoring
component of a supply chain event management (SCEM) system
has been developed.

Based on the abstract language provided by the reference
model, the user could represent the monitoring process of a supply
process without the need of known the specific language of the
implementation technology. The monitoring model represented in
terms of the reference model can be transformer into different
technological languages automatically, as needed or available
tools.

This paper is organised in the following way. Section 2 presents
a component-based architecture of a SCEM system. Section 3
presents a model driven development approach for automating the
generation of a monitoring model for predicting disruptive events.
Planning System

Execution System Send Resource Attribute

Send Schedule

Notify

Send

Send Schedule

Supply Chain

Fig. 1. Model of main compon
Section 4 presents an empirical validation of the approach through
three case studies. Section 5 discusses related works, and Section 6
presents conclusions and future work.

2. Architecture of the SCEM system

The supply chain event management (SCEM) is defined as a
business process whereby significant disruptive events are
recognised in time, reactive actions are quickly triggered, the flow
of information and material are adjusted and key employees are
immediately notified [9,10]. Information systems that implement
SCEM processes, called SCEM systems, have as objective to manage
the changes caused by disruptive events, allowing short-term
logistical decisions, avoiding a new planning task [11].

Fig. 1 graphically represents a component-based architecture of
the SCEM system composed of the Monitoring System, which
performs the monitoring of resources attributes and environmen-
tal variables function, and disruptive event notification function;
and the Control System, which performs the simulation, control and
exception notification functions.

In this work, a schedule is defined as a set of orders, where each
order represents a supply process (production or distribution) that
assigns materials to a place, states the required resources, the time
period during which each resource is required and its required
capacity. The execution of a schedule implies performing the
operations defined in the supply process each order represents. As
it has been defined in the previous section, a disruptive event will
imply a change in the amount specified in the order and/or in the
time in which the order must be fulfilled.

When a disruptive event cannot be absorbed by the buffers of a
schedule, an exception takes place. In this work an exception is
defined as a deviation from the schedule that prevents the
fulfilment of one or more orders that requires a new planning task.

Monitoring system: This component has the ability of generating
the model for monitoring a supply process associated with an order
for capturing significant changes either in the planed value of
resource attributes or in the expected value of environmental
variables. Once captured, the monitoring model performs a
prediction function to infer changes that could be produced on
planned values of order attributes, and analyses if these changes
can produce a disruptive event. The prediction function is
Control System

Monitoring System

s and Environmental Data

Notify Disruptive Event

Send Solution

 Exception

Schedule

SCEM System

ents of the SCEM system.

E. Fernández et al. / Computers in Industry 63 (2012) 482–499484
developed using the supply process structure and statistical data.
In this way, the monitoring system can proactively notify a
disruptive event that can affect an order to the control system. This
component is the objective of this work.

Control system: This component receives the disruptive event
notification sent by the monitoring system, searches for alter-
natives as a response to disruptive events, analyses the effect for
the subsequent orders and evaluates the impact of each alternative
(simulation ability). It analyses the local absorption of the
disruptive event as first alternative; if it is feasible, it modifies
the schedule and sends the solution to the Execution System;
otherwise, it analyses alternatives based on neighbourhood
absorption of the disruptive event. If it can find at least one
feasible alternative, it modifies the schedule (control ability) and
sends the solution to the Execution System; otherwise, it notifies
the exception to the Planning System for re-planning.

The control system performs these functions using a model
based on a reference model for disruptive event management that
is able to describe ongoing execution schedules of any kind,
systematically capturing the planned buffer on resources and
orders in a way that is suitable for analysing feasibility in presence
of disruptive events. From an instance of this reference model a
constraint satisfaction problem (CSP) for feasibility check and
restoration can be automatically derived through a model-to-
model transformation. Based on this CSP, a mechanism for
automatic repair of disrupted supply processes is derived. This
mechanism is able to detect whether a disruptive event generates a
significant disruption in the schedule, and if so, it searches for a
feasible solution using explicit and implicit (given by the
interaction between orders and resources) planned buffers. This
solution reduces the impact and propagation of the schedule
disruption. This component is beyond the scope of this work.
Fig. 2. Referen
3. Model driven development approach for predicting
disruptive events

To automate the process of generating a monitoring
model able to perform a prediction function to infer if observed
changes during the execution of a supply process could
produce a disruptive event, in this work we propose a model
driven development approach based on the principles of the
Model Driven Architecture framework [12]. The approach
proposes a reference model as a platform independent metamo-
del, which allows describing the monitoring model of a supply
process without any knowledge of the final implementation
platform. The reference model allows representing all entities
required for monitoring a supply process associated with
an order.

The approach also proposes to define a specific model as a
platform specific metamodel, which allows describing the
monitoring model of a supply process with full knowledge of
the final implementation platform. The specific model allows
representing the prediction function of disruptive events of a
monitoring model based on a particular modelling language such
as Bayesian Networks, Petri Nets, decision trees, etc.

A transformation defines how a source metamodel can be
transformed into a target meta-model. Through a transformation
tool, an instance of a specific model (target) can be automatically
generated from an instance of the reference model (source). The
specific model instance defines a platform dependent monitoring
model able to infer changes in the planned values of any attribute i

of an order, DOi, through a causal relationship function that relates
it with changes in the planned values of any attribute j of any
resource k, DRj,k, and changes with regard to the expected of any
environmental variable h, DEh. This causal relationship function
ce model.

E. Fernández et al. / Computers in Industry 63 (2012) 482–499 485
can be defined as follows:

DOi ¼ f ðDR jk; DR jkðDEh; for all hÞ for all j; kÞ (1)

where

DRj,k = change of the attribute j of the resource k

DEh = change of the value of the environment variable h

The specific monitoring model will notify (report) a disruptive
event when it has enough evidence that it will occur. This model
can be defined in the specification language a tool for processing it
requires. Usually XML specifications are required [13].

In this work we present a transformation tool to automatically
derive from an instance of the reference model a specific
monitoring model based on a Bayesian Network. The reference
model, the Bayesian Network model, the relationships between
both models and the transformation rules are described following.

3.1. Reference model

The UML [14] class diagram in Fig. 2 presents the reference
model. Logistic planning systems generate as output a Schedule of
production and distribution orders. A SupplyProcessOrder requires
executing a SupplyProcess (for example, freight transport, cheese
production in dairy industry, castings production in moulding
industry). Its main attributes are: start time (startTime), end time
(endTime) and material amount (quantity). The first two attributes
define the time period during which the supply process (produc-
tion or distribution) will be performed. An order defines the
resources (material, transport equipment, machinery, etc.) (Re-

source) required to be executed.
Each supply process has a set of milestones associated. A

Milestone defines a supply process state or time where a set of
variables will be observed to evaluate the progress of execution of
an order. That is, a Milestone defines a control point. By default, the
monitoring system has an initial milestone (startTime) and a last
milestone (endTime) to evaluate modifications of the planned
values of the supply process order attributes. Usually, these two
milestones can be enough when the total time (difference between
last and initial milestones) of the supply process is of short
duration, which does not allow introducing complex cause-effect
relationship among variables to improve the predictive capabilities
of a disruptive event. In this case, the model tries to predict if a
disruptive event may occur in the last milestone, after analysing
the values of attributes of resources and environment variables in
the initial milestone.

If the total time of the supply process is of long duration the
order execution may follow different stages. Different milestones
can be defined to identify those stages, which allow the monitoring
system to assess if a disruptive event may occur in the last
milestone, after analysing the values of resource attributes and
environment variables in successive points (milestones) during the
progress of an order (execution of the supply process the order
represents). In this case, a monitoring network structure based on a
cause_effect relationship among Variables is defined. A variable has
two attributes: name attribute and type attribute (which represents
the type of variable). These variables represent AttributeVariable or
Environment Variable affecting a resource or a supply process order
specification.

Each SupplyProcess has_assigned a MonitoringStructure based on
a cause_effect relationship among Variables associated with all
milestones, which allows predicting if a disruptive event at the last
milestone can occur. The monitoring structure has a set of
milestones. A Milestone can be a TimeMilestone (absolute time or
related to another milestone) or a StateMilestone (state to be
reached). Each Milestone defines a point where a set of variables
will be observed. Each Variable of the monitoring structure has one
State that can be: ObservedState or EstimatedState. When the
Variable is observed and its value is given, the state of the variable
is ObservedState. When the state is EstimatedState, the Variable

value is estimated from the value of other variables using the
cause_effect relationship network. To perform this task, the
MonitoringStructure is_analysed_by a MonitoringStructureAnalyzer.
A variable has an observation policy. An ObservationPolicy defines
the mode, the recurrence and the updating time of the observed
variable.

The state of a variable can be changed on the same milestone.
After the value of a variable whose state was estimated is known
(evidence), the variable changes to observed state. The branch of
the monitoring structure (cause_effect relationship sub-net) that
predicted its value is no longer necessary and can be eliminated.

The Monitor is responsible for observing the variables at each
Milestone. It starts with the initial milestone, gets the value (Value)
of each observed Variable and inserts them to the Monitoring-

Structure. A Value has three attributes: label attribute, value

attribute and causes_labels attribute (which represents the labels
of the causes associated with the value). The MonitoringStructure-

Analyzer using the MonitoringStructure (cause_effect relations net)
evaluates the impact of these variable values on current and next
milestones until the last milestone. Particularly, it defines an
estimated Value for the TargetVariable. The TargetVariable has a
planned Value that is an order parameter (for example, amount
planned, end time planned, etc.). Following, to predict if a
disruptive event can occur, the Monitor uses the TargetVariable

comparing its planned and estimated values. Based on a
DisruptionCondition, it predicts if a disruptive event can occur, if
so, it reports the DisruptiveEvent and the monitoring process ends;
if not, the monitoring process follows. To this aim, the Monitor

defines the next Milestone where variables have to be observed.
The monitoring structure is initially defined for each supply
process, but it is dynamically explored each time a milestone is
reached. That is, the Monitor, depending on the results generated
by the MonitoringStructureAnalyzer, can extend its monitoring
strategy to another milestone including other observed variables,
eliminating those that are not necessary or exploring different
branches of the monitoring structure.

An instance of this reference model is a self-contained
description of the monitoring structure of an order, which can
be automatically transformed into a specific model.

3.2. Specific model: Bayesian Network model

The relationship between the value of the attributes of
resources, environment variables and the attributes of an order
is generally subject to uncertainty. Because of this, to capture and
propagate changes based on the structure of the supply process a
probabilistic model is required. To this aim, in this section we
present a specific model based on a Bayesian Network [15], due to
it allows both representing uncertain knowledge and reasoning
based on probability theory. In this case Petri Nets could not be
used due to their inability to represent probabilities.

Each node of a Bayesian Network is composed of a random
variable X, which can take values xi in a continuous or discrete
range. The values are exclusive and exhaustive and they have an
associated probability P(xi). Then, each node is represented by
X : ðxi; PðxiÞÞ and direct conditional dependences are the directed
edges in the graph.

Formally, we have a joint probability distribution P of the
random variables in some set V and directed acyclic graph G ¼
ðV ; EÞ where V is a finite, nonempty set whose elements are called
nodes and E is a set of ordered pairs of distinct elements of V.

Fig. 3. Bayesian Network model.

E. Fernández et al. / Computers in Industry 63 (2012) 482–499486
Elements of E are called edges. We say that ðG; PÞ satisfies the
Markov condition if for each variable X 2 V ; fXg is conditionally
independent of the set of all its descendents given the set of all its
parents. If ðG; PÞ satisfies the Markov condition, then P is equal to
the product of its conditional distributions of all nodes given the
values of their parents.

Pðx1; x2; . . . ; xnÞ ¼
Y

i

PðxijParentsðxiÞÞ (2)

The UML class diagram of Fig. 3 represents the specific model.
A BayesianNetwork is composed of a set of nodes connected with
directed links with a probability function (ProbabilityTable)
attached to each node. The network is a directed acyclic graph.
A Node can represent either a discrete random variable
(DiscreteNode) with a finite number of states or a continuous
random variable (ContinuousNode) with a Gaussian distribution.
A Bayesian Network may have a FunctionNode representing a
real-valued function that depends on (some or all of) the parents
of the node. Function nodes are not involved in the inference
process and evidence cannot be specified for them, but the
function associated with the node can be evaluated using
the results of inference. The inference process implies computing
the conditional probability for some nodes given the information
(evidence) on other nodes.

A DiscreteNode or ContinuousNode has a ProbabilityTable that
contains a set of rows (Row). A row has the following attributes:
node_label (which represents the label of a state or the label of a
value), parents_labels (which represents the labels of its parent
states) and value (which represents a value). A FunctionNode has a
set of rows that allow defining the function associated with the
node.

An instance of this specific model is a self-contained description
of the monitoring structure of a supply process order defined as a
Bayesian Network.

3.3. Relationships between both models

The monitoring structure of a supply process associated with an
order is created by instantiating the reference model. Then, this
instance must be mapped to the specific model, particularly in this
case to a Bayesian Network model. To carry out this mapping, each
EnvironmentVariable or AttributeVariable of the monitoring struc-
ture has to be represented as a DiscreteNode or ContinuousNode, and
its ProbabilityTable has to be defined based on historic data. Fig. 4
shows the relations between the main concepts of both models.
3.4. Transformation between both models

To define the model transformations, we have used ATL (ATLAS
Transformation Language) [16], which is inspired by the QVT
(Query View Transformation) requirements [17] and builds upon
the OCL (Object Constraint Language) formalism [18]. ATL is
developed over the Eclipse platform.

In order to carry out model transformations, the MDA (Model
Driven Architecture) by the OMG proposes an approach where all
metamodels must be conformed to MOF (Meta Object Facility) [19]
and QVT. The Eclipse Modelling Framework (EMF) for building Java
applications is based on simple model definitions and implements
a core subset of the MOF API (Application Programming Interface).

An ATL transformation is composed of rules that define how
source model elements are matched to create target model
elements. Source and target meta-models are expressed in XMI
(XML Metadata Interchange Format) file.

Following, the main transformation rules are presented:
Rule1: This rule implements the logic for transforming the

MonitoringStructure class to BayesianNetwork class.

Rule2: This rule implements the logic for transforming variables
to nodes (DiscreteNode, ContinuousNode or FunctionNode) and for
transforming the causes of the variables to the node parents.

The following helper must be defined:

This helper is called on a variable (context ReferenceModel!Vari-

able) and gives a string (: String) and returns all causes associated
with a variable.

For each of the three TypeNode (DiscreteNode, ContinuousNode or
FunctionNode) the following helper and rule must be defined:

Fig. 4. Relations between both models.

E. Fernández et al. / Computers in Industry 63 (2012) 482–499 487
This helper is called on a variable (context ReferenceModel!Vari-

able) and gives a boolean (: Boolean) and tells whether the type of
the variable is ‘TypeNode’ or not.

Finally, the following rule is added to create a ‘TypeNode’ node
with its list of parents from variables:

E. Fernández et al. / Computers in Industry 63 (2012) 482–499488
Rule3: This rule implements the logic for transforming values to
rows. If the node is Discrete or Continuous a set of rows define its
probability table. If the node is Function a row has its name, the
planned value and its parent nodes.

Rule4: This rule implements the logic for transforming a
disruption condition to the probabilistic threshold of the
FunctionNode.

4. Empirical validation of the approach

4.1. Methodology

In order to validate the model driven development approach for
predicting disruptive events three supply processes have been
studied. A case study offers the opportunity to study phenomenon
in their own natural setting where complex links and underlying
meanings can be explored [20,21]. It is also appropriate where
existing knowledge is limited because it generates in-depth
contextual information which may result in a superior level of
understanding [22].

4.2. The supply processes

Two production processes of very different regional industries
(dairy industry and moulding industry) and a distribution process
(marine freight transport) were selected. They are: the cheese

production process, from dairy industry; the process of freight

transport by sea, from marine freight transport services; and the
casting production process, from moulding industry.

4.3. Data collection

Data was collected through visits to a regional dairy industry, a
regional moulding industry and a shipping agency. The planned
orders and resources were obtained from the production and
distribution schedules in the data base of the planning system, and
the execution values were obtained from the production and
distribution reports in the data base of the execution system, in
which disruptive events are registered.

The causal relationship function that relates a disruptive event
with changes of planned resource attributes and expected environ-
mental variables are not explicitly defined, then it should be obtained
through interviews with the responsible of either production or
logistics areas of each enterprise. They reported the following causal
relationships for each of the selected supply processes:

In the cheese production process the milk acidity can affect the
cheese quality. High acidity can produce sandy cheese, bitter
cheese or increase the curdling rate causing surface cracks. Low
acidity can produce insipid cheese.

In the process of freight transport by sea the navigation
conditions of the ship can be unfavourable due to the weather
conditions (storms, winds, etc.). These unfavourable weather
conditions are more frequent in the winter season and can produce
a delay in the ship arrival to the port. The delay can be increased if
in the arrival port or in the intermediate ports there are
unfavourable weather conditions or the port is congested. This
prevents to carry out unload operations. A ship can carry multiple
orders for freight from different ports. Therefore, the ship with an
order that requires carrying freight from one port to another may
need to go through several intermediate ports to meet the
requirements of other orders.

In the casting production process the first stage consists in
making the mould for the casting. A mixture of sand, resin and
catalyst is prepared. After 2 h, a sample for verifying the traction
resistance that the mould will have is taken. If this does not agree
with the specification, parameters of the mixture must be changed
allowing the mixture to be used only after 2 h. Other inconvenient
that could happen after this stage is the break of the mould, implying
the restart of the process of production and a delay that depends on
the mould to be made. After the casting is unmoulded, it must be
inspected visually that, in case it does not pass the tests, the process
of production has to restart causing a delay that depends on the
mould to be made. When the moulding stage ends different
subprocesses can be made over the casting with the objective of
improving the physical properties. Finally, a special inspection is
done, which in case of not being passed all subprocesses must be
restarted, causing a delay that depends on the casting to be produced.

4.4. Case study cheese production process

This case study is described to show the structure of the
monitoring model associated with the cheese_production: Supply-

Process (cheese production is an object of the class SupplyProcess)
to predict a disruptive event. The Monitoring System that
integrates the SCEM system (Section 2) generates the monitoring
model by instantiating the reference model (Section 3.1). In this
task the milestones set associated with this supply process is
defined. The milestones defined and their observed variables,
observation policy and estimated variables are the following:

[Initial Milestone] process_start:StateMilestone

Variable with ObservedState:acidity; OneTimeObser-

vationPolicy

Variable with EstimatedState:texture, time_of_cur-

dle, surface_cracks, taste, quality

[Intermediate Milestone I] curdle_finish:StateMiles-

tone

Variable with ObservedState:time_of_ curdle; OneTi-

meObservationPolicy

Variable with EstimatedState:surface cracks, tex-

ture, taste, quality

[Intermediate Milestone II] time1_after_process_

start:TimeMilestone

Variable with ObservedState:texture; OneTimeObser-

vationPolicy

Variable with EstimatedState:taste, quality

[Intermediate Milestone III] time2_after_process_
start:TimeMilestone

Variable with ObservedState:taste; OneTimeObserva-
tionPolicy

Variable with EstimatedState:quality

[Final Milestone] process_end:StateMilestone

Variable with ObservedState:quality; OneTimeObser-

vationPolicy

Monitoring Structures

 Initial Milesto ne Inte rmediate Mileston e I

Inte rmedia te Mileston e II I ntermediate Mileston e II I Fi nal Mi lestone

acidity

quali ty

taste
texture

time_of_curdle

surface_cracks

-eff ect

-cause

-eff ect

-cause
-eff ect

-cause

-eff ect

-cause

-eff ect

-cause

+eff ect

-cause

-eff ect

-cause

estimated_product_quantity

quality

taste
texture

time_of_curdle

surface_cracks
-effect

-cause

-effect

-cause

+eff ect

-cause

-effect

-cause

estimated_product_quantity

quality

taste
texture

+effect

-cause

-effect

-cause

estimated_product_quantity

quali ty

taste

+effect

-cause

estimated_product_quantity

quali ty

estimated_product_quantity

Fig. 5. Milestones set associated with the cheese_production:SupplyProcess.

E. Fernández et al. / Computers in Industry 63 (2012) 482–499 489
The monitoring structure (instance of the reference model)
associated with each milestone will be modified as the process
evolves from the initial milestone to the final milestone (Fig. 5).

Each variable of the monitoring structure associated with a
milestone is an attribute of a resource or an environment variable. In
this example, acidity:AttributeVariable and time_of_curdle:Attribute-

Variable are attributes of the milk:Resource and; texture:Attribute-

Variable, surface_cracks:AttributeVariable, taste:AttributeVariable and
quality:AttributeVariable are attributes of the cheese:Resource. The
target variable is estimated_product_quantity:TargetVariable.

Using a transformation tool that implements the transforma-
tion rules defined in Section 3.4, the Monitoring System
automatically generates from the reference model instance the
monitoring model of the cheese_production:SupplyProcess based on
a Bayesian Network, which is an instance of the Bayesian Network
model (Section 3.2). As sample, in Fig. 6 a part of the target model
generated from the source model by running the rules 1 and 2, both
model specified as XMI file, are shown.

For processing the Bayesian Network model we have selected
HUGIN [23], but this tool does not process XMI input file, so the
instance of the Bayesian Network model representing the
monitoring model of the cheese_production: SupplyProcess is
transformed from XMI specification to a text file using a
transformation engine we developed to this aim. The monitoring
model based on a Bayesian Network generated by HUGIN is
graphically represented in Fig. 7. It is composed of the following
discrete nodes, whose state values are represented in braces:
acidity:DiscreteNode {normal, low, high}, time_of_curdle: Discrete-

Node {normal, low, high}, surface_cracks:DiscreteNode {no, yes},
texture:DiscreteNode {good, bad}, taste:DiscreteNode {good, insipid,
bitter} and quality:DiscreteNode {good, bad}. The function node is
estimated_product_quantity:FunctionNode.

To illustrate the case, the monitoring process of an order that
requires producing 1000 kg of soft cheese (quantity = 1000) is
described. To perform the monitoring process, the Monitoring
System through the transformation engines starts generating the
Bayesian Network model and then, whenever it obtains evidence
executes the model by using HUGIN. The total time of the process
depends on the kind of cheese to be produced. The total process
time for soft cheese is 240 h. The milestones set contains:
process_start:StateMilestone, curdle_finish:StateMilestone, 48hs_af-

ter_process_start:TimeMilestone, 120hs_after_process_start:TimeMi-

lestone and process_end:StateMilestone.

The decision criterion used by the Monitor establishes that the
product is outside the specification when its probability is greater
than a threshold. In this example, the threshold = 97.0. If the
threshold is exceeded, the Monitor uses the target variable to
predict the occurrence of a disruptive event that is associated with
the last milestone. The target variable is estimated_product_quan-

tity:FunctionNode and the parent node, which contains the
estimated value, is quality:DiscreteNode. The function of the target
variable is:

if (Probability(quality(bad)) � threshold)

then {estimated_product_quantity = 0}

else {estimated_product_quantity = 1000}

The acidity:AttributeVariable of milk:Resource is monitored when
the order execution starts, i.e. at the process_start:StateMilestone.

For each of the possible three values; the Monitor explores a
different branch in the Bayesian Network. The activity diagram in
Fig. 8 represents the decision process carried out by the Monitor.

While it performs this process it decides the milestones to be
evaluated.

Following, as illustrative example, the scenario when acidity is
high is described.

process_start:StateMilestone: Fig. 9a shows the Bayesian
Network defining the monitoring structure associated with this
milestone where a priori probabilities associated with each node
are deployed. This Bayesian Network has been obtained by
transforming the monitoring structure (instance of the reference
model) associated with the initial milestone (Fig. 5). The current

Fig. 6. Target model generated from the source model.

E. Fernández et al. / Computers in Industry 63 (2012) 482–499490
statistical data of this supply process indicates that its failure
probability is 7.83. When the Monitor gets the value of the Variable

with StateObserved, inserts it in the Bayesian Network assigning
acidity:(high, 100) to the acidity:Discrete
Fig. 7. Monitoring model based on Bayesian Network associated with the

cheese_production:SupplyProcess.
Node, and performs the inference process by propagating this
evidence along the network. Fig. 9b shows posterior probabilities
associated with each node. As a result, the estimated Value is
quality:(bad, 95.29). Because of Probability(bad) = 95.29 < threshold,
the Monitor concludes that there is not enough evidence to predict
that a disruptive event will occur so it continues with the
monitoring process and defines the next milestone (Fig. 8).

curdle_finish:StateMilestone: The Monitor gets the value of
the Variable with StateObserved and if time_of_curdle == low, it
inserts the evidence in the Bayesian Network assigning time_

of_curdle(low, 100) to the time_of_curdle:DiscreteNode, and per-
forms the inference process. Due to the low time of curdle, the
cheese will present surface cracks and the estimated Value is
quality:(bad,100). Because of Probability(bad) = 100 > threshold, the
Monitor predicts that a disruptive event will occur. The target

variable estimated_product_quantity = 0 indicates that the cheese
quantity in specification that will be produced is 0. The disruptive
event is reported and the monitoring process ends (Fig. 8). This
allows the Monitor to predict the result 238 h before the supply
process ends.

Otherwise (Fig. 8), if time_of_curdle == normal, the Monitor gets
the value of the Variable with StateObserved, it inserts the evidence
in the Bayesian Network assigning time_of_curdle(normal, 100) to

Monitor

Subactivity: Execute BN

[process_start:StateMilestone]

[curdle finish:StateMilestone]

Define milestone

Define milestone

[non disruptive event]

Notify disruptive event

acidity = high

End Monitoring Process

acidity = normal

[yes disruptive event]
End Monitoring Process

Start monitoring process

Notify disruptive event End Monitoring Process
[yes disruptive event]

Define milestone

[48 hs. after the process has started:TimeMilestone]

[non disruptive event]

Notify disruptive event End Monitoring Process
[yes disruptive event]

Define milestone

[120 hs. after the process has started:TimeMilestone]

[non disruptive event]

End Monitoring Process

[non disruptive event]

Notify disruptive event End Monitoring Process
[yes disruptive event]

acidity = low

Execute BN

Execute BN

Execute BN

Execute BN

Time=0

Time=120 hours

Time=2 hours

Time=48 hours

Wait for evidence

Receive evidence

Input evidence in the BN

Perform inference process

Fig. 8. Activity diagram of the decision process for monitoring the cheese_production:SupplyProcess.

E. Fernández et al. / Computers in Industry 63 (2012) 482–499 491

Fig. 9. (a) BN with a priori probabilities. (b) BN with evidence acidity == high.

Fig. 10. (a) BN with evidence time_of_curdle == normal. (b) BN with evidence texture == granulated.

E. Fernández et al. / Computers in Industry 63 (2012) 482–499492
the time_of_curdle:DiscreteNode (Fig. 10a), and performs the
inference process. As a result, the estimated Value is quality:

(bad,84). Because of Probability(bad) = 84 < threshold, the Monitor

concludes that there is not enough evidence to predict that a
disruptive event will occur so it defines the next milestone (Fig. 8).

48hs_after_process_start:TimeMilestone: the Monitor gets
the value of the Variable with StateObserved. If texture == granu-

lated, the Monitor inserts the evidence in the Bayesian Network
assigning texture (granulated, 100) to the texture:DiscreteNode

(Fig. 10b), and performs the inference process. The texture of the
cheese results granulated. Therefore, it does not satisfy the quality
Fig. 11. (a) BN with evidence texture == no_gran
specification, being the estimated Value quality(bad,100). Because
Probability(bad) = 100 > threshold, the Monitor predicts that a
disruptive event will occur. The target variable estimated_pro-

duct_quantity = 0 shows that the cheese quantity in specification
that will be produced is 0. The disruptive event is reported and the
monitoring process ends (Fig. 8). This allows the Monitor to predict
the result 192 h before the supply process ends.

Otherwise (Fig. 8), if texture == no_granulated, the Monitor

inserts the evidence in the Bayesian Network assigning texture

(no_granulated, 100) to the texture:DiscreteNode (Fig. 11a), and
performs the inference process. As a result, the estimated Value is
ulated. (b) BN with evidence taste == bitter.

E. Fernández et al. / Computers in Industry 63 (2012) 482–499 493
quality(bad, 60). Because Probability(bad) = 60 < threshold, the
Monitor concludes that there is not enough evidence to predict
that a disruptive event will occur so it defines the next milestone
(Fig. 8).120hs_after_process_start:TimeMilestone: the Monitor

gets the value of the Variable with StateObserved. If taste == bitter

the Monitor inserts the evidence in the Bayesian Network assigning
taste(bitter, 100) to the taste:DiscreteNode (Fig. 11b), and performs
the inference process. The taste of the cheese is bitter. Therefore, it
does not satisfy the quality specification, being the estimated Value

quality(bad,100). Because Probability(bad) = 100 > threshold, the
Monitor predicts that a disruptive event will occur. The target
variable estimated_product_quantity = 0 shows that the cheese
quantity in specification that will be produced is 0. The disruptive
event is reported and the monitoring process ends (Fig. 8). This
allows the Monitor to predict the result 120 h before the supply
process ends.

Otherwise (Fig. 8), taste == good, the Monitor inserts
the evidence in the Bayesian Network assigning taste(good,

100) to the taste:DiscreteNode and performs the inference
process. As a result, the estimated Value is quality:(good,100).
The target variable estimated_product_quantity = 1000 indicates
that the cheese quantity in specification that will be produced is
1000. With this result, the Monitor has the certainty that the
product will fulfil the specification, so it decides to end the
monitoring process 120 h before the supply process ends
(Fig. 8).

4.5. Case study marine freight transport process

The monitoring model associated with the freight_transport_

by_sea:SupplyProcess to predict a disruptive event is briefly
described. The milestones defined and their observed variables,
observation policy and estimated variables are the following:
[Initial Milestone] port_departs:StateMilestone

Variable with ObservedState:delay_in_departure;
OneTimeObservationPolicy
MonitoringStructure of ObservedState: delay_in_departure

MonitoringStructure of ObservedState: season

milestone milestonedelay_in_departure

season

-effect

-cause

-effect
-cause

-cause

milestone

delay_

navigation_c

...

-ca

milestone

season

-effect

-cause

-cause

Fig. 12. Initial Milestone associated with the
Variable with EstimatedState:season and the variables

of all following milestones.

Variable with ObservedState: season; OneTimeObserva-

tionPolicy

Variable with EstimatedState: the variables of all

following milestones.

[Intermediate Milestone] arrival_to_intermediate_

position:StateMilestone

Variable with ObservedState:navigation_condition;

RepetitiveObservationPolicy

Variable with EstimatedState:delay_in_transit,

delay_in_position and the variables of all following
milestones.

Variable with ObservedState: delay_in_position;
OneTimeObservationPolicy

Variable with EstimatedState: the variables of all
following milestones.

[Intermediate Milestone] arrival_to_intermediate_
port:StateMilestone

Variable with ObservedState:navigation_condition;
RepetitiveObservationPolicy

Variable with EstimatedState:delay_in_transit,
weather_condition_at_port, delay_in_ intermediate_

port, congestion, and the variables of all following
milestones.

Variable with ObservedState:weather_condition_at_
port; RepetitiveObservationPolicy

Variable with EstimatedState: congestion, delay_in_
intermediate_port and the variables of all following

milestones.

Variable with ObservedState:congestion; OneTimeOb-

servationPolicy

Variable with EstimatedState:delay_in_intermedia-

te_port and the variables of all following milestones.
delay_in_arrival estimated_delay_in_arrival

delay_in_transit
congestion

navigation_condition weather_condition_at_port

......

-effect

-cause

-effect

-cause

-effect

-cause

-effect

-cause

-effect

-cause

-effect

delay_in_arrival estimated_delay_in_arrival

in_transit
congestion

ondition
weather_condition_at_port

-effect

use

-effect

-cause

-effect
-cause

-effect

-cause

-effect

-cause

-effect

 freight_transport_by_sea:SupplyProcess.

E. Fernández et al. / Computers in Industry 63 (2012) 482–499494
Variable with ObservedState:delay_in_intermedia-

te_port; OneTimeObservationPolicy

Variable with EstimatedState: the variables of all

following milestones.

[Final Milestone] arrival_to_port:StateMilestone

Variable with ObservedState:navigation_condition;
RepetitiveObservationPolicy

Variable with EstimatedState:delay_in_transit,
weather_condition_at_port, congestion, delay_in_ar-

rival

Variable with ObservedState:weather_condition_at_

port; RepetitiveObservationPolicy

Variable with EstimatedState:congestion, delay_in_

arrival

Variable with ObservedState:congestion; OneTimeOb-

servationPolicy

Variable with EstimatedState:delay_in_arrival

Variable with ObservedState:delay_in_arrival; One-
TimeObservationPolicy

The initial milestone has two variables with ObservedState:de-

lay_in_departure and ObservedState: season, their monitoring
structure (instances of the reference model) are shown in Fig. 12.

The amount and relation of precedence of the intermediate
milestones, between the departure port (initial milestone) and the
arrival port (final milestone), depends on the distance to be
travelled by the ship and its schedule. The intermediate milestones
can be: arrival_to_intermediate_position:StateMilestone or arrival_

to_intermediate_port:StateMilestone.
In this example, congestion:AttributeVariable is an attribute

of the port:Resource; delay_in_departure: AttributeVariable,
delay_in_transit:AttributeVariable, delay_in_position:Attribute-
Variable, delay_in_ arrival:AttributeVariable and delay_in_inter-
mediate_port:AttributeVariable are attributes of the ship:Resource
and; navigation_condition:EnvironmentVariable, season:Environ-
mentVariable and weather_condition_at_port:EnvironmentVari-
able are environment variables. The target variable is
estimated_delay_in_arrival:TargetVariable.

The monitoring model of the freight_transport_by_sea:SupplyPro-

cess automatically generated from the reference model instance by
the Monitoring System (Fig. 13) is composed of both discrete and
continuous nodes. The discrete nodes are the following: season:Dis-

creteNode {winter, non_winter}, navigation_ condition:DiscreteNode

{favourable, neutral, unfavourable} and weather_condition_at_ port:

DiscreteNode {favourable, unfavourable}, delay_in_departure:Discre-

teNode {[0–0.5),[0.5–2),[2–6),[6–24),[24–48),[48–inf)} and has a
Gamma distribution. The continuous nodes are the following:
delay_in_transit: ContinuousNode, delay_in_position:ContinuousNode,
delay_in_intermediate_port: ContinuousNode and delay_in_arrival:
Fig. 13. Monitoring model based on Bayesian Network asso
ContinuousNode. The function node is estimated_delay_in_ arrival:

FunctionNode.
An example to illustrate the case is an order that requires

transporting freight from Point Lisas (Trinidad and Tobago), unload
freight in Santos (Brazil) and arrival in Zarate (Argentina). According
to the schedule, the ship is in transit 213 h from Point Lisas to Santos
(Brazil) and 125 h from Santos (Brazil) to Zarate (Argentina). The
total navigation time of the ship will be of 338 h. The milestones set
contains: departs_of_the_port:StateMilestone (Fig. 12), arrival_to_in-

termediate_position_1:State Milestone, arrival_to_intermediate_posi-

tion_2:StateMilestone, arrival_to_intermediate_port:State Milestone

and arrival_to_intermediate_position_3:StateMilestone and arrival_

to_port:StateMilestone.
The decision criterion used by the Monitor establishes that the

ship is delayed when its probability is greater than a threshold. In
this example, the threshold = 24 hours. If the threshold is exceeded,
the Monitor uses the target variable to predict the occurrence of a
disruptive event which is associated with the last milestone. The
target variable is estimated_delay_in_arrival:FunctionNode and the
parent node, which contains the estimated value, is delay_in_arri-

val:ContinuousNode. The function of the target variable is:

if (Probability(delay_in_arrival) � threshold)

then {estimated_delay_in_arrival = delay_in_arrival}

else {estimated_delay_in_arrival = 0}

In this example, the milestones have several observed variables.
Each one is observed according to the relation of precedence and,
when it is observed, the impact of this variable over the current and
next milestones is analysed to assess the likely occurrence of a
disruptive event. If no disruptive event it is predicted, the Monitor

continues with the monitoring process.
Following, as example, the initial milestone of a scenario is

described.
depart_of_the_PointLisas_port:StateMilestone: Fig. 14

shows the Bayesian Network defining the monitoring structure
associated with this milestone where a priori probabilities
associated with each node are deployed. This Bayesian Network
has been obtained by transforming the monitoring structure
associated with the initial milestone (Fig. 12). The delay in the
arrival to Zarate port (x) has a normal distribution which is
represented as x � Normalðm ¼ 6:66; s2 ¼ 200:64Þ. Then, a priori
probability that the ship is delayed more of 24 h is 0.11
ðPfx � 24g ¼ 0:11Þ.

When the Monitor gets the value of the Variable with
ObservedState and if depart_of_the_PointLisas_ port = 0–0.5, it inserts
the evidence in the Bayesian Network assigning depart_of_the_

PointLisas_ port:(0–0.5, 100) to the depart_of_the_PointLisas_port:

DiscreteNode, and performs the inference process by propagating
this evidence along the network. The Monitor concludes that there is
not enough evidence to predict that a disruptive event will occur.
ciated with the freight_transport_by_sea:SupplyProcess.

Fig. 14. BN with a priori probabilities.

Fig. 15. BN with evidence delay_in_departure = [0–0.5) and season == winter.

E. Fernández et al. / Computers in Industry 63 (2012) 482–499 495
Then, it continues the monitoring process getting the value of the
Variable with ObservedState, if season == winter, it inserts the
evidence in the Bayesian Network assigning season:(winter, 100)

to the season:DiscreteNode, and performs the inference process.
Fig. 15 shows posterior probabilities associated with each node. As a
result, the estimated Value is Normalðm ¼ 18:17; s2 ¼ 185:25Þ.
Because Probability(m = 18.17) < threshold, the Monitor concludes
that there is not enough evidence to predict that a disruptive event
will occur. The target variable shows that a delay to arrival port is not
predicted. Then, it continues the monitoring process and defines the
next milestone.

4.6. Case study castings production plant

The monitoring model associated with the casting_production:-

SupplyProcess to predict a disruptive event is briefly described. The
milestones defined and their observed variables, observation
policy and estimated variables are the following:

[Initial Milestone] process_start:StateMilestone

Variable with StateObserved:delay_in_moulding_

previous; OneTimeObservationPolicy

Variables with StateEstimated: delay_in_moulding,

test_of_mixture, breaking_the_mould, visual_inspec-
tion, special_inspection, delay_in_casting

[Intermediate Milestone] unmould_end:StateMilestone

Variable with StateObserved:test_of_mixture; One-

TimeObservationPolicy

Variables with StateEstimated: delay_in_moulding,

breaking_the_mould, visual_inspection, special_
inspection, delay_in_casting

Variable with StateObserved:breaking_the_mould;
OneTimeObservationPolicy
Variables with StateEstimated: delay_in_moulding,

visual_inspection, special_inspection, delay_in_

casting

Variable with StateObserved:visual_inspection;

OneTimeObservationPolicy

Variables with StateEstimated: delay_in_moulding,

special_inspection, delay_in_casting

[Intermediate Milestone] sub_processes_end:StateMi-

lestone

Variable with StateObserved:special_inspec-

tionOneTimeObservationPolicy

Variables with StateEstimated: delay_in_casting

[Final Milestone] process_end:StateMilestone

Variable with StateObserved:delay_in_casting; One-

TimeObservationPolicy

The monitoring structure (instance of the reference model) is
shown in Fig. 16. In this example, test_of_mixture:AttributeVariable,
breaking_the_mould:AttributeVariable, delay_in_moulding:Attribute

Variable, delay_in_moulding_previous:AttributeVariable are attri-
butes of the mould:Resource; visual_inspection:AttributeVariable,
special_inspection:AttributeVariable, delay_in_casting:Attribute Var-

iable are attributes of the casting:Resource. The target variable is
estimated_delay_in_casting: TargetVariable.

The monitoring model (Fig. 17) is composed of both discrete
and continuous nodes. The discrete nodes are: test_of_mixture:-

DiscreteNode {good, bad}, breaking_the_mould: DiscreteNode {no,
yes}, visual_ inspection:DiscreteNode {good, bad} and special_in-

spection:Discrete Node {good, bad}. The continuous nodes are:
delay_in_moulding:ContinuousNode, delay_in_moulding_previous:-

ContinuousNode and delay_in_casting:ContinuousNode. The function
node is estimated_delay_in_casting:FunctionNode.

 MonitoringStructure

delay_in_moulding_previous delay_in_moulding

test_of_mixture
breaking_the_mould

visual_inspection special_inspection

-effect-cause

-effect
-cause

-effect

-cause

-effect
-cause

delay_in_casting estimated_delay_in_casting
-effect-cause -effect

-cause
-effect

-cause

Fig. 16. Monitoring structure associated with the casting_production:SupplyProcess.

Fig. 17. Monitoring model based on Bayesian Network associated with the casting_production:SupplyProcess.

Fig. 18. BN with a priori probabilities.

E. Fernández et al. / Computers in Industry 63 (2012) 482–499496
An example to illustrate the case is an order that requires
producing a casting of 1500 kg. The total time of the process
depends on the kind of casting. In this example, the total process
time is 250 h. The milestones set contains: process_start:StateMi-

lestone, unmould_end:StateMilestone, sub_processes_end: StateMi-

lestone and process_end:StateMilestone.

In the example, threshold = 72 hours. The target variable is
estimated_delay_in_casting:FunctionNode and the parent node,
which contains the estimated value, is delay_in_casting:Conti-

nuousNode. The function of the target variable is:

if (Probability(delay_in_casting) � threshold)

then {estimated_delay_in_casting = delay_in_casting}

else {estimated_delay_in_casting = 0}

Following, as example the initial milestone of a scenario is
described.

process_start:StateMilestone: Fig. 18 shows the Bayesian
Network defining the monitoring structure associated with this
milestone where a priori probabilities associated with each node
are deployed. The delay in casting (x) has a normal distribution
which is represented as x � Normalðm ¼ 49:80; s2 ¼ 1131:04Þ.
Then, the a priori probability that the casting is delayed more of
72 h is 0.25 ðPfx � 72g ¼ 0:25Þ.
The Monitor gets the value of the Variable with ObservedState

delay_in_moulding_previous, which implies the accumulated delay
in the end time of the casting, it inserts the evidence in the Bayesian
Network assigning Normalðm ¼ 0; s2 ¼ 0Þ to the delay_in_

moulding_previous:ContinuousNode (Fig. 19), and performs the
inference process. As a result, estimated Value is Normalðm ¼
25:80; s2 ¼ 1126:24Þ. Because Probability (m = 25.80) < threshold,
the Monitor concludes that there is not enough evidence to predict
that a disruptive event will occur. The target variable shows that a
delay in the end time of the casting is not predicted. Then, the
Monitor continues the monitoring process and defines the next
milestone.

4.7. Results analysis

The results show that for each supply process whose execution
time is of long duration, the proposal allows the monitoring system
generating a monitoring model with different milestones. Based on
this model the monitoring system could predict the occurrence of
disruptive events in the last milestone, early enough to make
decisions that allow absorbing in the best way the possible impact
of the disruption by using the buffers of the schedule.

In the example of the case study cheese production process, for
a processing time of 240 h, a disruptive event can be predicted

Fig. 19. BN with evidence delay_in_moulding_previous = Normalðm ¼ 0; s2 ¼ 0Þ.

E. Fernández et al. / Computers in Industry 63 (2012) 482–499 497
between 120 and 240 h prior to completion. While, in the case
study marine freight transport process, for an example whose
processing time is of 338 h, a disruptive event could be predicted
from its start in the depart port until the arrival at the destination
port. Finally, in the case study castings production plant, for an
example whose processing time is of 250 h, a disruptive event can
be predicted from the 24 h of the process start until 30 h prior to
completion.

In the three examples, based on historic data, the monitoring
model of the supply processes predicted 87% of the disruptive
events (error type I was 13%) and did not predict disruptive event
89% of time (error type II was 11%). These results depend on the
supply process type and of each particular implementation, so best
data have to be collected to improve the reliability of the prediction
functions.

5. Related works

In order to provide a SCEM solution, several contributions have
been proposed, among them: Tai-Lang Yao [24] proposed an Order
Fulfillment Process Controller (OFP-Controller) to prevent the
occurrence of an exception. When the schedule is generated
(through a collaborative and centralised process), it is provided to
the order monitoring system to monitor and diagnose the material
flow through supply chain execution. The monitoring strategy is
focused on the order: through monitoring of two key performance
indicators it captures changes in the order attributes. The
performance indicators are: the cycle time and rate of order
fulfilment. In addition, the occurrence of an exception is used to
revise the plan associated with similar next orders. Chin-Hung [25]
developed a generic model to represent the relationship and
operations within the extended supply chain. Based on this model,
time-dependent fault trees were developed to show the failure
modes that resulted in the disruptive events. The monitoring
strategy is focused on the order: the model variables are attributes
of the order and the material flow.

In the work of [26], a method of fault detection is applied to
supply chain fault propagation analysis over inventory data.
Disruptive events are detected through significant changes over
inventory data. From the observation of these significant changes,
fault propagation generic patterns are discovered in order to
anticipate negative effects. The monitoring strategy is focused on
the material resource and the prediction function of a disruptive
event is based on data.

Bansal et al. [27] proposed a framework for disruption
management in the supply chain. In this work a disruptive event
is captured through monitoring of key performance indicators
(stock inventory, throughput) when these exceed a threshold. This
model is applied to a supply chain of a refinery and changes in the
material resource are detected through monitoring of the crude oil
inventory indicator. The monitoring strategy is focused on the
material resource and the prediction function of a disruptive event
is deterministic. The work of [28], proposed a conceptual
modelling approach for supply chain event management. Disrup-
tive events are detected through ratios, which are associated with
the material resource or order attributes. In this work the
prediction function of a disruptive event is deterministic (based
on rules). Liu et al. [29] proposed coloured time Petri Nets as
formalism for supply chain event management. Events are
classified in the following types: task status related events, events
produced by a task and external events. Based on the interactions
between partners in the supply chain, events are identified. Next,
the rules that relate these events to one another are defined. Each
rule is associated with the corresponding Petri Net pattern in order
to generate the monitoring structure. In this work, the monitoring
strategy is focused on the resource and the environment. The
prediction function of a disruptive event is deterministic.

A common feature of these works is that they do not consider
the structure of the supply process the order represents to define
the monitoring structure. This limits the control points that can be
used and the set of variables that can be observed in each of them,
thereby limiting the potential of the predictive model. This is the
most significant difference with our proposal.

In the work of [30], the monitoring of resources is considered to
be important to anticipate disruptive events. These are captured
through monitoring of resource attributes which are compared
with their target value. In addition, to target-state comparisons,
statistical test is used to assess the significance of the deviations.
Despite its usefulness, this model cannot infer changes in the
planned values of the attributes of an order. Kim and Choi [31]
developed an active data acquisition language for proactive
exception handling. Despite this work is limited to manufacturing,
it considers the monitoring of resource attributes significant. The
proposal is applied to predict the tool breakage through monitor-
ing of the following attributes: the axis displacement, tool bending
load, tool compression load.These last two works do not discuss
how the predicted behaviour of resources can affect the attributes
of a supply chain order. This is a particular difference of them with
our proposal.

In the field of event management, Complex Event Processing
(CEP) [32] has evolved into the paradigm of choice for the
development of monitoring and reactive applications. CEP already
plays an important role in many application areas like logistics,
schedule and control processes, network monitoring, etc. CEP
addresses two crucial prerequisites to built highly scalable
and dynamic systems. CEP-systems support the detection of

E. Fernández et al. / Computers in Industry 63 (2012) 482–499498
relationships among events that can be specified by defining
models of causal relations. In these models events are detected in
deterministic a way.

This last work presents a set of tools based on the approach for
reactive monitoring of order, which marks the main difference
with our proposal whose aim is to anticipate the occurrence of
disruptive events monitoring variables that can predict them.

6. Conclusions and future work

Based on the abstract language provided by the reference
model, the user could represent the monitoring process of a supply
process without the need of known the specific language of the
implementation technology. The monitoring model represented in
terms of the reference model can be automatically transformed
into different technological languages the final implementation
platform interprets, increasing the development productivity and
quality of applications for monitoring supply processes.

The specific model presented in this work allows generating a
monitoring model in which the relationships among resource
attributes, environment variables and order attributes, are defined
by a Bayesian Network that defines a probabilistic model to
capture and propagate changes based on the structure of the
supply process the order represents. This extends the predictive
potential of the monitoring model by adding control points and a
set of variables that can be observed in each of them.

The reference model allows modelling a generic causal
relationship function for any supply process. For a required
particular prediction function based on Petri Net, Bayesian
Network, etc., the corresponding specific reference model and
its transformation rules have to be developed and implemented.

An empirical validation of the approach has been performed
through three case studies. An illustrative scenario for the first case
shows the ability of the monitoring system that implements the
approach to anticipate a disruptive event. To perform this task, the
monitoring component of the SCEM system uses the inference
engine of HUGIN [23] to process a probabilistic model based on the
structure of the supply process and statistical data, which is a
remarkable characteristic of this approach.

The monitoring component of the SCEM system notifies to the
control component of the SCEM system a disruptive event when it
has enough evidence that it will occur (Fig. 1). This allows the
control component to derive a mechanism for automatic repair of
disrupted supply processes. This mechanism is able to detect
whether a disruptive event generates a significant disruption in the
schedule, and if so, it searches for a feasible solution using planned
buffers [33]. This solution can reduce the impact and propagation
of the schedule disruption. The earlier the disruptive event is
predicted, the more time the control system has to perform its
work and better solutions can be obtained.

As it has been highlighted, this approach can be applied when
the supply process time is sufficient to justify the advance.

The monitor gets the value of the monitored variables (resource
attribute and environment parameters) and analyses their impact
on the order attributes (change in the amount specified in the order
and/or in the time in which the order must be fulfilled) to predict a
disruptive event. A similar approach can be used to monitor
environment and resource variables to anticipate changes in the
resource availability. This will be considered in future works.

References

[1] J.A. O’Brien, G.M. Marakas, Management Information Systems, McGraw-Hill
Irwin, Boston, 2009.

[2] R.C.a.L.L. Mitsuo Gen, Advanced planning and scheduling models, in: Network
Models and Optimization, Springer, London, 2008, pp. 297–417.
[3] J. Galbraith, Designing Complex Organizations, Addison-Wesley, Reading, MA,
1973.

[4] S. Pradhan, Implementing and Configuring SAP Event Management, Galileo Press
Inc., Boston, 2010.

[5] H.L. Lee, V. Padmanabhan, S. Whang, The Bullwhip Effect in Supply Chains, Sloan
Management Review 38 (3) (1997) 93–102.

[6] N. Radjou, L.M. Orlov, T. Nakashima, Adapting to supply network change, in: F.
REsearch (Ed.), The TechStrategy Report, 2002.

[7] V. Landeghem, H. Vanmaele, Robust planning: a new paradigm for demand chain
planning, Journal of Operations Management 20 (2002) 769–783.

[8] S. Sendall, W. Kozaczynski, Model transformation: the heart and soul of model-
driven software development, IEEE/IET Electronic Library, VDE VERLAG Confer-
ence Proceedings 20 (5) (2003) 42–45.

[9] N. Masing, SC Event Management as Strategic Perspectiva – Market Study: SCEM
Software Performance in the European Market, Master Thesis, Universitié du
Québec en Outaouasis, 2003.

[10] R. Zimmermann, in: M. Walliser, S. Brantschen, M. Calisti, T. Hempfling (Eds.),
Agent-based Supply Network Event Management. Whitestein Series in Software
Agent Techonologies, 2006.

[11] N. Montgomery, R. Waheed, Event management enables companies to take
control of extended supply chains, AMR Research (2001).

[12] Object Management Group, Model Driven Architecture (MDA), 2003.
[13] Object Management Group, XML Metadata Interchange (XMI), 2006, http://

www.omg.org/spec/XMI/2.4/Beta2/.
[14] Object Management Group, I. UML 2.0 Superstructure Specification, 2010, http://

www.omg.org/spec/UML/2.4/.
[15] F. Jensen, An Introduction to Bayesian Networks, Springer Verlag, New York, 1996.
[16] ATL (ATLAS Transformation Language), http://www.eclipse.org/atl/.
[17] Object Management Group, Query/View/Transformation (QVT), 2011, http://

www.omg.org/spec/QVT/1.1/.
[18] Object Management Group, Object Constraint Language (OCL), 2010, http://

www.omg.org/spec/OCL/2.3/Beta2/.
[19] Object Management Group, Meta Object Facility, 2008, http://www.omg.org/

spec/MOF/2.4/Beta2/.
[20] M.B. Miles, A.M. HUberman, Qualitative Data Analysis: An Expanded Sourcebook,

2nd ed., SAGE Publications, USA, 1994.
[21] R.K. Yin, Case Study Research: Design and Method, 4th ed., SAGE Publications,

USA, 2009.
[22] A. Oke, M. Gopalakrishnan, Managing disruptions in supply chains: a case study of

a retail supply chain, International Journal of Production Economics 118 (1)
(2009) 168–174.

[23] Hugin Expert A/S, Hugin Researcher, 2010. www.hugin.com.
[24] Y. Tai-Lang, An Exception Handling Method of Order Fulfillment Process in the i-

Hub Supported Extended Supply Chain, Master’s Thesis, National Central Univer-
sity, Institute of Industrial Management, Taiwan, 2002.

[25] C. Chin-Hung, Assessing Dependability of Order Fulfillment in the i-Hub Sup-
ported Extended Supply Chain, Master’s Thesis, National Central University,
Institute of Industrial Management, Taiwan, 2002.

[26] R. Ramon Sarrate, F. Fatiha Nejjari, F.D. Mele, J. Quevedo, L. Puigjaner, Event-based
approach for supply chain fault analysis, Computer Aided Chemical Engineering
20 (2005) 1261–1266.

[27] M. Bansal, A. Adhitya, R. Srinivasan, I.A. Karimi, An online decision support
framework for managing abnormal supply chain events, Computer Aided Chemi-
cal Engineering 20 (2005) 985–990.

[28] A. Winkelmann, S. Fleischer, S. Herwig, J. Becker, A conceptual modeling
approach for supply chain event management (SCEM), in: Proceedings of the
17th European Conference on Information Systems (ECIS 2009), Verona, Italy,
2009.

[29] R. Liu, A. Kumar, W. van der Aalst, A formal modeling approach for supply chain
event management, Decision Support Systems 43 (3) (2007) 761–778.

[30] K. Kurbel, D. Schreber, Agent-based diagnostics in supply networks, Issues in
Information Systems VIII (2) (2007).

[31] K. Kim, I. Choi, Active data acquisition for proactive exception handling in
manufacturing, The International Journal of Advanced Manufacturing Technology
43 (3–4) (2009) 365–378.

[32] L. David, The Power of Events. An Introduction to Complex Event Processing in
Distributed Enterprise System, Pearson Education, 2002.

[33] A. Guarnaschelli, E. Fernández, E. Salomone, O. Chiotti, A service-oriented ap-
proach to collaborative management of disruptive events in supply chains,
International Journal of Innovative Computing, Information and Control (IJICIC),
Special Issue: On intelligent and Innovative Computing in Business Process
Management (2011).

Erica Fernandez is a Ph.D student at INGAR, a research

center of CONICET Argentina (National Council of

Scientific and Technical Research). She is assistant

professor of the UTN (National Technological Universi-

ty) since 2007.Her research mainly focuses on informa-

tion technology and supply chain management.

http://www.omg.org/spec/XMI/2.4/Beta2/
http://www.omg.org/spec/XMI/2.4/Beta2/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.eclipse.org/atl/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/OCL/2.3/Beta2/
http://www.omg.org/spec/OCL/2.3/Beta2/
http://www.omg.org/spec/MOF/2.4/Beta2/
http://www.omg.org/spec/MOF/2.4/Beta2/
http://www.hugin.com/

E. Fernández et al. / Computers in Industry 63 (2012) 482–499 499
Enrique Salomone has obtained his PhD in 1993. He is

Professor of UNL (Litoral National University) since

2008 and member of the CONICET (National Council of

Scientific and Technical Research) of Argentina since

1993. His area of interest is information technology as

support for productive systems management.
Omar Chiotti has obtained his PhD in 1989. He is

Professor of the UTN (National Technological Universi-

ty) since 1989, head of the CIDISI (R & D Center in

Information System Engineering) and member of the

CONICET (National Council of Scientific and Technical

Research) of Argentina since 1991. His area of interest is

information technology as support for productive

systems management.

	A model driven development approach based on a reference model for predicting disruptive events in a supply process
	Introduction
	Architecture of the SCEM system
	Model driven development approach for predicting disruptive events
	Reference model
	Specific model: Bayesian Network model
	Relationships between both models
	Transformation between both models

	Empirical validation of the approach
	Methodology
	The supply processes
	Data collection
	Case study cheese production process
	Case study marine freight transport process
	Case study castings production plant
	Results analysis

	Related works
	Conclusions and future work
	References

