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8
9 1. Introduction

10 Capture of the three-dimensional geometry of the human face is
11 a computer vision problem with many applications, including
12 facial recognition and mood detection, computer animation,
13 plastic surgery and automated sculpture. In particular, it has been
14 shown in recent years that the use of the 3D geometry of the face
15 improves the robustness of facial recognition methods under
16 variations in illumination, pose and perspective [1–4].
17 Several techniques have been used for 3D facial geometry
18 capture, including laser ranging [5], structured lighting [6],
19 geometric stereo [7] and shape-from-shading [8]. Shape-from-
20 shading (with a single illumination) is limited to objects with
21 uniform color and finish, and is too unreliable for practical facial
22 recognition. Currently the only methods that are being used in
23 commercial systems are laser ranging and geometric stereo, with
24 or without structured lighting. However these methods often
25 require the target to remain still during the scanning, and require
26 bulky and expensive specialized equipment. These factors
27 significantly limit their application.
28 Morphable models [9] have been proposed as a way to handle
29 variations in illumination, pose and perspective without full 3D
30 geometry capture. However, those methods are inherently limited
31 in their accuracy and robustness under perturbations, like glasses
32 or facial hair that are not previously included in the morphable

33model; and are unable to capture fine details of skin. They also have
34a somewhat high computational cost, which clearly limits
35application.
36Variable lighting photometric stereo, here called simply photo-

37metric stereo (PS), is the extension of shape-from-shading using
38multiple images with a single viewpoint but different illumination
39conditions. As a potential 3D facial capture method, its main
40advantages are that it requires very simple and inexpensive
41equipment, can be used in ordinary environments without
42hampering the subject’s motion or demanding his cooperation,
43and can capture high-resolution 3D data in a fraction of a second
44[10–12]. Indeed, Broadbent et al. demonstrated a photometric stereo
45system that captures 640 � 480 depth maps at video rates (15
46frames-per-second) using a PC with a popular graphics card [13].
47Photometric stereo does not obtain the depth information
48directly; instead it measures the average normal of the surface
49within each image pixel. The slope data is then integrated to
50provide the relative depths of different parts of the object. These
51integrated depths are somewhat less accurate than those obtained
52with laser ranging and structured light, but are accurate enough for
53facial recognition, considering the natural variation of human face
54geometry over time. Indeed, the slope data can be used directly in
55facial recognition algorithms [14,15].
56Photometric stereo requires information on the finish of the
57surface and on the illumination conditions of each input image.
58Specifically, it needs for each image the shading function that maps
59a surface normal to the corresponding shading factor. It also needs
60a weight map, a mask that identifies the image pixels where the
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61 brightness data is not reliable or relevant for some reason (e.g. for
62 being part of the background, for being affected by projected
63 shadows, or for straddling silhouette edges of the object). This
64 mask is essential for accurate integration of the slope maps [16].
65 Here we consider specifically example-based photometric stereo
66 (EBPS), a variant of the method where the shading functions are
67 obtained by analyzing images of an example object with known
68 geometry and the same finish as the scene, under the same
69 illumination conditions. The main contributions of this paper are
70 (1) the use of high-order spherical harmonics to model the shading
71 functions and remove noise from the example images; (2) an
72 unsupervised method to construct the weight mask of each image;
73 and (3) the use of these methods to improve the PHOTOFACE real-
74 time face capture system of Hansen et al. [10].

75 2. Basic concepts and notation

76 The basic problem of photometric stereo is to determine the
77 orientation of the surface (that is, the surface normal) at every
78 visible point of an opaque object, given m � 3 digital images S1, . . .,
79 Sm of it, all taken with the same pose and viewpoint but with
80 distinct illumination conditions. We assume that the images are
81 geometrically aligned and photometrically corrected, so that they
82 have a common domain S � R2, and that the samples S1[p], . . .,
83 Sm[p] at the same point p 2 S are the apparent radiances of same
84 point P[p] on the visible surface of the target object, under the
85 various lightings. The goal is then to determine surface’s normal
86 ~s½ p� at that point.
87 For simplicity we assume that the images are monochromatic.
88 We also assume that the camera’s field of view is sufficiently
89 narrow and the light sources in each image are sufficiently far
90 away that the lighting and viewing direction can be assumed to be
91 uniform over the entire target object. The method can however be
92 extended to color images, non-uniform light fields, and conical
93 instead of parallel image projection.
94 In the simplest version of the photometric stereo problem, one
95 also assumes that the surface’s finish is known, isotropic and
96 uniform. More precisely, one assumes that the surface’s bidirec-
97 tional radiance distribution function (BRDF) s[p] at P[p] is the
98 product of a known isotropic and absorption-free BRDF b, the
99 surface finish, and an unknown factor ŝ½ p� 2 ½0; 1�, the albedo at that
100 point (also called the intrinsic color or light absorption coefficient). It
101 follows that the intensity Si[p] of each image pixel can be analyzed
102 as the product of the albedo ŝ½ p� and a shading factor that depends
103 only on the image index i and on the surface’s normal~s½ p� at that
104 point. Specifically,

Si½ p� ¼ ŝ½ p� Lið~s½ p�Þ (1)

105106 Here, each Li is the shading function for image Si, that maps a unit
107 vector~n 2 S2 to the apparent radiance of a white surface with BRDF
108 b, oriented with normal~n under the lighting conditions of image Si.
109 The shading functions are related to the finish BRDF b by the
110 equation

Lið~nÞ ¼
Z

S2
Fið~uÞbð~n;~u;~vÞ d~u (2)

111112 where ~v is the viewing direction (from the point P[p] toward the
113 camera), and Fið~uÞ is the intensity of the light flow in the direction
114 �~u (that is, the radiance of the ‘‘sky’’ in the direction~u) prevailing in
115 image Si. If the illumination for image i was provided by a distant
116 point source in the direction ~u

�
i , the integral reduces to

Lið~nÞ ¼ F�i bð~n; ~u
�
i ;~vÞ (3)

117118 where the factor F�i quantifies the intensity of that light source.
119 Note that we are including the geometric factor maxf~n �~u; 0g in the

120finish BRDF b, and we use these equations only when~n �~v > 0. Note
121also that, by the uniform lighting assumption, the shading function
122Li does not depend on the position p, except through the normal
123~s½ p�.
124This lighting model allows attached shadows, and is adequate
125for scenes consisting of a single mostly convex object. On the other
126hand, this model cannot account for projected shadows, radiosity
127effects, or sources with uneven light distribution.
128With these definitions, we can formally state the basic problem
129of photometric stereo as follows: given the intensities S0[p], . . .,
130Sm[p] for a pixel p, find the normal vector ~n½ p� and the albedo ŝ½ p�
131that satisfy Eq. (1) for all i. This problem generally can be solved if
132the illuminations are sufficiently varied and the finish BRDF b is
133dominated by wide-angle scattering: that is, more like the
134Lambertian BRDF than that of a mirrored or glossy black surface.

1352.1. Observation vectors

136The observation vector of a pixel p 2 S is the m-vector of its
137radiances in all the images, that is,

S½ p� ¼ ðS1½ p�; S2½ p�; . . . ; Sm½ p�Þ (4)

138139We define the shading vector function as the list of all m shading
140functions, that is, the function L from S2 to Rm such that

Lð~nÞ ¼ ðL1ð~nÞ; L2ð~nÞ; . . . ; Lmð~nÞÞ (5)

141142The basic problem of photometric stereo can be stated more
143succinctly as: given the vector S[p] of a pixel p, find the unit vector
144~n 2 S2 such that the vector Lð~nÞ is practically collinear with S[p], that
145is, the angle between them is nearly zero. (Needless to say, the
146inevitable measurement errors in the radiances Si[p] will introduce
147random perturbations in the observation vector S[p], so one cannot
148expect exact collinearity.) Then we can infer that the surface normal
149~s½ p� at p is ~n, and that the albedo ŝ½ p� is the ratio kS½ p�k=kLð~nÞk
150between the m-dimensional Euclidean norms of the two vectors.

1512.2. Observation signatures

152We can remove the albedos from the problem by normalizing
153the observation vectors and the shading vector function. Namely,
154we define the observed signature s[p] of a pixel p as being its
155observation vector normalized to unit length; and the shading

156signature function l as the shading vector function normalized in
157the same way. That is,

s½ p� ¼ S½ p�
kS½ p�k ; lð~nÞ ¼ Lð~nÞ

kLð~nÞk (6)

158159Note that s[p] is a vector on the sphere Sm�1, and l is a function of
160S2 to Sm�1. Then the photometric stereo problem reduces to
161computing the functional inverse of the shading signature
162function; that is, find ~s½ p� 2 S2 such that lð~s½ p�Þ is as close as
163possible to s[p] in the norm || � || (which is a monotonic function of
164the angle between the vectors).

1652.3. The sufficient data hypothesis

166The photometric stereo approach will fail if the shading
167signature function is not invertible, that is, if there are two normal
168directions ~n

0
;~n
00

with collinear shading vectors Lð~n0Þ ¼ aLð~n00Þ for
169some scalar a. To avoid this problem, the illumination conditions
170must be sufficiently varied to break any such ambiguities. In
171particular, the light sources used in all images must not be all in the
172same plane, and every visible point of the target object must be
173illuminated on at least three of the images. We will assume that
174these conditions are satisfied in what follows.
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175 On the other hand, example-based PS can in principle work
176 with non-Lambertian BRDFs and arbitrary lighting, as well as with
177 attached shadows and penumbras, since these effects do not
178 destroy the proportionality between the vectors S[p] and Lð~nÞ. In
179 particular, there is no need to identify the images and pixels where
180 attached shadows occur. (Cast shadows and scene-scattered light,
181 however, are still a problem.)

182 3. Related work

183 Variable-lighting photometric stereo was first studied as a
184 computer vision problem by Woodham in the late 1980s [17]. In
185 his pioneer work, Woodham demonstrated that is possible to
186 recover the inclination of the surface using at least 3 non-coplanar
187 point-like light sources.
188 Shadows and glossy reflections: In the following years, Wood-
189 ham’s results were improved and extended in many ways.
190 Woodham originally assumed that the scene had Lambertian
191 finish, and considered only points that were fully illuminated by all
192 three sources with known directions. In that case the surface
193 normal vector can be computed from the three intensity values of
194 the pixel by a simple analytic formula. Barsky and Petrou [18] later
195 showed how to handle glossy highlights and shadows using only 4
196 images, provided that such anomalies affect the value of a pixel in
197 at most one of the four images. Yu et al. [19] then used linear
198 programming to extend this result for an arbitrary number of
199 lightings, allowing multiple anomalies in each pixel. Due their
200 simplicity and low processing cost, these methods are now
201 commonly used for real-time and fast capture applications [11,13].
202 Unknown lighting: In practice one often faces a more difficult
203 version of the problem where the lighting conditions of each image
204 are not known a priori and must be determined from the images
205 themselves. Hayakawa [20] addressed a limited version of this
206 problem, assuming that each image was illuminated by a distant
207 point source with unknown direction. He claimed that the normal
208 directions could be obtained through singular-value decomposi-
209 tion of the input data, viewed as matrix where each row is a pixel
210 and each column an input image. This solution was later improved
211 by Yuille et al. [21,22]. Basri et al. [23,24] further generalized the
212 solution using spherical harmonics to handle ambient and semi-
213 diffuse lighting. However, Hayakawa’s approach is limited because
214 of inherent ambiguities in the problem, and rather sensitive to the
215 arrangement of light sources. The resulting normals are affected by
216 indeterminate factors that must be determined by other criteria
217 and explicitly corrected for.
218 Unknown surface finish: Aldrin et al. [25] and Goldman et al. [26]
219 considered the more difficult problem where the surface finish b is
220 unknown. They assumed that b of the surface was some unknown
221 linear combination of a finite library of ‘‘model’’ BRDFs (Lamber-
222 tian, glazed, etc.), with different coefficients in each pixel.
223 McGunnigle et al. [27] were able to recover good estimates of
224 surface of metallic objects under very strict lighting conditions.
225 Higo [28] does not attempt to model the BRDF, assuming only that
226 it is monotonic and isotropic and achieves good results in presence
227 of glossy highlights and shadows. These methods require dozens of
228 input images, and their high computational cost prevents their use
229 in real-time applications.
230 Example-based photometric stereo: In spite of the advances
231 described above, the problem of photometric stereo with an
232 unknown finish BRDF and/or unknown lighting remains fraught
233 with practical and computational difficulties. The example-based
234 approach to photometric stereo sidesteps these difficulties by
235 extracting the shading functions Li directly from m calibration
236 images G1, . . ., Gm of a reference object with known shape and
237 albedo, taken from the same viewpoint and under the same
238 lightings as the images S1, . . ., Sm.

239This approach was introduced by Woodham in 1989 [17] and
240further explored recently by Herztmann and Seitz [29,30] and by
241us [31] The inconvenience of having to place a reference object in
242the scene is compensated by the fact that recovery of the surface
243normals with very complex BRDFs and arbitrary lighting is
244possible. Moreover, the shading functions Li, are inherently
245smoother (and therefore easier to model) than the finish BRDF b
246and the light flows Fi. The example-based approach is also very
247efficient and usually produces good results with only 6–12 images.

2483.1. Slope integration

249In the context of this paper, ‘‘3D geometry capture’’ means
250determining for each pixel p 2 S the height z[p] of the surface
251visible in p, relative to some arbitrary reference plane perpendicu-
252lar to the viewing direction ~v. Photometric stereo does not yield
253directly this information, but only the surface normal vector ~s½ p�
254within that pixel. The normal can be trivially converted to the
255height gradient or slope vector ~rz½ p�, the vector of R2 consisting of
256the X and Y derivatives of the height map z. The gradient map ~rz

257then must be integrated to yield the height map z.
258The integration of gradient maps obtained by photometric
259stereo is not a trivial task. For one thing, the gradient data is not
260continuous, but discretized, that is, available only in the center of
261pixels, forming a regular orthogonal grid. Moreover, the gradient
262data ~rz½ p� is contaminated by errors caused by camera noise,
263violations of the photometric stereo assumptions (opaque surface,
264uniform lighting, constant finish, etc.) and approximations in the
265photometric stereo algorithm itself (such as the error due to the
266use of a finite table to invert the shading signature function).
267For some pixels, the magnitude of such perturbations may be so
268high that the gradient value ~rz½ p� is practically unknown. That
269happens, in particular, in background areas that are outside the
270range of the light sources, or where the image is very dark, or where
271the surface is covered by hair or other non-trivial 3D texture, or
272where the pixel straddles a discontinuity in the height function, such
273as a silhouette edge (the boundary of the projection of some
274foreground object). One should note that the gradient data ~rz½ p� for
275a pixel p is a non-linear function of the pixel radiances S1[p], . . .,
276Sm[p]; and each Si[p] is the average of the radiance of the surface over
277some finite region corresponding to p, which in turn is a non-linear
278function of the surface’s true gradient. Therefore, if the true surface
279gradient varies considerably within the pixel, the gradient ~rz½ p�
280computed by photometric stereo may be substantially incorrect.
281These unavoidable errors in the photometric gradient ~rz

282require the use of specialized integration algorithms. A compara-
283tive survey was presented by us in a previous article [16]. Some
284integrators that are still widely used in this problem, such as path
285integration [32] and Frankot–Chellapa’s Fourier-based method
286[33] simply ignore those errors, and may produce very incorrect
287height maps. See Figs. 1 and 2.
288Weighted Poisson integrators: The only integrators that can cope
289with missing and unreliable gradient data are the weighted
290Poisson-based methods [34,35,16,36]. Those methods require an
291extra input, a weight map that specifies the reliability w½ p� of each
292gradient value ~rz½ p�, as a number between 0 (‘‘meaningless’’) and
2931 (‘‘maximally reliable’’). Those integrators set up a system of
294linear equations that relate the given gradients ~rz½ p� to finite
295differences of unknown heights z[p0] of adjacent pixels. The linear
296system is then solved to obtain the heights.
297Fast system solving: The linear system built by Poisson
298integrators is sparse but very large: it has one unknown height
299and one equation for each pixel with non-zero weight, and each
300equation typically has five to nine non-zero coefficients. Solving it
301by Gauss elimination requires super-linear space; solving it by
302Gauss–Seidel iteration requires way too many iterations. We use a
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303 multi-scale iterative solver that we developed specifically for this
304 problem that uses a linear amount of memory and runs in linear
305 time for typical instances [16].

306 3.2. Photometric stereo for 3D face capture

307 Due to its non-intrusive nature and lower cost, photometric
308 stereo has received considerable attention in recent years as a
309 method for the capture of facial geometry that may be optimal for
310 certain applications. Its viability was demonstrated by Yuille et al.
311 [22], using their proposed SVD method for face images captured
312 under light sources with unknown direction. However, their
313 method demanded a large number of images to overcome errors
314 introduced by deviations of the Lambertian reflection model.
315 Georghiades et al. [37] managed to improve this result for human
316 faces using only 7 distinct light sources, by discarding values that
317 were under or over a predetermined threshold. Lee et al. [38]
318 extended his approach, using 3 known light sources and an
319 arbitrary number of images with unknown lighting.
320 The PHOTOFACE system built by Hansen et al. [10] demonstrated
321 the use of photometric stereo for nearly instantaneous face capture
322 of people in motion. This system is described in more detail in
323 Section 4. It uses four point-like light sources, and computes the
324 normals by a simple analytic method that assumes a Lambertian
325 surface finish. The normals are used as input for face recognition
326 algorithms.
327 A major difficulty in this application is that skin has a
328 complicated non-Lambertian finish, due to its structure of multiple
329 translucent layers.
330 Real-time face capture: The capture of facial 3D geometry in real
331 time, possibly at video frame rates, has received significant
332 attention in the last few years. For greater speed, some of these
333 systems use multi-spectral method, namely color cameras and
334 colored lights, to capture three or more images Si at the same time.
335 This technique too was pioneered by Woodham, in 1994 [39].
336 Using a modified version of Hayakawa’s SVD method, Schindler
337 [40] achieves real-time capture using a color monitor as a multi-
338 spectral the light source. The captured geometry is not very
339 accurate, being intended to be used in face modeling and video-
340 chats. Vogiatzis et al. [12] uses a combination of shape-from-
341 motion and multi-spectral photometric stereo, allowing for glossy
342 reflections using a modified Phong model. Fyffe et al. [41] uses a

343customized 6-channel camera to recover albedo and surface
344inclination with a single picture.

3454. The PHOTOFACE system

346Our work builds on the PHOTOFACE project, a hardware and
347software system developed in 2010 by Hansen, Atkinson, and
348others at the Machine Vision Laboratory (MVL) of the University of
349the West of England (UWE) [10]. PHOTOFACE was designed for
350automatic, near-instantaneous, non-intrusive 3D face capture of
351people walking through an instrumented booth. Its demonstration
352prototype consisted of a aluminum frame structure with a high-
353speed photographic camera and four near-infrared light sources.
354The system was triggered by an ultrasound sensor as the Person
355was about 2 m away from the camera and walking toward it. The
356camera snapped four photos of the person in quick succession,
357while each light was flashed in turn, and then one more with all
358lights turned off to record the ambient light. See Fig. 3.

3594.1. Specifications

360All PHOTOFACE devices are controlled by a standard PC. The light
361sources and the ultrasound trigger are connected to the computer

Fig. 2. A height map with discontinuities (left), its height gradient map (middle) as it would be computed by photometric stereo without any noise, and the recovered height

map (right) computed from the gradient by the Frankot–Chellapa Fourier-based integrator [33].

Fig. 3. The PHOTOFACE prototype built at UWE MVL.

Fig. 1. A simple height map (left), its height gradient map with some noise added (middle) and the recovered height map (right) produced from the gradient by the Fraile–

Hancock tree-path integrator [32]. (In the gradient map, the X and Y derivatives are combined intoQ3 color values.) (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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362 via an NI PCI-7811 DIO card. An NI PCIe-1426 frame grabber is also
363 connected to the DIO card via a RTSI bus for triggering purposes,
364 and to the camera via a Camera Link� interface. The latter is used to
365 send the triggering signal to the camera and to store the frame data
366 in the computer. The camera is also directly connected to the DIO
367 card. All interfacing code is written in NI LabVIEW and coordinates
368 all the image capture sequence.
369 Light sources: Each of the four near-infrared light sources is a
370 VIS080IR 7-LED cluster, which emits light at 	850 nm. The four
371 lights are arranged in a irregular rectangular shape pointing toward
372 the general area where the person will walk through. This
373 disposition ensures that the light source directions would not be
374 co-planar, in order to obtain good quality images for each
375 illumination triplet.
376 Camera: The camera is a Basler 504 kc model with a 55 mm, f5.6
377 Sigma lens positioned in the center of the rectangle formed by the
378 light sources. It is able to capture an 1280 � 1024 8-bit RGB image
379 in less than 5 ms.
380 Trigger: The system’s trigger is an ultrasound sensor, a highly
381 directional Baumer proximity switch that is activated when its
382 beam is broken within a distance of 70 cm.

383 4.2. Image capture

384 To ensure the alignment of the images (required by photomet-
385 ric stereo methods), the capture should be performed in a very
386 small time interval. It was verified experimentally that is necessary
387 at least a frame rate of 150 frames-per-second and a accurate
388 synchronization of light sources.
389 The frame grabbing process is started when a person crosses the
390 beam of the ultrasound sensor. Upon receipt of the sensor’s signal,
391 the DIO tells the camera to start the frame integration process.
392 Once the camera confirms that the integration has started, the DIO
393 card flashes one of the lamps, and waits for the camera to signal the
394 end of frame capture. The DIO card repeats this sequence for the
395 other three lights, and then once more with all lights turned off.

396The entire capture process takes about 50 ms, which seems to be
397instantly to a human observer.

3984.3. Image processing

399The ‘‘dark’’ image is subtracted from the four illuminated
400images to remove the contribution of ambient lighting. Since the
401subjects may vary substantially in height, the camera is set up to
402capture an area many times larger than the person’s face. The
403images are therefore cropped to the face’s approximate bounding
404box (typically 	400 � 	500 pixels), which is determined by the
405algorithm of Lienhart and Maydt [42]. See Fig. 4.
406As described by Hansen et al., the PHOTOFACE software used an
407analytic method to compute the surface normal at each pixel. The
408method assumed a Lambertian surface finish and a single distant
409point-like light source in each image. First, their algorithm
410computed a tentative normal ~s

0½ p� by assuming that the pixel
411was illuminated by all four sources. Under this assumption the
412shading Eqs. (1)–(3) reduce to an overdetermined system of 4
413equations on 3 unknowns, that was solved with the least squares
414criterion.
415As a check for the presence of shadows, they then computed a
416second normal ~s

00½ p� by the same method but excluding the
417image Si with smallest Si[p]. If ~s

00½ p� made an obtuse angle
418with the direction of the excluded light source, they assumed
419that the point was in that light’s shadow and set ~s½ p� to ~s

00½ p�,
420otherwise they set~s½ p� to~s

0½ p�. Height maps were then computed
421from the normals using the Frankot –Chellapa integrator [33].
422See Fig. 5.
423Calibration: The analytic method used required the direction of
424each light source relative to the person’s face. Since the light
425sources were not permanently fixed to the frame, a calibration step
426was performed once after assembly to obtain that information. For
427that purpose, a capture sequence was performed with a reflective
428sphere in place of the person’s face. The direction of each light
429source was then determined by the location of its reflection (a

Fig. 4. Four images captured by PHOTOFACE after subtraction of ambient lighting and trimming by the face detection algorithm.

Fig. 5. Normal and height map computed from the images of Fig. 4 by the PHOTOFACE processing pipeline.
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430 bright spot) on the sphere. The four light sources were assumed to
431 have the same intensity.

432 4.4. Our improvements

433 The analytic method used in the first version of PHOTOFACE was
434 very fast, but since it assumed a Lambertian finish for the skin it
435 yielded rather inaccurate normals wherever the image was
436 affected by glossy reflections. The method also failed usually in
437 those regions (mainly under the chin and nose) which were
438 illuminated by only two of the four lights.
439 The Frankot–Chellapa integrator too was chosen for its speed: it
440 took only a few seconds to process each normal map. However, since
441 it uses the Fast Fourier Transform algorithm, it necessarily gives
442 equal weight to all pixels. Therefore, the integrated face geometry
443 was often distorted by the spurious gradient values in the
444 background and shadowed areas. These distortions prevented the
445 use of the height maps for face recognition; the slope maps were
446 used instead [10].
447 In the remainder of this article we describe an improved image
448 processing system we developed for the PHOTOFACE hardware.
449 Namely, we replaced the analytic normal computation algorithm
450 by the example-based method, which can in principle handle the
451 semi-glossy finish of human skin. For this purpose we developed a
452 reliable method to extract the shading function from the images of
453 the example object that removes most of the noise present in those
454 images. This method is described in Section 5.
455 We also replaced the Frankot–Chellapa integrator by our multi-
456 scale weighted Poisson integrator, described in a previous article
457 [16]. Since the PHOTOFACE system is meant to operate automatically,
458 we developed an algorithm to automatically extract the weight
459 mask from the captured images. This algorithm is described in
460 Section 6.
461 The new software takes about 3 s to obtain the normal map
462 from the acquired photos, and another 3 s to compute the height
463 map, on PHOTOFACE’s PC. These times are less than 50% higher than
464 those of the original PHOTOFACE software.

465 5. The EBPS algorithm

466 5.1. Table-based normal determination

467 In order to invert the shading signature function l, we obtain a
468 sufficiently dense set T of sample pairs tk ¼ ð~nk; tkÞ 2 S2 � Sm�1

469 with k = 1, 2 . . . , N, where tk ¼ lð~nkÞ. Then for each pixel p in the
470 target object we locate in this table the entry ð~nr; trÞ for which the
471 distance ||tr � s[p]|| is minimum, and return the corresponding
472 normal ~nr as the presumed normal ~s½ p� of the object’s surface in
473 that point.
474 This approach is very similar to that used by Woodham in 1994
475 [39]; except that we use normalized signatures s, l instead of the
476 unnormalized observation vectors. This approach is extremely
477 flexible, since it can work with any light sources, concentrated or
478 diffuse, and any constant isotropic finish b, as long as the lighting

479functions Li are fairly smooth and the signature function l is
480invertible. Note that it does not require modeling the BRDF b or the
481light distributions Fi explicitly.

4825.2. Fast table look-up

483The accuracy of the result~nr returned by table look-up method
484depends only on the density of the sample normals~nk in T and the
485amount of noise present in the given images. As for the former,
486even if the normals in T are uniformly distributed over the
487hemisphere H2, the angular error between~nr and the true inverse
488l�1(s[p]) will be about 1:5=

ffiffiffiffi
N
p

radians. Thus, for example, in order
489to keep that part of the error below 18, the table must have at least
4908000 entries. For this reason, the table look-up step dominates the
491computational cost of photometric stereo.
492Computing the distance ||tk � s[p]|| has cost proportional to m,
493therefore a simple linear search of the table would have cost
494proportional to Nm. Woodham’s method to speed up the look-up
495was to quantize the observed radiances Si[p] as b-bit integers, and
496use them as indices into and m-dimensional array where the
497normals~nk were previously stored. This method reduced the look-up
498cost to O(m); however, since the table required 2mb entries, it
499severely limited the number of images m and the accuracy of the
500result. Other data structures for fast m-dimensional nearest
501neighbor searching have been proposed in the following years,
502such as k-dimensional tree search, Approximate nearest neighbors
503[29], or Locality Sensitive Hashing [43]. However, while these
504methods have O(log N) asymptotic look-up cost, they are not
505effective in this problem because of the so-called curse of

506dimensionality [44]: namely, the data becomes so sparse in high
507dimensional spaces that the methods only begin to work for very
508large tables, much larger than the tables needed for photometric
509stereo.
510Therefore, we use instead a two-dimensional hashing method
511that we developed specifically for photometric stereo [45]. Our
512method exploits the fact that the set of all signatures lð~nÞ for~n 2 H2

513is a two-dimensional surface patch in the positive orthant of Rm. It
514uses a two-dimensional hashing array to reduce the search to a
515small number (constant, on the average) of table entries. Thus uses
516O(N) space, and provides approximately O(m) average look-up cost,
517independently of the table size N.

5185.3. The reference objects

519The reference object must be chosen so that its normals~g½q� are
520accurately known and provide a dense and complete coverage of
521H2. Spherical or hemispherical reference objects with uniform
522albedo are most convenient, since they are easily obtained with
523highly accurate geometry, are completely described by a single
524geometric parameter (the radius), and allow ~g½q� to be computed
525directly from the coordinates of pixel q by simple algebraic
526formulas.
527Since the example-based approach does not require explicit
528knowledge of the light source directions, we replaced the reflective

Fig. 6. Images of the example object captured by PHOTOFACE with near-infrared lighting, after ambient subtraction and cropping.
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529 sphere used in the original PHOTOFACE calibration run by the
530 reference object, a sphere coated with semi-glossy white paint. See
531 Fig. 6.
532 Although no effort was made to match the BRDF of this
533 reference object to the BRDF of the human skin, the mere inclusion
534 of a semi-glossy term improved considerably the accuracy
535 of the computed normal maps; especially in the forehead and
536 nose, where the glossy reflections were most conspicuous. See
537 Section 7.

538 5.4. Using the example object images

539 Let G1, . . ., Gm be the images of the reference object. Applying
540 Eq. (1) to each pixel q in these images that falls on the reference
541 object, we get

Lið~g½q�Þ ¼ Gi½q�
ĝ½q� (7)

542543 where~g½q� and ĝ½q� are the (known) surface normal and the albedo
544 of the reference object at pixel q. Thus, for each pixel q on each
545 image Gi of the reference object one obtains a sample value of the
546 shading function Li for a direction~g½q�. Therefore, every such pixel q

547 provides a sample value of the shading signature function:

lð~g½q�Þ ¼ G½q�
kG½q�k (8)

548549 where

G½q� ¼ ðG1½q�; G2½q�; . . . ; Gm½q�Þ (9)

550551 These samples of l are limited to the visible part of the object, and
552 therefore to the directions~n 2 S2 that make an acute angle with the
553 viewing direction ~v. We will denote by H2 that subset of S2.

554 5.5. Acquiring the shading functions

555 The signature table T could be built directly from the images of
556 the reference object, namely ~nk ¼ ~g½q� and tk = g[q] for each pixel q

557 on the reference object. However these raw sample signatures are
558 usually too few to yield the desired precision, and are often
559 contaminated by imaging noise and by small geometrical defects
560 (such as scratches and bumps) on the example object itself. Even if
561 hardly perceptible on the images, these perturbations lead to large
562 errors in the signature g[q] or in the normals~g½q�, thus introducing
563 spurious data on the table. See Fig. 7.
564 In order to attenuate such errors and obtain a signature table
565 that is dense enough, we fit a mathematical model L̃i of each
566 shading function Li to the raw data pairs ð~g½q�; Gi½q�=ĝ½q�Þ. We then
567 re-sample these mathematical models at a dense set of directions
568 in H2 to obtain the table T.

5695.6. Shading function model

570We now describe how to obtain the approximations L̃i. Since
571this step is carried out separately for each image, we will drop the
572index i from Li, L̃i and Gi in this section.
573We use a linear approximation model with weighted least
574squares criterion. Specifically, we choose a set of basis functions

575f1; f2:::fl : S2) R, and look for an approximation L̃ of L of the form

L̃ð~nÞ ¼
Xl

r¼1

arfrð~nÞ (10)

576577for each ~n 2 S2, where a1, . . ., al are real coefficients chosen to
578minimize the weighted quadratic error QðL̃Þ, namely

QðL̃Þ ¼
X

q

G½q�
ĝ½q� � L̃ð~g½q�Þ

� �2

(11)

579580The sum here is taken over all pixels q that are completely inside the
581outline of the reference object. The albedo ĝ½q� must be given, and
582the coefficient vector a can be found by solving the linear system

Ma ¼ b (12)

583584where M is a l � l matrix and b is a column vector of l elements
585given by

Mij ¼
X

q

fið~g½q�Þf jð~g½q�Þ

bi ¼
X

q

fið~g½q�ÞG½q�=ĝ½q�
(13)

586587The basis we have chosen for this application consists of the
588monomials fið~nÞ ¼ xryszt for all natural numbers r, s, t whose sum
589is either d or d � 1, where d is a chosen positive integer, in some
590arbitrary order. Here x, y, z are the Cartesian coordinates of the
591normal vector ~n. These monomials generate precisely the space of
592all spherical harmonic functions of maximum degree d [46], but
593they are much easier to compute than the standard spherical
594harmonic basis functions Yrs [47]. The latter are usually preferred
595because they are orthogonal when integrated over the whole
596sphere. However, the inner product implicitly used in the quadratic
597error formula (11) is a discrete sums over an irregular set of
598normals ~g½q� 2 H2. The harmonic basis functions Yrs are not
599orthogonal in this inner product, and therefore have no clear
600advantage over the monomials.

6015.7. Virtual reference objects

602For checking purposes, the fitted shading functions L̃i an be used
603to produce synthetic images G̃i of a ‘‘virtual’’ reference object,

Fig. 7. An image Gi of a reference object and a plot of its shading function Lið~nÞ for~n 2 H2 hemisphere. Note the substantial amount of noise in the latterthat is not visible in the

former.
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604 where each pixel G̃i½q� is painted with the color L̃ið~g½q�Þ expected
605 from its assumed normal ~g½q�. These new synthetic images can be
606 directly compared to the raw images G[i] of the reference object.
607 See Fig. 8

608 6. Obtaining the weight map

609 We now consider the problem of obtaining the gradient
610 reliability weight map that is required by the robust integrators.
611 There are several published methods that try to derive the weights
612 from the gradient map itself, by using the fact that the gradient of a
613 function must be a curl-free vector field. Namely, the Y-derivative
614 of the X-slope must be equal to the X-derivative of the Y-slope; the
615 difference between the two being the curl of the field. If the curl is
616 not zero, the gradient map cannot be integrated. Those methods
617 generally mark as unreliable those pixels where the curl is not zero,
618 or where the gradient of the integrated map does not match the
619 given gradient [34,35].

620However, the zero-curl condition is only necessary, but not
621sufficient, for the gradient to be correct. In Fig. 2, the curl is non-
622zero along the sides of the ramp, but is zero everywhere else. As
623that example shows, the discontinuities cannot be detected from
624the gradient map alone. In general, the weight map must be
625determined by problem-specific methods, for example edge
626detection by projected shadows [48].

6276.1. A masking algorithm for PHOTOFACE

628We have developed an algorithm for automatic extraction of the
629reliability weight mask from the PHOTOFACE image sets. The method
630aims to exclude the areas of the scene where photometric stereo
631cannot be applied, such as the distant background, hair, eye pupils,
632and areas which are illuminated by only two of the four sources
633(right below the nose and chin, and on the temples). The method
634also uses specific heuristics to exclude clothing and other
635disconnected bits of surface, such as parts of the ear.

Fig. 8. Synthetic image of a virtual reference object (left) using a smoothed shading function L̃i (right) fitted to the data of the real reference object image of Fig. 7.

Fig. 9. Construction of the weight mask for a captured image set. Top left: the initial weights w½ p� computed from the signature match quality s½ p� � trk k and from the

computed albedo ŝ½ p�. Top center: the pixels that pass the slope test~s½ p��~v > e1. Top right: the weight mask after removing pixels with weight below e2. Bottom left: after

morphological opening. Bottom center: after removing the disconnected parts. Bottom right: after morphological closing.

R.F.V. Saracchini et al. / Computers in Industry xxx (2013) xxx–xxx8

G Model

COMIND 2453 1–12

Please cite this article in press as: R.F.V. Saracchini, et al., Robust 3D face capture using example-based photometric stereo, Comput.
Industry (2013), http://dx.doi.org/10.1016/j.compind.2013.04.003

Original text:
Inserted Text
gradient. [34,35].

Original text:
Inserted Text
with weight

Original text:
Inserted Text
Face Capture using Example-Based Photometric StereoRafael F.VSaracchinia⁎saracchini@gmail.comJorgeStolfiaHelena

http://dx.doi.org/10.1016/j.compind.2013.04.003


636 There are several published algorithms for the detection of
637 human skin in photographs. [49,50]. However, those algorithms
638 generally rely on color information which is not available in the
639 near-infrared monochromatic images captured by PHOTOFACE.
640 Instead, we use four main criteria: the self-consistency of the
641 photometric stereo computation, the estimated albedo of the
642 surface, the angle between the computed normal and the viewing
643 direction, spatial coherence, and continuity.
644 Specifically, we first set the weigh w½ p� by the formula

w½ p� ¼ kS½ p�k2e�1=2d2

(14)

645646 where

d ¼ ks½ p� � trkkS½ p�k
s

(15)

647648and tr is the signature from the table T that best matches the pixel’s
649signature s[p]. The first factor eliminates in formula (14) dark areas
650where the signature s[p] is too contaminated by noise. The second
651factor penalizes pixels where the observed signature s[p] deviates
652from the expected signature for the recovered normal, and is
653therefore likely to be contaminated by noise, cast shadows, or
654other un-modeled effects.
655Next, we set w½ p� to zero if the Z component ~s½ p��~v of the
656computed normal~s½ p� is less than a fixed threshold e1 (currently set
657to 0.03). This step eliminates parts where the surface seems to be
658nearly perpendicular to the viewing direction, and therefore cannot
659be simultaneously illuminated by three light sources. Then the
660weight w½ p� is set to zero if it is less than another threshold e2

661(currently set to 0.2), in order to completely remove from the
662computation those pixels whose height is expected to be too
663unreliable to use.

Fig. 10. Top row: image S0 from each of the four test datasets captured with PHOTOFACE, with near-infrared lighting, after ambient light subtraction. Bottom row: the

corresponding weight masks for integration.

Fig. 11. Height maps computed for the test dataset face0. The height maps were rendered as 3D surfaces with arbitrary illumination, from three viewpoints: oblique (top

row), profile (middle row), and from below (bottom row).
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664 Next, we apply a gray-scale morphological opening operation (an
665 erosion followed by a dilatation) with a 5 � 5 circular kernel, to
666 remove small isolated pixel clumps and break any narrow ‘‘bridges’’,
667 as well as removing pixels near problematic areas such as nostrils
668 and eyes. Then we identify the connected components of the image
669 (separated by areas of zero weight), and discard all but the most
670 central one (which is assumed to be the face, considering how the
671 image was cropped). Finally, we apply a gray-scale morphological
672 closing operation (a dilation followed by an erosion) with a 6 � 6
673 circular kernel, meant to preserve the ‘‘holes’’ in the mask at the eye
674 pupils, but close other small holes and gaps. See Fig. 9.

675 7. Tests

676 To illustrate the changes, we show below the height maps
677 obtained with the old and new PHOTOFACE algorithms, on the

678same four datasets labeled face0,face4,face6,face7. See
679Fig. 10.
680The normals were computed from these datasets with the old
681PHOTOFACE analytic algorithm and with our new EBPS algorithm. For
682the latter, shading functions were fitted to the four images of the
683reference object (Fig. 6) using the monomial basis with maximum
684degree 6. These fitted functions were then re-sampled at
685approximately 10,000 evenly distributed normal directions in
686H2 to form the signature table T.
687Both normal maps, old and new, were then integrated with our
688multi-scale Poisson-based integrator. The resulting height maps are
689shown in Figs. 11–14. For comparison, we also show the facial
690geometries of those same four people, captured in separate
691occasions by the 3DMD face scanner [6] and cropped to about the
692same part of the face. (Unfortunately, numerical comparison with
693the latter is not viable due to differences in facial expression and
694perspective distortion.)

Fig. 12. Height maps computed for the test dataset face4.

Fig. 13. Height maps computed for the test dataset face6.
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695 8. Conclusions

696 We showed how example-based photometric stereo is a viable
697 alternative for the capture the 3D surface geometry of human
698 faces, with unique advantages including low cost, high speed, non-
699 intrusiveness, flexibility, high resolution, large working distance,
700 and indifference to albedo and ambient lighting. We also pointed
701 out the inadequacy of the popular Frankot–Chellapa Fourier-based
702 gradient map integrator compared to Poisson-based integrators.
703 We described an algorithm for automatic generation of the weight
704 mask needed by those integrators.
705 In particular, we showed that the accuracy and robustness of
706 PHOTOFACE, a state-of-the art photometric face capture system, are
707 significantly improved, with little extra computation cost, when
708 the of popular analytic algorithms for normal computation are
709 replaced by EBPS, and the Frankot–Chellapa integrator is replaced
710 by our multi-scale integrator et al. [16]. Even though no effort was
711 made to reproduce the BRDF of the human skin in the reference
712 object, the mere inclusion of a glossy term (which cannot be
713 handled by analytic methods) was enough to remove most of the
714 distortions created by glossy reflections when using the old
715 algorithms.
716 Even with our improvements, the height maps obtained with
717 current version PHOTOFACE have noticeable problems, especially in
718 the region of nostrils and under the chin. These defects are not due
719 to algorithm limitations but rather to insufficient illumination in
720 those areas. The addition of two more light sources to the
721 prototype would suffice to ensure the basic requirement of
722 photometric stereo, namely that every point of the target surface
723 be illuminated by at least three light sources.
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