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1. Introduction and scientific context

AB S TR A C T

Classical approaches for remote visualization and collaboration used in Computer-Aided Design and 

Engineering(CAD/E) applications are no longer appropriate due ta the increasing amount of data generated, 

especially using standard networks. We introduce a lightweight and computing platform for scientific 

simulation, collaboration in engineering, 3D visualization and big data management. This ICT based 

platform provides scientists an "easy-to-integrate" generic tool, thus enabling worldwide collaboration 

and remote processing for any kind of data. The service-oriented architecture is based on the cloud 

computing paradigm and relies on standard internet technologies ta be efficient on a large panel of 

networks and clients. In this paper, we discuss the need of innovations in (i) pre and post processing 

visualization services, (ii) 3D large scientific data set scalable compression and transmission methods, (iii) 

collaborative virtual environments, and (iv) collaboration in multi-domains ofCAD/E. We propose ouropen 

platform for collaborative simulation and scientific big data analysis. This platform is now available as an 

open project with ail core components licensed under LGPL V2.1. We provide two examples of usage of the 

platform in CAD/E for sustainability engineering from one academic application and one industrial case 

study. Firstly, we consider chemical process engineering showing the development of a domain specific 

service. With the rise of global warming issues and with growing importance granted ta sustainable 

development, chemical process engineering has tumed ta think more and more environmentally. Indeed, 

the chemical engineer has now taken into account not only the engineering and economic criteria of the 

process, but also its environmental and social performances. Secondly, an example of natural hazards 

management illustrates the efficiency of our approach for remote collaboration that involves big data 

exchange and analysis between distant locations. Finally we underline the platform benefits and we open 

our platform through next activities in innovation techniques and inventive design. 

Sustainability is a paradigm for thinking about the future in 

which environmental, societal and economic considerations are 

equitable in the pursuit of an improved lifestyle. Most of the 

economies are developing with breakneck velocities and are 

becoming epicenters of unsustainable global growth. Immense 

utilization of natural resources, waste generation and ecological 
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irresponsibility are the reasons for such a dire situation. With the 

world in majority debating over issues like climate change, water 

resources, food security, energy efficiency for the last few decades, 

it is evident that sustainability and green thinking have taken root 

in ail approaches and dialogs. Governments are rethinking their 

developmental paths adapted to ensure a sustainable lifestyle. 

Industry, academic institutions, public sectors are taking serious 

advancement to implement the same. A brief highlight of 

sustainability takes into consideration three pillars i.e. economic, 

social and environment. Engineering domains have to develop 

innovative solutions according to this new paradigm. One first 

industry to corne under scrutiny was the chemical processes and 

heavy industry sector; however this has tended to evolve to cover 

other sectors and different sizes of industry. Efforts in manufactur­

ing and chemical industries have been moving from "end of pipe" 

technological solutions to limit or control pollution, to the 

integration of the environmental preoccupation in early stage of 

product or process (preliminary) design at an industrial park level. 

Pollution control, eco-efficiency, life cycle thinking and industrial 

ecology are the main steps of sustainable manufacturing practices 

[1]. 

At present scientific area of chemical process engineering and 

natural hazards management is recognized as a method to 

integrate an efficient sustainability analysis and strategy. Those 

two engineering domains provide handful solution to manage 

systems by enabling the use of modeling, simulation, optimiza­

tion, planning and control in order to develop a more sustainable 

product and process. In this context scientific simulation based on 

big data and collaborative work has to be developed for 

succeeding Computer-Aided Design/Engineering (CAD/E) of 

sustainable system. 

In scientific simulation based High Performance Computing 

(HPC) area, pre and post-processing technologies are the keys to 

make the investments valuable. Besides, the data size and data 

mode! increase make it mandatory for industrial and academic 

users to have access to sufficient power on a remote and 

collaborative way. Our aim is to develop an open technological 

web platform that provides HPC, collaboration and 3D visualiza­

tion capabilities to end users and software developers for product 

design by simulation. A lot of research works, systems and toolkits 

have been proposed for distributed and remote scientific 

visualization of large data sets over scientific networks. A good 

overview of different solutions for distributed and collaborative 

visualization can be found in Brodlie et al. [2] and in Grimstead 

et al. [3]. Nevertheless, to our knowledge, a multi-domain 

collaborative platform for decision-making in simulation for 

complex systems, orchestrating transparently a set of advanced 

pre and post processing scientific visualization services is a real 

innovation. That is a fact that the collaborative part of the different 

existing systems is often reduced to basic tools such as "shared­

display". Current collaborative techniques have no advanced 

communication of visual objects and advanced person-machine 

interface dedicated to remote collaboration. As a consequence, the 

design of our platform will require innovations into: (i) pre and 

post processing semantic visualization services in distributed and 

parallel environments, (ii) 3D large scientific data set scalable 

compression and transmission methods, (iii) advanced collabo­

rative virtual environments for 3D data, and (iv) Computer-Aided 

Design/Engineering (CAD/E) usage for multi-domains of engi­

neering. 

We discuss hereafter the three first items. Section 2 deals with 

last item for the needs for collaboration in CAD/E systems and 

illustrates some current industrial needs from BRGM experience. 

The Section 3 presents the platform without giving any deep 

technical information. This platform is now available as an open 

project with ail core components licensed under LGPL V2.1 and 

advanced technical information can be found from the platform 

documentation.1 Before drawing conclusion, the Section 4 

provides two examples of usage of the platform in CAD/E for 

sustainability engineering from one academic application and one 

industrial case study. 

1.1. Pre and post processing visualization services 

The aim is to provide engineers and researchers with tools to 

operate on their meshes remotely. Mesh generation, optimization 

and adaptation are a topic highly studied in the literature [4]. The 

current solutions that actually enable such an analysis have two 

major drawbacks: they do not offer the possibility to distribute 

transparently the processing; they are mainly local solutions. The 

state of the art on scientific visualization environment has deeply 

evolved with the design of user-friendly solutions such as AVS, 

IBM/Data Explorer, Avizo, Covise, Ensight, VTK, Cassandra and 

many others. Recently, distributed and parallel visualization 

solutions such as the open source platform Paraview and the 

commercial package Ensight Gold/DR appeared. Nevertheless, 

there are still efforts to do for the deployment of these solutions on 

a large computing grid or HPC center. 

1.2. Remote scientific 3D visualization 

Due to the large volume of data handled, a lot of compression 

and progressive transmission methods have been proposed in the 

past to deliver in real time 3D content. These different methods can 

be classified into four main approaches: 

• Image based streaming: the 3D data is stored on the server and

only the 2D rendered images are streamed in real time to the

server. It is the approach chosen by many solutions because it can

be easily implemented and it ensures the best use of the network

bandwidth.

• Object streaming: a 3D object is compressed and is progressively

transmitted over the network. Specific file formats such as X3D

and MPEG4-BIFS are generic formats for 3D object streaming.

• Scene streaming: the data delivery is extended to the entire

scene. This approach is widely used for famous Massively

Multiplayer Online Garnes such as Active Worlds or Second Life.

• Scientific visualization streaming: the large volume of the

scientific data, their time dependent deformation and the

accuracy of mode! representation are important features that

imply specific streaming methods.

In addition to this 3D visualization requirement, two optional 

needs for our platform are considered: (i) major 3D compression 

techniques; both mesh geometry and mesh connectivity compres­

sion techniques; to transmit 3D data over the internet and (ii) 

digital watermarking as a potential efficient solution for copyright 

protection. Those two capabilities are not developed in this article 

which is focused on the usage of the platform in engineering. 

1.3. Collaborative environments and techniques 

The DIS/HLA IEEE standard, on which most of military tactical 

simulations are based, illustrates how a distributed simulation 

manages a set of several entities which interact and communicate 

in "real time": when an action is executed, the related information 

or outputs are dispatched/broadcasted as "quickest" as possible in 

the network. The more commonly used algorithms [5] deals with 

the concept of "referentials" and "proxys", as we can find in 

1 http://forge.collaviz.org/documentation. 



Simnet, NPSNet or OpenMASK platforms. The collaborative 

features are still limited: 

• Only one remote shared display for ail the participants,

• Very often only one cursor is visible to manipulate, navigate and

point out something on the screen,

• Users have to wait the authorization to navigate or to change the

3D content.

We aim to fill the gap between major available platforms and 

the new needs. Our project works on designing and demonstrating 

new mechanisms allowing several users to: 

• Be aware of the presence of the other users,

• Be aware of the actions of the other users,

• Be aware of the bounds of other users' actions,

• Better understanding of other users' activity,

• Join each other and collaborate thanks to ICI and common web

usages,

• Share viewpoint between users.

2. CAD system and collaboration issues

2.1. CAD systems for multi-domains of engineering 

Early efforts in computing tools for design were focused on solid 

modeling. Computing and computer system is now becoming a key 

position in any engineering field. The CAD system replies to the 

raw needs for an effective design process and a product delivery 

compliant with requirements. It relies on the evolution of 

computing materials, software technologies, architecture para­

digms and systems usages. The core pieces of CAD/E system are 

according to Zeng et al. [41]: (i) geometry, structure and process 

modeling, (ii) displays-based graphical visualization, (iii) numeric 

data-based behavioral analysis and simulation, (iv) network­

hosted remote collaboration, (v) data base-level functional 

integration, and (vi) product/process life cycle data management. 

Chandrasegaran et al. [6] discuss on the evolution and challenges 

of such system from "Pen-based digitizing" in 1963 to "collabora­

tive product development tools" in 2010 and list commercial 

packages of support tools for design in the industry. Recently the 

collaboration paradigm following the modern ICI has to be 

integrated within CAD/E system as argued by Goel et al. [7] who 

propose four characteristics for the next generation CAO systems: 

cognitive, collaborative, conceptual, and creative. The design is 

collaborative according to time, space, discipline and culture. Our 

frame is limited to time, space and discipline of collaboration. 

The development of such computing systems is a practical 

solution for achieving remote collaboration. As a tool, they 

promote the creation and development of several types of teams, 

where ail members can communicate continuously on a flexible 

and constant basis. More especially, the collaboration paradigm, 

coupled with modern ICI, is a common means for expediting and 

improving engineering processes in CAO. Li et al. [8] examine the 

different methodologies and technologies of collaborative CAD 

systems. Collaborative product design in intra-organization and 

extra-organizations scope is now clearly recognized as an effective 

means for developing new products and improving competitive­

ness and creativity [9 ]. Such collaborative systems allow the design 

process to be developed by different, geographically separated 

teams. From a practical standpoint, modern ICI can reduce the 

carbon footprint of projects by cutting back on long-distance 

travel. But in addition to the remote collaborative engineering 

trend, they support the engineering process that invents innova­

tive solutions to deal with current sustainability engineering 

issues. The new phase of the web (i.e. web 2.0) featuring new 

models, technologies and usages [ 10, 11] reveals that there is a 

potential to improve the quality of communication between the 

different engineers through a new generation of "CAD/E 2.0". 

2.2. Collaboration issues 

In current industrial practices, numerous activities or situations 

involve a multidisciplinary team of variable size. Due to the 

increasing complexity of product and processes, and to face the 

agility imperatives, new collaborative methods and tools must be 

created in order to facilitate exchanges between experts from 

different fields. Furthermore, it is not unusual that the team 

members can be dispatched to different part of the world. This 

diversity of thought, skills, backgrounds, gender is beneficial to 

appropriately solve the firms' problems but also to enable 

creativity. In addition to this internai diversity, firms have to 

include and manage externat knowledge and skills in their 

activities such as in open innovation [12]. The collaboration can 

be achieved at several time scales depending on its purpose: 

stealth in the case of an emergency situation, long term for a design 

project. Let us take two examples, in firms' activities to 

demonstrate the benefits of a collaborative platform. 

Nowadays the design of product and/or process needs to staff 

an engineering organization with a diversity of disciplines and 

with various areas of expertise. For example in chemical related 

process engineering, we must create interdisciplinary team with 

various skills to solve design problems: physics, ultrasound, 

chemistry, materials, biochemistry, rheology and expertise within 

the chemical engineering (mixing, heat transfer, separation, 

drying, ... ). In this design phase, modeling and simulation play 

an important rote as they allow to study a broader range of options 

since they significantly reduce the risk of failure. In some firms in 

chemical engineering, 90% of the R&D is done in a virtual world 

with the remainder being physical validation [13]. As the process 

design progresses, the models become more detailed and 

increasingly complex. They include several thousands of equations 

often leading to systems with differential and algebraic equations 

to mode! the phenomenon that occur at the different temporal and 

spatial scales. The challenge consists in modeling various physical 

and chemical transformations coupled with fluids flows and heat 

and mass transfer. To build such models we need interdisciplinary 

skills: physics, chemistry, mathematics, informatics, ... The mode! 

is the result of a collaborative work that gives its quality. In 

addition to connect various experts across the world, a collabora­

tive platform allows to visualize rapidly the large amount of data 

produced by simulation, to enable learning at different physical 

scales, to achieve solutions with higher quality, to accelerate the 

design and to improve creativity. Like in chemical process 

engineering, numerous scientific domains have the same needs 

for a collaborative CAD/E platform for improving products and 

processes design thanks to modeling and simulation. 

The second example deals with emergency situations: process 

supervision, natural hazards management, ... The specificities of 

such situations are that they are highly dynamic and constrained in 

time. In these situations, solving the problem requires decisions of 

stakeholders, more or less independently of each other's, but they 

must be pooled for efficiency reasons and synergy of means. To 

make a decision, an expert must consider a situation in its entirety, 

because the decision can be achieved by a situation that changes 

the environment and cause interactions. The development of such 

a collaborative environment involves significant locks; real time 

constraints, decisions in a limited time, a "light" decision-making 

system to accept multiple experts and that enables to visualize 

rapidly the consequences of some decisions and the evolution of a 

situation. 
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2.3. Example of needs and usages from BRGM experience 

Natural hazards events can have catastrophic impacts and 
trigger cascading effects (e.g., the Fukushima events). We are 
facing a shift from natural hazards protection to risk management. 
Assessing and managing multi-hazard and multi-risk phenomena 
require the combination and coordination of many capabilities and 

instrumental techniques, and involve expertise in various fields 
such as geophysics, social sciences, data analysis, and telecom­
munications. lt needs also a strong experience in crisis manage­
ment. The raie of ICT and CAD/E systems is to provide tools 

designed for sharing of data and risk information, best practices, 
and approaches in order to capitalize on knowledge and to feed 

decision-making process. 

Severa! key features need to be considered in the design of a 
collaborative environment dedicated to Earth sciences. The 
importance of large three-dimensional data could be easily 
explained from the solid Earth domain. The large scale is not only 
coming from the spatial dimensions but also from the various 

properties/uncertainties that must be taken into account. This is 
also coming from the time domain. The ease of integration of new 

data formats is another requirement as Earth modeling gathers 

several research communities (geophysics, climate, geology, ... ). 
Based on a smooth access of the data, standard manipulations in a 

3D volume (picking, clipping) have to be available as the 
interactions between scientists are mainly based on the explora­

tion of static or dynamic data. 
Exploiting standard risk management approaches, collabora­

tive session with local stakeholders is of great importance. This 
leads to multiple flavors of the interface and several collaborative 

modes. In view of the dual raie of BRGM,2 the opportunity to 
strengthen remote collaboration between distant teams is also of 

key importance. BRGM is organized around its scientific center 
located at Orleans, France. This center brings together some one 

thousand experts in a wide range of natural hazard specializations 
in each administrative region in continental France and overseas 

(the French West Indies, Reunion Island, Mayotte). The regional 
team's size is limited, around 15 scientists who have developed a 
deep understanding of the local context. The computational 
facilities, with a cluster of more than 300 cores and 24 Terabytes 

of attached disk, are located in Orleans. 

3. Collaborative simulation and 3D visualization platform

3.1. Main features and requirements 

Our initiative is applied to scientific simulation and 3D 

visualization in hopes of breaking though some of the technologi­
cal bottlenecks confronting scientists by making possible collabo­

ration and remote processing of their data anytime and anywhere 
in the world with just a standard internet connection. With the 

collaboration of academics and industrial players, we are 
contending with a number of main challenges. The key objective 

2 The French geological survey must provide support to public policy but also 

must maintain international industrial and commercial activities. 

is to provide to academics and engineers from any simulation 

domain with an "easy-to-integrate" platform. Its characteristics 
should be open-process, web-based technologies, remote and 
reliable architecture, HPC capability, 3D visualization, collabora­
tive facility, common bandwidth, thin client-access (browser) and 

rich client-access (any modeling environment). It provides 
applications tailored to the approaches of very different commu­

nities such as geophysics, fluid dynamics, structure, biology, 
chemistry, and drug design. It considers mainstream technologies 

for service access (low bandwidth internet access, standard 
hardware for visualization, ... ). Its assets are in interactive and 

participative collaboration and not only remote "shared display" 
visualization. Moreover, these technologies must be easily 

accessible, and we provide the proper tools to manage ail the 
services from a user and administrator point of view, to gain full 

transparent access to these scalable resources: visualization 
clusters, grid computing, etc. 

ln our scientific and industrial context, ICT helps facilitate and 

improve collaboration. The related technologies are computing 

platform, public/private cloud services, middleware, internet 
protocols and remote access via fixed or portable communication 

device. Our research activities aim at developing an innovative 
multi-domain collaborative platform for simulation-based design 

applications. Web-based technologies, based on shared High­

Performance Computing and visualization centers, enable 

researchers and engineers to manage very large data sets, 
including 3D data models, by using a single workstation anywhere 

in the world. A mere "standard" internet connection should be 
needed. Classical approaches to remote collaborative platforms for 
simulation-based design applications no longer afford a solution. 

One conclusion is that current approaches cannot efficiently 
support applications that generate huge amount of data (Fig. 1 ). 

This situation is critical for solid earth modeling as simulation and 
computation have corne to play a central raie. As an example, the 

EarthCube project,3 a community-driven data and knowledge 
environment for the geosciences, is providing seismologists with 

new data of tsunami. Modeling and imaging with this data requires 
powerful numerical modeling tools, automation of routine analysis 

tasks, and dedicated high-performance computing facilities due to 
the large temporal and spatial variability. Worldwide networks are 

still not powerful enough, especially with 10 Mb/s or Jess for an 

average daily user network, to retrieve data from centralized 
super-computer centers (from which data are transmitted to local 
clients for processing). Furthermore, researchers' and engineers' 

local computing resources are no longer suitable for processing 
such volumes of data. The real solution then is to deliver an ICT­

based platform for collaborative scientific simulations and 3D 

visualizations that relies on cloud computing architectures. 
The platform aims to provide a versatile open platform for 

collaboration over large projects using three dimensional data. The 
previous part outlines the main issues faced today with virtual 
collaborative environments and one of the key-points is definitely 

the Jack of tools dedicated to the scientific community. The 

building of this platform has several objectives in mind: 

3 http://earthcube.ning.com. 
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• Break the technical constraints and manage massive data and 3D

visualization; working with large datasets, and more specifically

on 3D representations, is network bandwidth consuming. The

networking requirements for 3D collaboration have to be

lowered using adapted and high-leveled compression methods

and filtering techniques. Following the same idea, tools have to

communicate through corporate firewalls. Therefore, one of the

main key-points of this proposai is to allow the use of

communications over HTTP/HTTPS. The need of network

bandwidth is from 20 to 50 Mb/s allowing an interactive

visualization of 20 frames per second (fps) at a resolution of

1280 x 1024 pixels. The use becomes inefficient and disappoint­

ing when the bandwidth falls to Jess than 10 Mb/s: the

visualization is not interactive anymore with only 3-5 fps or

Jess and lower the quality of the images introduces troubles and

perception issues.

• Offer a generic platform for specific use cases; there is no single

use case. Different domains in CAD/E with different needs will

assure that the results of our project are not limited to one

specific use. The idea behind this is to share as much as possible

to provide while staying focused on the real expectations of the

users. While the core of the system is conceived in a generic way,

several industrial demonstrators are available to illustrate the

versatility of the concept, with at stake, the ability for real user to

appropriate the platform. As a proof of concepts, two main

demonstrations from two different engineering domains are

presented in Section 5.

• Share HPC resources and results to a larger audience; the

deployment of the platform on clusters "on demand" can offer to

Small and Medium Enterprises (SME) a first access to HPC

resources. Moreover SME can share their simulations results

with their contractors within the same environment. In the same

line of sight, the project aims to provide access to high

performance tools without costly investments in new computing

hardware.

• Provide a collaborative virtual environment for distant partners;

the platform provides tools for project teams of different

partners, inside the same company or with subcontractors.

Working remotely on the same project asks for a complete virtual

platform both to work on the same data, and to share the results

of the simulations. Furthermore, it must integrate with the

existing tools.

Respecting these guidelines we ask for truly new tools adapted 

to the scientific community. Section 5 presents two CAD/E 

applications from different domains that take benefit from those 

capabilities. The parts below provide an overview of this platform. 

3.2. Architecture overview 

With high expectations from different domains, the architec­

ture must be capable of solving different problems. Our work aims 

not only at providing users with a complete solution via a simple 

internet connection, but also at allowing developers to easily 

provide new functionalities and customizations. To achieve this, 

the platform needs to be highly modular. Based on the outputs of 

earlier undertakings dealing with remote collaboration and remote 

scientific visualization, as demonstrated by Duval et al. [14], the 

proposed architecture is designed following SOA (Services 

Oriented Architecture) concepts, with clients connecting to a 

system providing services distributed on different servers (Fig. 2). 

Middleware is the core component, as well as collaboration­

oriented computing architecture, ensuring the consistency of the 

information across the whole system. It consists of four main parts: 

• Dispatcher, the communication sub-system, acting as an event

loop and allowing clients, services and core components to

exchange commands and notifications,

• Registry, the service description database, keeping trad< of ail

functionalities provided by plugged-in services,

• Session, the session management component that handles client

connections and the processing pipeline,

• Data proxy, the data exchange sub-system, which compresses

and adapts data (including 3D data) to client and network

capabilities.

The dispatcher component also provides the communication 

modules for clients and services to connect to the platform. To ease 

customization, ail the Application Programming Interfaces (API) of 

the different components have been specified prior to implemen­

tation, to be able to replace one implementation with another if the 

one provided by default does not suit user's needs. For example, 

the project provides communication layers for TCP, HTTP and 

HTTPS protocols between the clients and the middleware, but an 

additional one can be added as needed. 

Services are the processing modules of the system. A service 

connecting to the middleware must describe the different 

functionalities it offers to users. Severa! "core" services are 

implemented, such as a Data Service exporting files from a shared 

file system, a Collaboration Service allowing people to interact on 

the same processing pipeline with different clients but also real 

processing services. For example, two different 3D data post­

processing engines have been implemented, displaying the 

features of Kitware' Paraview and CEi' Ensight, two of the tools 

most commonly used for scientific visualization. 
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Fig. 4. A sample scenario. 

On the back office of the open cloud platform, due to the highly 

modular architecture the current solution offers several key 

features making it a real solution for "a sustainable adaptation" 

as defined by Elliot [15]: (i) elasticity of resources, with the 

possibility to support several identical services and load balance 

between them, it the available computing power can be adapted to 

the actual demand, using cloud resources for example; (ii) 

maintainability, adapting the platform to a new environment 

can be as simple as writing a new module to support a different 

communication protocol, for example; (iii) evolutivity, adding new 

capabilities can be achieved by writing new services without 

changing the core of the system; and (iv) collaboration, the 

platform offers a way to share costly resources and publish new 

research results. To validate these points, the platform was 

developed from the start with users, not only to review it but 

also confront it with current and industrial use cases. 

3.3. Service-oriented architecture 

The services relation is supported by the dispatcher. Basically, 

the dispatcher is composed of three AP!s (Fig. 3). The core service 

API is an internai API used by the middleware to manage 

connections and user rights, sessions, etc. The client API allows 

client connection to the platform using TCP and HTTP as a failover. 

A service API allows service-plugging. The core service API 

communicates with the two others by sending and receiving 

messages. The sequence diagram, depicted in Fig. 4 illustrates a 

typical use of these AP!s. In this example, user sets parameters in 
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Fig. 5. Client interface. 

order to have an action performed by a target service and make it 
visible on its client. As services are accessed remotely, they can be 
distributed on different servers and, if needed, be deployed on a 
high-performance computing cluster. With this Software As A 
Service (Saas) approach, even if the client application runs on a 
simple laptop or any mobile device, users can benefit from ail the 
computing performance of the infrastructure on which the 
collaboration platform has been installed. 

3.4. Generic client 

A generic client is also designed with 2D and 3D visualization 
capabilities. The middleware sends each client a complete 
description of ail the processes implemented by the registered 
services and its rights to use them. So this generic client provides a 
Graphical User Interface ( GUI) to the processing pipeline and off ers 
ail the possibilities of the platform. Fig. 5 provides a detailed 
representation of the client interface. 

The Rendering view (Fig. 5-1) gives a graphie representation of a 
set of data. The platform provides three viewers by default. For 
"lD-view" models, like tables or data sets, the platform provides a 
CSV viewer. The main advantage of using the CSV viewer is the 
possibility to freely consult tables from the platform's client with 
no installation requirements. That is particularly useful for mobile 
devices like tablets and smartphones. 2D models are depicted 
using the SVG format. 3D models are represented according to an 
X3D viewer [16]. X3D is an open standard file format able to 
represent and communicate 3D scenes and objects using XML. 
Each viewer is implemented on the platform. Messages between 
services and a targeted viewer are ensured by the Dispatcher. The 
Tree view (Fig. 5-2) gives a hierarchical view of 3D elements 
scenes. Each scene can be composed from several points of 
view ( e.g. a particular view of the 3D element). The Edit window 
(Fig. 5-3) sets needed parameters for targeted services to be 

element element element 

Fig. 6. Pipeline nomenclature. 

computed. The Users window (Fig. 5-4) displays users connected 
for the active session. Data processing is represented through a 
Pipeline view (Fig. 5-5). 

• Based on the nomenclature of Fig. 6, we can distinguish three
kinds of elements in the Pipeline frame:

• Data Element represents an imported file (like .zip, .txt, .xis file,
... ) or generated data (like .x3d, .svg, .csv file, ... );

• Process Element indicates an action performed on a data element
and that generates a new data element;

• View Element uses an appropriate viewer provided by the
platform to visualize a data element. For a 3D mode!, it is called a
Point of View.

Other clients can be developed, and existing visualization
software can also be adapted to the platform to take advantage 
of it. 

3.5. Users collaboration 

To provide a workable collaborative platform, to synchronize 
several clients among each other and to ensure proper synchroni­
zation between clients and graphie performance are serious 
challenges as discussed in Sections 1 and 2 from a technical and 
usage perspective. A necessary formalization has been performed 
to allow several users to cooperate through distributed 2D and 3D 
GUI. It yields a globally strong synchronization (such as WYSIWIS) 
which guarantees consistency among the different points of views 
of a shared scene. It also results in a dedicated communication 
protocol based on HTTP/TCP. Thus co-operation between 2D and 
3D interactions are possible. Master-Slave and Master-Master 
scenarios can be evaluated through actual case studies based on 
specific domain services. In addition to the five current frames of 
client, we plan to experiment the integration of common 
collaboration services 2.0 (i.e. instant messaging, experts' forum, 
and social networks). One subsequent issue is to initiate and 
develop a scientific community centered on collaborative simula­
tion and remote visualization thanks to the platform. 

4. Result and illustration of usage

4.1. Delivery of the platfonn 

The open cloud platform for collaborative scientific simulation 
and 3D visualization which is described in the previous section is 
now available for academic and industrial partners. Through a 
common versioning system, the platform can be deployed as cloud 
services on internet from any 1T and HPC provider (such as Oxalya­
OVH) or on intranet from inner 1T department. The platform is 
accessible as an open project on a forge web site.4 As such, while 
being a true open-source project, the platform can also be linked to 
other commercial or proprietary products. 

Software adaptation and domain-specific functionalities have 
to be developed in general by end-users in line with their specific 
needs. Severa! applications are already developed and deployed on 

4 forge.collaviz.org. 
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Fig. 7. A client screenshot. 

Fig. 8. Another client screenshot. 

a few end-user LAN or WAN. Their development demonstrates the 

advantages provided by the cloud platform with a truly multi­

domain approach, intersecting interests of industrial and academic 

communities. Figs. 7 and 8 give screenshots of client side. Although 

most of the services of the platform are generic, major differences 

do remain in the specific areas of: 

• Field of research: geophysics, structure, drug design, process

engineering, ... ;

• Specific formats of data used by the communities involved:

HDFS, MED, Ensight, ... ;

• Ergonomies related to specific needs and habits of each research

community.

Tests of usability (functionalities & GUI), ease of access, 

performance and proposed feature improvements are carried 

out as a common validation phase. The use of domain-specific 

applications with different needs ensures that the results are not 

limited to one specific use. While the core of the system is 

conceived generically, several present applications illustrate the 

versatility of the concept with, at stake, the ability for real users to 

appropriate the platform. 

To demonstrate the approach and the benefits from the open 

cloud platform, we describe the scientific context and the scope 

statement of two different CAD/E usages: one academic applica­

tion targeting the chemical engineering domain and one industrial 

application dedicated to natural hazards management. The first 

application validates the platform by using it as a research support 

for sustainable process design in chemical engineering. That 

involves the development of a domain specific service to integrate 

into the platform architecture, the definition of a data handling 

process from a commercial application, and the choice of Windows 



on server and client side. The second application completes this 

demonstration with an illustration of usage from BRGM in the 

management and monitoring of surface resources and risks. That 

assesses the large scale and big volume of data, the HPC capabilities 

of the platform, the deployment on Linux systems, and the remote 

collaboration and visualization from different geographic locations 

over the world. 

4.2. Application to chemical process engineering 

4.2.1. Scientific context 

The chemical-related industry, which devotes its efforts to 

converting raw materials into a very wide range of products, is 

particularly concerned by sustainability [17]. Indeed, this industry 

plays a major role in the ecological impact of chemical product 

wastes and the consumption of non-renewable natural resources. 

The REACH regulation,5 the VOC directives6 and recent "roadmaps" 

from Anastas and Zimmerman [18] and IChemE7 go in this 

direction by imposing strict constraints and new guidelines on 

chemical systems. These constraints are forcing chemical compa­

nies to give up some of their products or molecules. Diwekar and 

Shastri [19] review this "design for environment," and Ruiz­

Mercado et al. [20] propose a classification and definition of 

sustainability indicators for the evaluation and design of sustain­

able processes. We need to find substitution products or re-design 

separation operations respecting environmental constraints. 

Sustainability requires engineering at different scales, i.e. molecu­

lar, product, process, and system levels. At the product and process 

levels, to manage modeling of physical phenomena, simulation and 

visualization is a key milestone for engineers and scientists so as to 

succeed in meeting this challenge to devise sustainable chemical 

processes. Specific 2D/3D diagrams can help handle bio-physical­

chemical unit operations such as liquid-liquid extraction, absorp­

tion, distillation, reactive distillation, ... The aim of this service is to 

carry out necessary numerical calculations based on domain­

specific data in order to prepare equilibrium-phase diagrams like 

liquid-liquid equilibrium or liquid-liquid-vapour equilibrium. A 

phase diagram indicates a two or three-dimension graphical 

representation representing a system's physical states ( of a pure 

product or a mixture) with respect to variables such as 

composition, pressure and temperature. Typically, common MS 

Excel based 2D-visualization is used to construct these diagrams. 

However, these tools are inappropriate for dealing with the 

simultaneous representation of three components and additional 

parameters such as temperature or pressure. Although few tools do 

exist for generating 3D ternary models [21 ], none of them allow 

remote web access, HPC and collaborative engineering. By using a 

cloud platform for collaboration and visualization, we expect to 

facilitate the understanding and use of such scientific simulations. 

The service specific to the chemical engineering domain is 

developed and integrated into the platform architecture as 

illustrated by Fig. 2. 

4.2.2. General design 

The main challenge is to create and deploy the chemical 

engineering domain specific service on the targeted collaborative 

platform, taking advantage of the infrastructure described in 

Section 3. Only a domain-specific application needs to be 

developed taking advantage of the platform core services, 

particularly the graphie generation of binary and ternary phase 

diagrams. Our raw data are obtained from a stand-alone Windows 

5 http://ec.europa.eu/enterprise/sectors/chemicals/reach/index_en.htm. 
6 The VOC Solvents Emissions Directive (Directive 1999/13/EC) amended through 

article 13 of the Paints Directive (Directive 2004/42/EC). 
7 Institution of Chemical Engineers, http://www.icheme.org/. 
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software: Simulis from ProSim company, an application for 

thermodynamic properties calculations and phase equilibrium 

calculations. Severa! thermodynamic models are available, in 

particular models commonly used in the chemical industry. 

Thermodynamic property calculations ( density, enthalpy, entropy, 

... ) and phase equilibria of mixtures can be performed for a system 

defined by its temperature, pressure and its composition. The 

Simulis tool can display binary diagrams or the cutting plane of 

ternary diagrams, but it cannot represent a 3D ternary diagram nor 

a thermogram. Based on Simulis raw data, the service is able to 

generate a 3D scatter plot, a meshing or a thermogram of a ternary 

diagram. The generation process is explained in Fig. 9. 

To achieve this, the service carries out a Delaunay triangulation 

following four major steps (Fig. 10): 

• Data import: Simulis data and user/client parameters define the

input data. A set of parameters is available to correctly describe

the system;

• Triangulation algorithm: there are two main activities, data

conversion and Delaunay triangulation [22 ]. Its properties are

defined by [23,24]. We select the "Divide and Conquer''

algorithm proposed by [25] to compute this triangulation;

• Mode! processing: the points are used to generate the output

mode!;

• Mode! export: this last step makes the output mode! visible on

the client side.

4.2.3. Main usage 

In chemical engineering, the need for 3D-visualization tool 

development arises from the following statement. After observing 

the diversity and complexity of binary systems, engineers 

generally feel uncomfortable with the greater diversity and 

complexity ternary systems can display. Chemical engineers 

calculate thermodynamic and physical properties and visualize 

2D diagrams with MS Excel. However, the simultaneous represen­

tation of three-component compositions and other parameters 

such as temperature or pressure cannot be appropriately achieved 

with these tools. The platform is deployed via a private cloud. By 

using a 3D-visualization specific tool and related physical 

concepts, we expect to facilitate the understanding and use of 

these diagrams (Fig. 11 ). The study of such a ternary mixture is 

essential in order to design cleaner separation in chemical-related 

industries. Current goals are the calculation and visualization of 

binary and ternary phase diagrams and the determination of 

heteroazeotropic and azeotropic points. The process starts by 

studying each binary using the Simulis tool. We then study the 

ternary system following the four steps from Fig. 1 O. We simula te 

the ternary phase at a given pressure and export raw data in CSV 
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format on the platform. Delaunay triangulation service is executed. 
We obtain the necessary information to produce a meshing and a 
triangulation representation of the ternary diagram. Finally, an 

X3D transformation is performed. The X3D mode! obtained can be 
run using the platform client through a graphie user interface. We 

can interact with the 3D view, rotate, zoom, or focus on specific 
points, particularly the azeotropic points. 

This application is slated for implementation in the framework 
of several scientific studies. For example, Rodriguez et al. [26] 
request for such a collaborative simulation and visualization 

service in order to work on heterogeneous batch azeotropic 
distillation by using heterogeneous entrainers to separate binary 
azeotropic mixtures by extractive distillation. The assessment of 
chemical component separation requires isovolatility curves and 
the volatility order diagram. A case is handled via rigorous 

simulation for separating the acetonitrile-water mixture with 
hexylamine or butyl acetate. Such work proposes a method for 
improving the distillation operation currently used by chemical­
related industries, and which respects environmental criteria. 

4.2.4. Discussion 
Chemical engineering has a need to compute a simulation of 

thermodynamic and physical properties and a 2D/3D ternary 

system visualization such as curves and diagrams for sustainable 

product design. At present, there is no accepted general 
methodology to guide sustainability. Although we can consider 
many proposais for integrating sustainability considerations into 

chemical process design [27,28,29] and agro-food process design 
[30] the area is stilljust emerging. But it is well accepted now that

the scientific simulation of process life cycling, in "cradle to gate"
or "cradle to grave" mode, is a key element in decision making for
sustainability. We do believe that collaborative scientific simula­
tion and visualization compliant with ICT and 2.0 patterns can be a
success factor in any computer-aided "ecodesign" process.

As a proof of concept related to the chemical engineering 
field, we deployed the platform on Windows server and client 
and adapted the platform to our specific activities. By taking 
advantage of this open platform, we developed a domain-specific 
service respecting the SOA architecture. This work allows a 
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Fig. 12. The locations of the six nested grids used in our simulation. 

3D representation to be made in collaborative web mode for 

research studies, e-leaming and lifelong leaming. Subsequent 

steps in our work will be to improve our service by adding 

advanced usage functionalities, taking more advantage from HPC 

for advanced chemical engineering simulation and optimization, 

and opening up new opportunities for distributed work in 

students' teamwork projects and research activities. 

4.3. Application to natural hazards management 

4.3.1. Scientific context 

Efficient risk management requires prevention, emergency 

management and recovery tools that enable users to assess risk 

before the crisis, to optimize response capabilities during the 

emergency and to help promote recovery in the wake of a disaster. 

This standard description relies on the sustainable usage of the 

resources (material, human) available at these stages. Among the 

approaches available for risk management reviewed by Klügel 

[ 31 ], scenario-based earthquake risk assessment constitutes a 

powerful tool for estimating probable losses from future seismic 

events and the trade-off with respect to potential investments in 

infrastructure risk reduction ( considering, for instance, a single 

earthquake with given ground-motion characteristics). 

In our case, the platform is deployed on Linux systems as a 

private cloud on BRGM's network. This solution provides security 

in the remote access to the computing resources. Moreover, we 

reuse existing 1T facilities with this smooth integration that 

maximize the sustainability of our tool. To evaluate the platform, 

we involve two regional centers in the French West Indies. These 

regions are prone to earthquakes and tsunamis, and the distance 

(more than 8 h of flight) requires adopting an efficient strategy of 

collaboration between distant scientists. Another important aspect 

is replacing standard visualization software by a customized view 

provided by the platform. In the case of tsunami modeling, one 

needs to consider two-dimensional data mainly post-processed 

with the Surfer commercial software package (Rockwave). For 

large-scale three-dimensional seismic data, Paraview (Kitware) is 

usually preferred. 

4.3.2. Tsunami hazards 

The study of tsunami risk has become a recurrent concem for 

crowded coastal areas, and this is true even for those that normally 

seem to be the least prone to the phenomenon. In this framework, 

several research teams have been compiling and managing 

historical databases devoted to tsunamis. Concurrently, simula­

tions of tsunamis for plausible major seismic or gravity-driven 

events have been conducted. In the wake of the catastrophic 

December 2004 tsunami in the Indian Ocean, a considerable 

Table 1 

Mesh and domain size for the six nested grids used. 

(Sub)grid Mesh size (m) 

so 4860 

S1 1620 

S2 540 

S3 180 

S4 60 

SS 20 

Domain size 

677 X 663 

751 X 814 

682 X 1006 

739 X 637 

829 x454 

445 X 520 

amount of work was accomplished aimed at improving our 

understanding of structural and human vulnerability to tsunamis 

[32]. 

In this example, we developed a service to view and analyze 

data from tsunami simulation performed using the Geowave 

software [33]. As the spatial resolution of the computational grid 

must be related to the wavelength, the resolution of the 

computational grid must increase as we near the coast, because 

of the tsunami wavelength that decreases due to the decreasing 

depth of the sea. Since Geowave can solve tsunami propagation 

only on a regular square grid, a system of six nested grids is 

implemented and a simulation runs on each grid (Fig. 12 and 

Table 1 ). 

Each sub-grid dataset is composed of GMT (Generic Mapping 

Tools)8 files containing the water height map for each point in the 

2D grid and the water height at each time step for each gauge in the 

mode!. The data are 2D (grid) or 1D + time (gauge). The 

functionalities of the service are implemented using GMT scripts 

originally developed by our researchers and adapted for the 

platform. Severa! services are available. The user, for instance, can 

Joad new data on the server or choose the dataset location (i.e. the 

nested grid). He can also plot the water height over a given time 

period for a specified gauge and draw a col or map representing the 

maximum height reached by water for a specified area of the 

simulation grid. Finally, we implement a service for playing a 

movie corresponding to the water height along a given profile over 

a specific time period. 

4.3.3. Seismic hazard 

Seismic waves radiating from an earthquake propagate through 

the Earth, and the associated ground shaking is felt and recorded at 

(or near) the ground surface. Understanding wave propagation 

with respect to the Earth's structure and earthquake mechanisms 

is one of seismology's main objectives, and predicting the strong 

ground motion for moderate and large earthquakes is essential to 

8 http:/ /www.soest.hawaii.edu/gmt/. 
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Fig. 14. A client view devoted ta tsunami modeling. 

achieving a quantitative seismic hazard assessment. Numerical 

simulations of seismic wave propagation are an important tool for 

risk mitigation and damage assessment in future hypothetical 

earthquake scenarios. We simula te seismic wave propagation from 

a potential seismic source to a site located on the French Riviera, 

and the related ground motion response in the vicinity of Nice. 

Fig. 13 shows a map of the study area, where the main 

metropolitan area of Nice is framed by a rectangular bounding 

box (left). In the right-hand portion of the same figure, a 3-D view 

of the study area is shown where topography has been preserved 

but geology simplified. The size of the area is 

30 km x 23 km x 10 km. The GEFDYN software package [34] is 

used to compute the maximum peak ground velocity [ 35 ]. Severa) 

hundred processors are used to obtain these data, representing 

246 MB and 563 MB of VfK binary files. 

We develop several services dedicated to the post-processing 

of these data. In this case, the most important point is to store the 

data on the computing facilities in order to process them on the 

server and only exchange a minimum volume of information 

between the remote clients. First, the user can either Joad new 

data on the server or he can choose an existing dataset. A standard 

VfK filter is proposed in order to clip the database. We used VfK's 

Python binding for scripting the VfK filter. This script is called 

from our platform service with its arguments retrieved from the 

client. 

4.4. Discussion 

BRGM, as the French geological survey, must provide public 

authorities with the necessary tools for natural risk prevention. 

Engineers are active in more than 40 countries on behalf of 

governments, public companies, businesses and international 

funding organizations, whether in a cooperative or an institutional 

partnership context. Our scenario considers long-distance collab­

oration between two clients Iocated in Guadeloupe and Martinique 

(French West-Indies Islands), the server being Iocated in our head 

office, in Orleans, France. The distance covered by the information 

from Guadeloupe to Martinique via Orleans is approximately 

14,000 km. The client's ease of use is an important aspect 

conditioning the platform's massive adoption in a large institution. 

Figs. 14 and 15 illustra te the client views available to our scientists. 

The standard functionalities required to post-process data for 

tsunami or earthquake modeling are available through the 

workflow. 

We only describe in detail the results obtained with the 

seismological service. This is much more significant, as it uses 



Fig. 15. A client view devoted ta earthquake modeling. 
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Fig. 17. Client/server communication data flow rate (bits/sec) without manipulations (left) and with manipulations (right). 

3D collaborative interactions and produces large X3D files. The 

impact of the network performance (latency and contention) could 

be easily evaluated. The network latency for our test case is about 

400 ms; this appears to be good enough for the collaboration 

(negligible latency between Martinique and Guadeloupe, as shown 

in Fig. 16). The minimum bandwidth used by basic client/server 

communications (i.e. without manipulation by the operator) is 

nearly constant, ranging from 120 to 140 kbits/s. This is caused by 

data exchanges required to guarantee the synchronization 

between the two clients. With manipulations by the operator, it 

can reach 270 kbits/s, which is still reasonable for existing 

networks (Fig. 17). This limited increase of the traffic rate during 

the collaborative phase results from the design of the platform. In 

our case, very little data (position of the camera, ... ) are exchanged 

when the mode! is manipulated. 

Fig. 18 provides the detail of the traffic between the clients in 

Martinique and Guadeloupe and the server located in Orleans. One 

client manipulates the whole 3D mode! in order to analyze the 

outputs of the simulation in collaboration with the distant team. 

The scientists communicate by telephone. The red curve describes 

ail the network traffic and the blue one represents only the HTTP 

content (we choose here to encapsulate client/server traffic with 
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Fig. 18. JO analysis using wireshark: resuming an existing session. First the client loads the X3D file, then we manipulate the 3D mode!. 

HTIP protocol ). The initialization of the collaboration process is the 
most costly phase, more than 80 s being required to upload the 
mode! from Orleans. Subsequently, the main phase of collabora­
tion with co-manipulation of the mode! generates a very low level 
of traffic. 

The benefits accruing from a cloud-based platform able to 
provide smooth accesses to large-scale computing data and 
collaborative analysis tools are tremendous. The architecture we 
have described in Section 3 meets these requirements, with the 
opportunity to share data and knowledge. The deployment of this 
platform is not only a means to save computing resources by 
rendering the use of the centralized cluster easier. The impact is 
also in terms of management of human resources, as an emergency 
meeting can be conducted remotely by confronting several 
opinions based on the same data. The experiment we have 
conducted clearly demonstrates the feasibility of this organization 
of research teams. Considering the feature that replays selected 
exchanges between distant experts, such collaborative strategies 
strengthen knowledge-based sustainability. 

Concerning standard network capabilities, we have observed 
smooth access to large-scale data produced by a seismic wave 
propagation simulation computed on several hundreds of pro­
cessors. 

5. Conclusion

This paper discusses an open platform for collaborative 
simulation, scientific big data analysis and 3D visualization for 
CAE/D. The service-oriented architecture relies on standard 
internet technologies and the cloud computing paradigm. We 
introduce its involved technologies and architecture, its potential 
benefits and the opportunities it affords. We valida te the platform 
using it as a support for sustainability in chemical engineering. 
Furthermore, an industrial sustainability-based application for 
managing natural resources and the environment is explained and 
discussed. We take advantage of the cloud to underpin collabora­
tive simulation and visualization by engineers in different 
geographic locations. The value brought to the scientific and 
industrial community is to make remote analysis and collabora­
tion easily available and scalable. The current collaboration 

process within the platform can be enhanced, in particular, by 
integrating innovative techniques with ICI in the era of web 
2.0 as initiated by Hüsig and Kohn [36] and as demonstrated by 
Negny et al. [37] for the sustainable management of resources. 
A further step is to support this communication through web 
semantic technologies ( also viewed as the next phase of the 
web, web 3.0). Zanni-Merk et al. [38] suggest ontology for 
knowledge acquisition and capitalization in inventive design. In 
the natural hazard domain, ontologies can help describe such 
knowledge [39] and could be integrated into the platform as a 
dedicated workflow suited to emergency and disaster manage­
ment. Remote collaboration in a distributed virtual reality context 
is another promising avenue to be explored. Preliminary 
experiments by Fleury et al. [40] show very promising results 
for scientific data analysis. From these perspectives and our 
current experience of the platform, one big challenge should be to 
develop a community 2.0 of scientists and engineers, more 
strongly supported by ICI, dedicated to collaborative scientific 
simulation and visualization. 
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