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Diagnosis of quality management systems using data 
analytics – a case study in the manufacturing sector 

Sanchez-Marquez R1, Albarracin Guillem JM2, Vicens-Salort E3, Jabaloyes Vivas J4 

Abstract: The main objective is to improve customer satisfaction by developing and testing a 
method to study quality management systems by analysing the key performance indicators of 
balanced scorecards in manufacturing environments. The methodology focuses on the identification 
and quantification of relationships between internal and external metrics that allow moving from 
performance measurement to effective performance management. It has been tested as a case study 
approach using real data from two complete years of the balanced scorecard of a leading 
manufacturing company. The results provided a new understanding of how the quality management 
system works that was used to make systemic and strategic decisions to improve the long-term 
performance of the company. Industry practitioners with a moderate level of data analytical skill can 
use it to help managers and executives improve management systems. 
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1. Introduction 

Although performance measurement is not an end in itself, the literature identifies it 

as an essential part of performance management, since a lack of appropriate 

performance measurement can be a barrier to change and improvement [1]. Bititci et al. 

[2] claim that reviewing and prioritising internal goals when changes in the internal and 
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external environment are significant is an important feature of effective performance 

measurement systems. As a performance management system, the balanced scorecard 

(BSC) establishes the importance of knowing and using the cause-and-effect 

relationships between internal and external metrics to move from performance 

measurement to effective performance management [3]. 

This paper develops a methodology that allows practitioners to identify and quantify 

those relationships by using key performance indicators (KPIs) of the BSC. Since the 

objective is to develop a practical methodology that uses real BSC data, its 

development focuses on the integration of appropriate methods and tools for data 

analytics. 

The present method was developed and tested in a leading multinational 

manufacturing company, which had implemented a balanced scorecard for the 

production facilities composed of seven management/operating systems [4]: safety; 

quality; delivery; cost; people; maintenance; and environment. The quality 

management system (QMS) was selected by the directors of the company to develop 

and test the validity of the method, since it was the system with the highest level of 

complexity. Nevertheless, with small adjustments the method can be applied in the 

other six management systems in the same way as in quality. 

According to the international standard ISO 9001:2015 that specifies the 

requirements for a quality management system, industrial products and their 

manufacturing processes must be designed to meet customer expectations through the 

specific engineering specifications of critical product characteristics. These are 

typically specified in terms of a nominal (ideal) value and a tolerance interval (upper 

specification limit - lower specification limit). Controlling and managing these critical 

characteristics is a fundamental task of the quality measurement system and, therefore, 

of the quality management system. When critical characteristic measurements meet 

engineering specifications, they also meet customer expectations, leading to customer 

satisfaction. These measurements are summarised in the internal KPIs of the QMS. 

Therefore, the QMS includes internal KPIs, which summarise compliance with 

engineering specifications, and external KPIs, which include customer complaint 

indicators. Consequently, if the quality management system works well, internal and 

external KPIs must reflect customer satisfaction and, therefore, both sets of indicators 

must be highly correlated. 

Identifying which internal KPIs drive customer satisfaction (external KPIs) and 

quantifying such relationships allows executives and managers to design strategies to 



improve customer satisfaction, which is the main objective of this research work. In 

addition, the results serve as a start point to reduce the complexity of the quality 

management system (QMS). Simplification of performance management systems 

(PMSs) is a recurring topic in the literature [5, 6, 7]. Therefore, the following two main 

research questions were established: 

- How do the KPIs of the QMS relate to each other? 
- How can these KPIs help improve customer satisfaction? 

There is some research on the development of analytical methods based on the key 

performance indicators of balanced scorecards in the manufacturing environment. 

However, the results of these works [8, 9, 10, 11] are qualitative rather than 

quantitative (which should be the nature of any analytical method). Therefore, the 

development of robust analytical methods for manufacturing systems based on proven 

scientific tools is an issue that has not been covered in the literature. This paper focuses 

on the diagnosis of a management system to improve its capabilities and this implies a 

novel approach. 

This work was carried out as part of a collaborative research project between the 

company (which requested to keep its identity and data confidential) and the Centre for 

Research and Production Management of the Polytechnic University of Valencia 

(Spain) to improve management methods in manufacturing environments. 

The company decided to use the findings of the present study to make changes in the 

balanced scorecards of all production facilities worldwide. Although these changes are 

detailed in the results section of this paper, they can be summarised as a reduction in 

the complexity of the operating system and the inclusion of new KPIs, as well as the 

elimination of some existing indicators that have shown less strategic weight. The new 

insight provided by this study was used to prioritise some strategies over others and 

start new strategies to improve customer perception about the quality of company 

products. 

The method was validated using real data from two complete years of key quality 

performance indicators as a case study approach. 

2. Literature review 

The literature review was structured to cover the relevant topics: 

- Analytical methods applied to key performance indicators using actual data 



o Regression, multiple linear regression (MLR), partial least squares 
(PLS), principal component analysis (PCA), time series, artificial neural 
networks (ANN), data mining 

- Analytical methods applied to building balanced scorecards as a proactive tool 
o Fuzzy logic, analytic network process (ANP) 

- The balanced scorecard in the manufacturing environment 
- Limitations of the analytical tools mentioned above 
- Limitations of the balanced scorecard model 
- Quality management systems in the manufacturing environment 

The main objective of the literature review was to identify the best possible approach 

and the strengths and limitations of each method available in the literature. As 

discussed in the introduction section, the present method covers a new objective, 

although to some extent it is based on improvements in existing methods developed by 

other authors and applied for other purposes. In addition, it addresses the limitations 

already commented by the authors themselves. 

2.1. Analytical methods applied to KPIs using actual data 

The available works use analytical tools such as MLR [12], PCA and PLS [13, 14, 

15], and graphic methods [16], to assess the effectiveness of the strategies in place and 

quantify their impact on the output metrics. Sanchez-Marquez et al. [16] suggest 

previously selecting the output metrics among all the key performance indicators 

(KPIs) included in the scorecard to streamline the method as a key step in any method 

that addresses the KPIs. While some comments are made about the need for more 

perspective to understand how the system works, this goal is beyond the scope of those 

works. 

2.2. Analytical methods applied to the BSC as a proactive tool 

Other works focus on proactive methods to build a balanced scorecard by selecting 

the best key performance indicators when sufficient data is not yet available. These 

works use other techniques – such as ANP [17] or fuzzy logic [18, 19]. Although the 

effectiveness of these methods proves that it works in the construction of new 

information systems as a proactive approach, this document focuses on making the 

most of the data available from existing information systems. 



2.3. Regression methods 

2.3.1. Multiple linear regression 

MLR has been used to quantify the effect of input metrics on the output [12, 15] 

with good results in terms of model predictability (R2). However, the main objective of 

the present study, which is to discover systemic relationships, can be compromised by 

the effect of collinearity. MLR when affected by collinearity, which can be measured 

by the variance inflation factor (VIF), can produce an unstable model since coefficients 

are overestimated when VIF > 5. In addition, the MLR, as a regression technique, must 

assume cause and effect relationships between the variables before evaluating the 

model, which are not sufficiently clear in this case, at least as a starting point. 

2.3.2. Partial least squares 

For complex models (e.g., high-order constructs) or cases with multi-collinearity, 

PLS is more appropriate [20]. Moreover, PLS can be used even if the number of 

observations is smaller than the number of variables to study [13]. However, the 

uncertainty of the construct in the initial stages of the study is the most difficult 

obstacle to overcome [20]. Rodriguez-Rodriguez et al. [13] highlighted this uncertainty 

in a study where the research team had to evaluate different constructs together with 

the team of the board of the company where the study was made. 

Although PLS is generally the preferred method when a regression analysis is 

required, MLR also has some points in its favour, such as the possibility of evaluating 

non-linear relationships between predictors and dependent variables. PLS is a 

multivariate technique, so it uses linear algebra, and although the transformations of the 

variables can be used to explain nonlinear relationships, it is not recommended, since 

the number of variables increases exponentially, and multivariate techniques are not 

adequate for such models in practical terms [21]. 

2.3.3. Simple linear regression 

Simple linear regression (SLR) can also be an option when the problem is to 

understand the relationships between different levels or dimensions and only two 

variables are being studied. However, depending on the nature of the problem, several 

regression techniques can be applied, and the practitioner will always have to consider 

the principle of parsimony (which is to keep the model as simple as possible). The 

principle of parsimony can generally be considered a good guide when applying 

statistical tools [22, 23]. However, in social sciences, Gunitsky [24] recommends 

distinguishing between three different views of the concept according to the objective. 

He emphasises the epistemological conception of parsimony – abstract from reality – to 



highlight recurring patterns and construct verifiable propositions. Therefore, Gunitsky 

[24] suggests that to prove a specific hypothesis, the principle of parsimony is justified, 

coinciding fundamentally with Coelho et al. [22] and Nalborczyk et al. [23]. 

2.4. Principal component analysis 

Several studies [13, 14, 15] have shown that PCA is an effective tool for selecting 

KPIs. Bi-dimensional plots of principal components can be used to screen the main 

KPIs for their weight, but also to perform a more comprehensive correlation analysis 

than just looking at the table with the loads of each variable for each component. 

Rencher [25] pointed out that this analysis can be an integral result by itself if a 

qualitative analysis is carried out together with the quantitative analysis. 

2.5. ANN and other data mining techniques 

ANN and other data mining techniques are more suitable in big data contexts [26], 

since these methods work well when number of instances is much bigger than the 

number of variables (KPIs), which in principle is not the case when dealing with KPIs 

of the BSC. In addition, ANN does not provide an explicit regression equation 

compared to other regression techniques, which was considered essential for the 

purpose of this research. Therefore, the present methodology does not use data mining 

methods such as ANN. 

2.6. Quality management systems in manufacturing and the BSC 

The main studies on QMSs are more qualitative than empirical and analytical [27, 

28, 29], mainly in the manufacturing sector [30]. Although the quantitative analysis 

was performed in the QMS, the approach was to generate a construct using PLS-SEM 

or CB-SEM techniques based on established theoretical frameworks [30, 20].  

Norreklit [31] points out that one of the main problems of the balanced scorecard 

model is the assumption of fixed cause and effect relationships between variables of 

different dimensions. Instead, she proposes a model with systemic relations where the 

different dimensions do not have a defined hierarchy or a fixed model. She also 

mentions the problem of potential delayed effects on the system of some variables. 

Kaplan [5] recognises that these problems can be present in the model and invites the 



scientific community to study how they can be discovered and thereby improve the 

model using analytical techniques and empirical systems dynamics. Hoque [6], in a 

comprehensive review of the use and limitations of the balanced scorecard, suggests 

that the existence of potential trade-offs between KPIs from different dimensions or 

levels is among the most cited unresolved problems. 

2.7. Time series techniques 

Time series techniques should be applied to address and solve the problems that this 

type of data tends to have. The most common problems are autocorrelation or working 

with non-stationary time series. A hybrid method that combines analytical and 

graphical tools is the most convenient in these cases [15]. 

2.8. Synthesis of the literature review 

Table 1 summarises the literature review on the existing methods explained in detail 

in the previous sections. The tools and techniques selected for the proposed 

methodology are underlined. This selection is based on the characteristics of each tool 

and those of the problem addressed in this study. 

Tool / 

technique 

Type of data Multivariate/ 

univariate 

Suitable for 

variable selection 

Typical applications 

SLR Actual data Univariate Yes Hypothesis testing, causal 

models 

MLR Actual data Univariate Yes Medium-complexity models 

PLS Actual data Multivariate No High-complexity models / 

machine learning 

PCA Actual data Multivariate Yes Feature extraction 

ANN Actual data Multivariate No Deep learning / data mining 

Fuzzy logic Subjective data 

(from experts) 

Multivariate Yes Proactive methods / decision 

support systems 

ANP Subjective data 

(from experts) 

Multivariate Yes Decision support systems 

Time series Actual data 

(time domain) 

Both Yes Data pre-processing, 

econometrics, forecasting 

Table 1. Analytical methods 

In the next section, the method used to carry out the study is presented as a multi-

phase model. This method was designed to include all the characteristics and, as far as 



possible, improve the limitations of the techniques selected from those identified in the 

literature review. 

3. Data and methods 

The methodology developed has been tested in a case study approach using real data 

from two full years of the balanced scorecard of a leading manufacturing company. 

The company where this work was done considers the raw data used to be confidential 

and its representatives and the university research team signed a confidentiality 

agreement. For this reason, this paper only shows the result of the statistical analyses, 

but not specific values of the key performance indicators of the QMS. To preserve its 

confidentiality, the scale of the original data has been changed by dividing all data 

points in the entire original dataset by the same figure. It has been confirmed that by 

dividing by the same number, all analyses give the same result with the original and the 

transformed data, since the scales change, but not the ratios between the KPIs. This 

paper provides the reference to the transformed dataset to allow replication of the main 

results shown in section 4.1. To ease interpretation, Table 2 shows detailed definitions 

for all the KPIs used in the study. 

  



KPI Designation Units Definition 

D1000 or  

D1000 ONLINE 

Online defects per thousand 

units 

# of defects / 

1000 units 

Number of defects detected online at any 

production stage every 1000 units produced 

EL D1000 End of line defects per 

thousand 

# of defects / 

1000 units 

Number of defects detected at the end of the 

production line every 1000 units produced 

EL FTT End of line first time through % Proportion of units produced without defects 

that need offline repairs detected at the end 

of the line 

FTT First time through % Proportion of faultless produced units that 

need offline repairs detected at any stage of 

the production line 

ONLINE or 

ONLINE % 

Online percentage % Proportion of units repaired online with at 

least one defect 

PA D1000 Final product audit defects 

per thousand 

# of defects / 

1000 units 

Number of defects detected in the final 

product audit every 1000 units 

PA FTT Final product audit first time 

through 

% Proportion of faultless units needing offline 

repairs detected in the final product audit 

PA ONLINE Final product audit online 

percentage 

% Proportion of units repaired online with at 

least one defect detected in the final product 

audit 

PA TGW Final product audit things 

gone wrong 

# of claims / 

1000 units 

Number of customer claims per thousand 

units predicted based on the severity and 

probability of defects detected in the final 

product audit 

PA TGW A Final product audit things 

gone wrong type A 

# of claims / 

1000 units 

Number of customer type A claims per 

thousand units predicted based on the 

severity and probability of defects detected 

in the final product audit 

PA TGW AB Final product audit things 

gone wrong type A and B 

# of claims / 

1000 units 

Number of customer claims of type A and B 

per thousand units estimated based on the 

severity and probability of defects detected 

in the final product audit 

PA TGW B Final product audit things 

gone wrong type B 

# of claims / 

1000 units 

Number of customer type B claims per 

thousand units estimated based on the 

severity of defects detected in the final 

product audit 

R1000 0MIS Repair per thousand at zero 

months in service 

# of claims / 

1000 units 

Number of customer claims per 1000 units 

due to repairs at zero months in service after 

product sale 

R1000 1MIS Repair per thousand at one 

month in service 

# of claims / 

1000 units 

Number of customer claims per 1000 units 

due to repairs at one month in service after 

product sale 

R1000 3MIS Repair per thousand at three 

months in service 

# of claims / 

1000 units 

Number of customer claims per 1000 units 

due to repairs at three months in service after 

product sale 

Table 2. Definition of the quality management system KPIs 

 

The multi-phase methodology is shown in Figure 1 and the details of each phase are 

explained below. 



The statistical analyses were performed using the statistical software packages 

Minitab, Stata, and the data analysis tool of Excel. 

 
Figure 1. Multiphase methodology of the study 

In phase 0, the research team together with company experts established that the 

main aspects of the study were the ‘predictability of the quality system’ and the 

‘feedback capability of the quality system’. The predictability of the quality system can 

also be understood as the ability to control customer satisfaction through internal KPIs. 

If there were internal KPIs with good predictability, causality, or correlation with 

external KPIs (related to customers), it would be easy to implement strategies to 

improve customer satisfaction indexes. 

Quality feedback is the ability of the system to recalibrate internal controls in an 

environment of continuous improvement. The ability to recalibrate quality inspection is 

vital to ensure the system continues predicting, reacting, and preventing future 

customer complaints. 

In phase 1, the raw data must be processed before starting statistical analyses [15]. 

The main problems when dealing with time series (KPIs) are the autocorrelation and 

the seasonality of the data. The time series must be stationary before performing 

statistical analyses that use correlation or regression [32, 33]. Sanchez-Marquez et al. 

[15] use the Dickey-Fuller analytic t-test augmented for stationary time series [34, 35] 

complemented by a graphical analysis of the time series with the time series chart, the 

autocorrelation function (ACF), and the partial autocorrelation function (PACF) [32, 

33]. If any sign of non-stationarity is observed, a transformation of the unprocessed 

data must be performed to obtain a stationary time series. The most common 

transformation is to take differences, but in some cases, other transformations are 

needed, such as the logarithmic ones [32, 33, 35, 15]. 

The main objective of phase 2 is to select the main KPIs that explain most of the 

variability observed. Rodriguez-Rodriguez et al. [13] use the two-dimensional plot of 

the PCA to select those KPIs with the highest loadings (coefficients) before performing 



regression analyses (PLS). This eliminates the noise produced in the system by the 

discarded variables, which results in a more precise estimation of the regression 

coefficients. In this paper, this quantitative analysis is complemented with a qualitative 

analysis using the vector view of the two-dimensional plot. As shown in the results 

section, the closer the vector direction, the more similar are the variables explained by 

those vectors. This means that there is a high correlation between variables represented 

by vectors with close directions. These variables with high correlation together with the 

known manufacturing flow (Fig. 2), which establishes the cause-and-effect 

relationships between the variables, are used to carry out the regression analyses in 

phase 3, which will quantify the variables relationships in terms of strength (regression 

coefficients) and stability (R2-predictive). 

As mentioned by Rencher [25], the PCA can be a result in itself when the objective 

is a descriptive or qualitative analysis. Starting with the data matrix (multidimensional 

observations), the variance-covariance matrix (usually called the covariance matrix as 

its shortest form) can be computed as follows: 

𝑺𝑺 = 1
𝑛𝑛−1

𝑿𝑿�′𝑿𝑿�         (1) 

where: 

- S is the covariance matrix. 
- n is the number of observations or multidimensional instances 
- 𝑿𝑿� is the data matrix centred by subtracting from each data point the mean of each 

variable (column). Therefore, 𝑿𝑿� = 𝑿𝑿 − 𝟏𝟏𝒙𝒙�′, where X is the raw data matrix, 1 is a 
column vector composed of n observations or instances, and 𝒙𝒙�′ is the row vector 
composed of the means of the m variables in the study. Therefore, since 𝑿𝑿 is an n 
x m matrix, 𝑿𝑿� is also an n x m matrix, where n is the number of 
multidimensional instances or observations, and m is the number of variables 
considered in the study. 

Since S is a square and symmetric matrix, the Eigen analysis can be performed to 

obtain the eigenvalues and eigenvectors. According to Peña [21], this can be shown in 

its matrix form as follows: 

𝑺𝑺𝑺𝑺 = 𝑼𝑼𝑼𝑼         (2) 

where: 

- S is the covariance matrix 
- U is a square matrix where each value unm represent the loadings or 

coefficients of the original m variables in each principal component (p 
components). The principal components (also known as latent variables) are 
the column vectors. 

- D is a diagonal matrix where each diagonal value (λp) represents the 
eigenvalue of each p component. 



Initially, from the Eigen analysis, we obtain the same number of components as 

original variables (p = m), since U is square. In practical terms, the eigenvalues of 

some of the components are almost zero (λ≈0), because some variables are not linearly 

independent of others (high correlation between the variables), so p ≤ m and this 

implies a reduction of complexity. 

Since U is a square matrix composed of orthogonal vectors [21], then U’U=U-1U=I. 

If one pre-multiplies (2) by U’ on each side of the equation, then 

𝑼𝑼′𝑺𝑺𝑺𝑺 = 𝑫𝑫         (3) 

and therefore 

𝑺𝑺 = 𝑼𝑼𝑼𝑼𝑼𝑼′         (4) 

Equation (4) is known as the spectral decomposition of the covariance matrix [21]. 

The covariance matrix is decomposed into orthogonal vectors (principal components) 

where each explains a certain amount of variance (λp). Therefore, all the variance 

observed in the original data can be explained by these new variables 

(components/dimensions). 

To obtain the value of the new variables in each observation (principal component 

scores), the original variables must be projected in the new space, which normally has 

fewer dimensions due to the reduction in complexity explained above, therefore 

𝑻𝑻 = 𝑿𝑿�𝑼𝑼         (5) 

where T is a matrix n x p that represents the projected observations in the new space. 

Note that, as explained above, p ≤ m due to the reduction in complexity. 

Rodriguez-Rodriguez et al. [13] only use the coefficients (U) as the weight to select 

the variables. Since an original variable can be projected in more than one component, 

the original variables are characterised by their coefficients and by its direction when 

they are projected. Therefore, the present method uses the vector view as a graphical 

method, not only the coefficients.  

Peña [21] and Rencher [25] recommend using the correlation matrix instead of the 

covariance to perform PCA when the variables have different scales, which is a way of 

standardising the scale of the variables. The balanced scorecard, including each of its 

operating systems, is composed of heterogeneous groups of variables; therefore, this 

method must use the correlation matrix as follows: 

𝑪𝑪 = 𝑷𝑷𝑷𝑷𝑷𝑷′         (6) 

where 

- C is the correlation matrix, where the elements outside the diagonal are the 
correlation coefficients between the variables and the elements of the 
diagonal are all equal to one. 



- P is a square m x p matrix (square since initially p=m), which represents the 
standardised loadings / coefficients. 

- L is the diagonal matrix where the values in the diagonal (eigenvalues) 
represent the amount of variance explained by each principal component. In 
this case, the variance is standardised as well. 

Therefore, using C instead of S also changes the scores of the principal components 

(the new projected variables) from absolute to standardised units. To compare and 

select variables, which is a qualitative analysis, it is recommended to use the 

standardised units (C instead of S) when scales are different as already mentioned [21, 

25]. Since the KPI scales are typically different, the present method should use the 

correlation matrix (C) to extract the principal components. However, once the selection 

is made (phase 2), start with the regression analysis (phase 3) as the objective is 

usually to interpret the coefficients in absolute terms – rather than just the statistical 

significance (p-value vs. α) and the predictive power (predictive R2). The study must be 

done with the original variables and so their original units must be used (original 

scales). The present method uses regression analysis in this sense, and therefore the 

original scales of the variables are used. However, other methods use, for instance, 

multivariate regression analysis as PLS for qualitative analysis. In these cases, the 

dichotomy of standardised versus non-standardised is present, and researchers have to 

decide on the objectives of the study and the nature of the variables. Marin-Garcia & 

Alfalla-Luque [20] make an in-depth analysis on this topic and propose a series of 

recommendations for researchers using the PLS analysis. 

Since a two-dimensional vector chart can only represent two dimensions, the method 

uses the two first principal components, u1 and u2. A verification of the variability 

explained by these two components is needed to ensure that the variance is at least 80% 

of the total [21]. For practical reasons, if the variation is not 80%, but is close, it is 

advisable to use the first two components. As part of this method, when more than two 

components are needed, factor analysis (FA) can be used instead of PCA [36]. First, 

according to Joliffe & Morgan [36], it is necessary to select the number of components 

(explaining at least 80% of the total variance) and rotate the vectors, usually using the 

‘varimax’ rotation method, which facilitates the interpretation of the results. However, 

wherever possible, bi-dimensional vector visualisation is recommended, since a 

graphical method is always more intuitive, mainly, considering that the results are 

interpreted not only by the researchers, but also by company staff. The use of the 

‘varimax’ rotation, which maximises the variance explained by the new projected 

variables (called factors instead of components in FA), is equivalent to using the 



direction of the vectors when using the two-dimensional plot. These new coefficients 

are maximised when they are rotated and so the effect of having the original variables 

explained by several components or factors is solved, or at least minimised [36]. 

From the two-dimensional plot, the variables are selected according to weight 

criteria and correlation (vectors in the same direction, regardless of the sense) and 

considering which hypotheses are related to the aspects established in phase 0 – 

predictability and feedback of the QMS. 

Once the variables are selected, a regression analysis is performed in phase 3. 

Following the principle of parsimony, the simplest regression technique is selected to 

test the hypotheses. The hypotheses related to the predictability of quality will always 

be a cause and effect relationship between the internal and external variables in the 

direction from inside the company towards the customers (outwards). The quality 

feedback hypotheses go in the other direction (inwards). 

In this phase, the principle of parsimony is not the only aspect to select the simplest 

technique. Simple linear regression (SLR) models can be represented graphically; 

however, when there is more than one predictor in the model, the graphical 

representation is not clear or is not possible. 

The practical application of the principle of parsimony is to select the simplest 

possible model, i.e. with as few variables as possible. The application of this principle 

will ensure that the selected model is the easiest to interpret, which is essential for the 

objectives of the methodology. On the other hand, a good quality of the model in terms 

of a high R2 must be ensured. Therefore, if two regression models are comparable in 

terms of predictability (R2), the simplest will be selected. 

Akoglu [37] provides guidance for deciding the strength of the relationship between 

variables based on the correlation coefficient (ρ). Since it is well known that in simple 

linear regression ρ2 = R2, for each value of ρ we can compute an equivalent for R2. 

Although this relationship can only be proven mathematically for SLR, the same 

interpretation of R2, at least in terms of strength (quality), can be used for any 

regression model. Table 3 summarizes the criteria to decide between different models. 

Strength Correlation Regression 
Very strong 0.8 < |ρ| ≤ 1 64% < R2 ≤ 100% 
Strong 0.7 < |ρ| ≤ 0.8 49% < R2 ≤ 64% 
Moderate 0.5 < |ρ| ≤ 0.7 25% < R2 ≤ 49% 
Weak 0.3 < |ρ| ≤ 0.5 9% < R2 ≤ 25% 
Negligible 0 ≤ |ρ| ≤ 0.3 0% ≤ R2 ≤ 9% 

Table 3. Interpretation of ρ and R2 

In phase 4, the hypotheses proven/disproven by the regression models are confirmed 

by graphically comparing the behaviour of the time series of the variables included in 



the regression models. If there is correlation, the regression model is significant (p-

value < α) and the predictability power of the regression model is at least moderate 

according to table 3. It can then be said that there is a good model. If there is a good 

model, the behaviour of the variables and, therefore, of the time series should be 

similar. For each significant regression model whose strength is moderate to very 

strong, we will confirm that the behaviours of KPIs are similar by comparing the trends 

of the time series charts of each KPI included in the model – see figures 9, 16, and 17. 

This will help make the decision that the strength of the relationship is not only 

mathematical, but practical. Like any graphical analysis, it is essentially qualitative, 

since the confirmation of the quality (strength) of the regression model will depend on 

the nature of each KPI and its practical meaning. Therefore, the management team will 

conduct the analysis with the support of data analysts. 

To graphically compare KPIs that have different scales, the size of the chart bars 

should be the same regardless of the range shown by the data, so KPIs can be compared 

in terms of trends regardless of the scale of the data. In practice, this can be done using 

automatic chart scaling that most computer packages with graphical tools incorporate. 

In phase 5, researchers together with subject matter experts (SME) from the 

company discuss the results in detail. The main objective is to develop a specific 

statement for each significant regression model confirmed in the previous phase. This 

declaration should include an interpretation of the regression coefficient and the 

strength of the model based on Table 3. 

For example, if we have the following regression model with p-value < 0.05 and R2-

pred = 76.86%: 

R1000 0MIS=15.52-0.1966 FTT, the team will present the following statement: 

‘It has been found that there is a very strong relationship between the internal KPI of 

first time through (FTT) and the external KPI for warranty repairs at zero months in 

service (R1000 0MIS). A 1% increase in FTT causes a decrease of approximately 0.2 

warranty repairs per 1000 units sold.’ 

Finally, in phase 6, these discussions are summarised in solid and practical 

conclusions with the aim of proposing strategic changes to improve customer 

satisfaction – which is the ultimate goal of the QMS. 

The team must draw at least two main types of conclusions, one based on the 

confirmed regression models between internal and external KPIs, and one based on 

KPIs of the same stage, either external or internal – see figure 2 for process stages. The 

latter will be based on strong or very strong relationships based on the correlation 



coefficient. For example, if a strong relationship is confirmed between two external 

metrics, as they belong to the same stage (the customer's), it is not a causal relationship, 

but a correlation. The same could happen for internal metrics of the same stage. 

Only those KPIs that appear in the confirmed regression models will be considered 

as strategic, therefore the management team should exclude the rest. In addition, the 

team will reduce the complexity of the QMS by choosing only one KPI for each strong 

or very strong correlation between metrics of the same stage. These decisions will lead 

to a simplified QMS composed with KPIs with a strong impact on customer 

satisfaction. 

4. Results of the case study and discussion 

The aspects that were selected in phase 0 of the study, which were the predictability 

of the quality management system and its feedback capability, have been explained in 

the previous section. In this phase, it was also decided to separate the study into two 

sub-studies, one with variables that include all the models produced in the company 

and the other, by the model.  

In the hybrid analysis (graphical and analytical) of the time series [15], 

corresponding to phase 1, the conclusion was that they were stationary series and, 

therefore, the transformation of the data was not necessary. 

Figure 2 shows the process flow of the case study and locates each group of KPIs 

(internal and external). The process flow is necessary to establish input and output 

variables for the regression analyses of phase 3, which is carried out on the KPIs 

previously selected in phase 2 (see section 3). 

 
Figure 2. High-level process flow of the quality management system 

Phases from 2 to 6 are detailed in the following sections. 



4.1. Results including all models 

4.1.1. Quality predictability 

The predictability of quality is the relationship between the internal metrics and the 

voice of the customer as measured by warranty repairs at 0 months in service (R1000 

0MIS), R1000 1MIS and R1000 3MIS. 

Figures 3 and 5 are the bi-dimensional plots of the principal component analysis 

(PCA). Figures 4 and 6 show the amount of variance explained by each principal 

component (eigenvalues). In both study periods, bi-dimensional plots could explain 

about the 80% of the total variance observed [25]. By comparing the period from 

August 2017 to January 2018 (Fig. 3) to the period from January 2017 to January 2018 

(Fig. 5), it can be seen that the relationship between the variables ‘online product 

auditing’ (PA ONLINE) and ‘repairs per thousand at 0 months in service’ (R1000 

0MIS) is not maintained. The more orthogonal the vectors are, the less correlation there 

is between the variables. It is also denoted by the fact that the predictive R2 (R2-pred) 

was low (<30%) in the period beginning in August 2017. Therefore, when more data 

points are taken, that relationship disappears because the model is unstable. 

 
Figure 3. PCA for all models (data from Aug 2017 to Jan 2018) 



 
Figure 4. Scree plot (Aug 2017 to Jan 2018). 82% of variance in the two first components 

 

 
Figure 5. PCA for all models from Jan 2017 to Jan 2018 

 

 
Figure 6. Scree plot (Jan’17-Jan’18). 72% of variance in the two first components 

The most powerful relationship that appears is that of warranties with almost all 

internal metrics – first time through (FTT), end-of-line FTT (EL FTT) and even with 
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on-line metrics, but especially with FTT, with a predictive R2 for the period from 

August 2017 to January 2018 of 89.3%. For the period beginning in January 2017, R2-

pred was 75%. These values of R2-pred mean a high predictive power and a high 

stability of the model. 

A good quality of the model implies a good calibration of the internal quality 

controls with the voice of the customer (VoC). Therefore, the variability in the R2 

could mean differences in the level of calibration within different periods. These 

changes in the calibration of the internal controls require a recalibration of the quality 

controls, which is a key function of the quality improvement teams. Another highlight 

of this result is the potential use of the R2 of this regression model to evaluate the level 

of calibration of internal controls in a given period. However, the limitation of sample 

size will always be present in this type of study, although the possibility of having 

more data points should also be explored, for example, by increasing the frequency of 

data points. 

 
Figure 7. All models from Aug’17 to April’18 (R2-pred=76.86%) 

The regression equation (also shown in Fig. 7) for this model is: 

𝑅𝑅1000 0𝑀𝑀𝑀𝑀𝑀𝑀 = 15.52 − 0.1966 𝐹𝐹𝐹𝐹𝐹𝐹     (7) 

In Table 4, a complete analysis of variance and a model summary of the regression 

analysis of the Figure 7 is presented. 

  



Analysis of variance       

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 
Regression 1 5.0753 86.32% 5.0753 5.0753 56.81 0.000 
FTT 1 5.0753 86.32% 5.0753 5.0753 56.81 0.000 
Error 9 0.8040 13.68% 0.8040 0.0893   
Total 10 5.8793 100.00%     
Model summary       

S R2 R2(adj) PRESS R2(pred)    

0.2988 86.32% 84.81%  1.3603 76.86%   
Coefficients       
term Coef SE Coef 95% CI T-Value P-Value VIF  
Constant 15.52 1.60 (11.89; 19.14) 9.67 0.000   
FTT -0.197 0.026 (-0.26; -0.14) -7.54 0.000 1.00  

Table 4. Analysis of variance and model summary for the period Aug 2017 to April 2018 

The coefficient of FTT means that an increase of one percentage point in the FTT 

equals a decrease of approx. 0.2 R/1000 0MIS and vice versa. However, the 

extrapolation of the linear function beyond the inference space should be used with 

caution even with such a high model quality, which would imply assuming that the 

linearity of the model remains beyond the inference space. 

The model shows that there is no need to reach 100% of the FTT to eliminate 

warranty claims at 0MIS (R1000 0MIS). Although it is not entirely possible, since the 

probability model based on continuous distributions and product specifications is 

asymptotic, the linear approximation is good and thinking of a defect reduction very 

close to zero in the customer before 100% of FTT is not completely illogical. This 

objective, in relation to the transfer function of the regression model, was established at 

a certain FTT point (not shown due to confidentiality reasons) for this case study. The 

assumptions of normality, equal variance, and independence of the residuals have been 

verified to validate the model. The autocorrelation for the independent variables has 

also been verified by up to 12 lags to rule out the overestimation of the regression 

coefficient due to the time relationships (lack of independence of the estimators). The 

assumptions were verified for FTT and ‘defects per thousand’ KPIs (D1000) – see 

Figure 8. 



 
Figure 8. Regression R1000 0MIS vs. D1000 (Aug’17 – Apr’18) (R2-pred=57%) 

In Table 5, a complete analysis of variance and a model summary of the regression 

analysis of the Figure 8 is presented. 
Analysis of variance 

      

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Regression 1 4.393 73.68% 4.393 4.3933 27.99 0.000 

 D1000 1 4.393 73.68% 4.393 4.3933 27.99 0.000 

Error 10 1.570 26.32% 1.570 0.1570 
  

Total 11 5.963 100.00% 
    

Model summary 
      

S R2 R2(adj) PRESS R2-pred 
   

0.3962 73.68% 71.04% 2.5812 56.71% 
   

Coefficients 
       

Term Coef SE Coef 95% CI T-Value P-Value VIF 
 

Constant -1.025 0.848 (-2.915;0.864) -1.21 0.254 
  

D1000 0.0076 0.0014 (0.0044;0.011) 5.29 0.000 1.00 
 

Table 5. Analysis of variance and model summary for the period Aug 2017 to April 2018 

 

A likely interpretation of this result is that all failure modes at 0 MIS (impact on 

customer's warranty claims) are the same as those detected within the production 

facilities during internal verifications (those related to the KPIs of FTT, EL and 

ONLINE %). Another possible reason is that the relationship between R1000 0MIS and 

D1000 remains stable regardless of the chosen study period, which was also confirmed 

by a regression model. There was a slight fluctuation in the value of the regression 

coefficient that turned out to be between 0.008 and 0.01. It means that the quality leak 

can be estimated around that proportion, which is the Type-II error. An improvement 

strategy may be to reinforce internal quality controls based on objective measures using 

Gage R & R for both variables and attributes. However, a Type II error of less than 1% 



is more than 10 times better (smaller) than the industry average, which is 

approximately 10%. Negative values of R1000 0MIS are not possible, but the negative 

coefficient of the equation implies that before D1000 reaches zero we will have zero 

R1000 0MIS, which is the same conclusion as for the equation with FTT, due to the 

linear assumption. 

Another point to consider is the relationship between R1000 1MIS and R1000 3MIS, 

which also remains constant with an R2-pred of 80%. This means that both are, in fact, 

the same indicator, at least in their dynamic behaviour. Both indicators could be 

summarised – as one or one of them can be eliminated to reduce the complexity of the 

balanced scorecard.  

In the following lines and figures (see Figure 9), as part of phase 4, it is graphically 

confirmed that when there is a good regression model or a high correlation, the 

dynamic behaviour of the variables on both sides of the equal sign of the equation is 

very similar, since this method uses time series as variables. 

In Figure 9, where the warranties at 0MIS (R1000 0MIS) are compared with the 

complementary of the FTT, we can see the correlation between both KPIs in a more 

intuitive way. 

 
Figure 9. Graphical confirmation of the predictability of the quality system 

4.1.2. Quality feedback 

While the quality predictability can be understood as the ability to predict customer 

warranties based on internal metrics, the quality feedback is the ability of the system to 



feed customer claims back to production facilities in the form of quality controls during 

the audits of finished products (PA). These audits, since they are based on small 

samples, are designed to calibrate the upstream system, but not to predict the behaviour 

of the market. 

To carry out this study, it was necessary to transform some variables, applying a 

certain time delay. The time series related to customer complaints were transformed 

with different delays of t-1, t-2 and t-3, which means delays of 1, 2, and 3 months. This 

transformation allowed the study of the hypothetical delayed correlation between the 

customer claims and the product audit KPIs (PA). Delays of more than three months 

were also tested in the study although they are not shown here for reasons of clarity. 

However, the results showed that there were no relationships between the variables 

with such delays. 

In Figures 10 and 11, we can see a clear relationship between R1000 0MIS t-3 and 

type B alerts of PA (PA B) with 70% of R2-pred, slightly weaker than with R1000 1MIS 

t-3 and R1000 3MIS t-3, which have an R2-pred of 50%. With the time series with a 

delay of less than three months, which is t-1 and t-2, there was no significant 

relationship; as shown by the analysed data. 

 

 
Figure 10. Quality feedback for all models. From Jan 2017 with lagged variables 
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Figure 11. Scree Plot from Jan 2017. 70% of variance in the two first components 

Figures 12 to 14 show the relationship between customer claims and PA in terms of 

quality feedback. 

 
Figure 12. PA TGW B vs. customer claims at 0MIS after 3 months. R2-pred = 62% 

 
Figure 13. PA TGW B vs. customer claims at 1MIS after 3 months. R2-pred = 41% 
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Figure 14. PA TGW B vs. customer claims at 3MIS after 3 months. R2-pred=32% 

The main interpretation of these results is that it takes around three months to 

provide feedback to the product audits. In addition, failure modes claimed by 

customers at 1MIS and 3MIS do not feed back with the same efficiency to product 

audits as those at 0MIS. This could be because these failure modes are not based on 

verifications in the production plant, but in special actions to increase the robustness of 

the product or in verifications related to reliability. In addition, these failure modes are 

sometimes latent or functional problems that cannot be detected in regular internal 

inspections, but only in product audits. 

Negative values of PA TGW B are not possible, but the negative coefficient tells us 

that before R1000 0MIS reaches zero, PA must be zero. This means that product audits 

do not capture all failure modes. Only after a certain value of R1000 0MIS do product 

audits detect those failure modes three months later. 

Before adjusting the simple regression models, a multiple linear regression (MLR) 

model was tested that included all the variables in the three different MIS (R1000 

0MIS, R1000 1MIS and R1000 3MIS) and the quadratic terms. This model was ruled 

out due to a much lower R2-pred than the SLR models. In addition, the variance 

assumptions and the independence of the residuals were verified to validate the 

regression model. 

The model PA TGW B = -24.31 + 11.99 R1000 0MIS t-3 was chosen as the only 

model valid from a systemic and structural point of view. The reasons were the 

following: 

- When applying MLR and reducing the model using the stepwise algorithm, 
only the R1000 0MIS term remains in the model. Such a result was replicated 
for the model with and without constant – as well as when using standardised 
variables and absolute scales. Therefore, the conclusion was always the same – 
only R1000 0MIS remained in the model. 



- The coefficient of R1000 0MIS is greater than the others, which also means 
greater sensitivity and power of explanation. The same occurred when using 
standardised variables. 

- It makes physical sense that the 0MIS warranty claims explain most of the PA 
defects. 

- The direct correlation between the PA indicators and 1MIS & 3MIS is lost 
according to the study period, which is also supported by the evidence shown in 
Figures 2, 4 and 16. In Figure 16, we can see that there is no clear correlation 
between PA and the warranties, but the correlation between 1MIS and 3MIS is 
never lost regardless of the study period (see also Figures 2 and 4). 

However, the fact that, although only in some specific periods, PA KPIs may have 

some relation with R1000 1MIS and R1000 3MIS could be interesting and may be the 

objective for a future study on this topic. 

Figure 15 summarises the three models in one picture. 

 
Figure 15. Regression models for PA TGW B vs. R1000 at 1, 2 and 3MIS t-3 

Figure 16 shows the graphic confirmation of the correlation between PA TGW B and 

R/1000 0 MIS. 



 
Figure 16. Correlation between PA TGW B & R1000 0MIS with 3-month delay (t-3) 

 

Figure 17. Correlation among PA TGW B, R1000 1MIS and R1000 3MIS with 3-month delay (t-3) 



Figure 17 clearly shows the absence of correlation between PA indicators and R1000 

1MIS & R1000 3MIS. In addition, the correlation between R1000 1MIS and R1000 

3MIS is again evident and has been confirmed in each study period, which means that it 

is a solid structural relationship. 

To validate the models, the assumptions of independence and equality of variance of 

the residuals were verified. In addition, the presence of autocorrelation of up to 12 

delays in the predictors was ruled out. 

It is interesting to quantify in a time period the ability to capture the modes of failure 

of warranty claims. The time period has been estimated as approximately three months 

and the ability to capture faults per PA could be estimated at a rate of 12 for R1000 

0MIS, 2.6 for R1000 1MIS, and 1.23 for R1000 3MIS, which are the coefficients of the 

regression models shown in Figures 11 to 13. The higher the MIS, the lower the 

detection capacity in PA. Such a conclusion derived from the models is logical, since 

the higher MIS failure modes are more difficult to detect within the inspections of the 

production plant. 

4.2. Results by model 

4.2.1. Quality predictability 

Analysis by model gives similar results, although less consistent in terms of stability 

and the power of relationships between variables. This first unexpected result is 

probably because the uncertainty due to working with proportions of internal and 

external metrics is much greater than that of continuous variables. This uncertainty 

increases as the proportion or size of the sample decreases, so for models with small 

proportions (defect rate) and/or small production volumes (sample size), the 

uncertainty of the data increases. Therefore, more data points may be necessary to 

establish relationships based on regression / correlation techniques. 

The above-mentioned characteristic, confirmed by the results, has meant that 

conclusions of the aspect of quality predictability were only obtained when the 

relationships between the variables were significant enough. Therefore, it was not 

possible to obtain any meaningful model for the aspect of quality feedback when the 

KPIs were split by model.  

Figure 18 shows the regression model for the production model A. We can see a 

similar relationship between R1000 0MIS and EL D1000. Although there are more 



relationships between internal and external metrics, the relationship shown is the 

strongest, regardless of the study period. The regression coefficient is around 0.0206. 

 

 
Figure 18. Data for the period from Jan’17 to Apr’18. R2-pred ≈ 60% 

For production model B, it was not possible to confirm such relationships between 

internal and external metrics. Figure 19 shows some new metrics between different 

MIS, which, interestingly, were different from what was seen when working with all 

the models. 0MIS warranties (R1000 0MIS) had a moderate to strong correlation with 

1MIS and 3MIS (R1000 0MIS & R1000 3MIS), with a Pearson correlation coefficient of 

0.8 (R2 ≈ 64%) for the case of 1MIS and 0.7 (R2 ≈ 50%) for 3MIS. A more detailed 

analysis of the failure mode could establish physical reasons for these relationships if it 

is confirmed that some related failure modes are appearing in different MIS (at least in 

this production model). 

 

 
Figure 19. Production model B bi-plot of PCA for the period starting in Aug 2017 



Figure 20 illustrates the results for the production model C. A similar relationship 

was found between R1000 0MIS and D1000, although its coefficient was only 0.7% 

and its R2-pred was slightly greater than 30%. Therefore, it seemed to confirm the 

relationship between internal and external metrics with a moderate quality of the 

regression model. 

 

 
Figure 20. Regression of R1000 0MIS vs D1000 – R2-pred ≈ 30% 

Figure 21 shows the results for the production model D. Two relationships between 

the metrics were found, although the most interesting is that this it is the only model 

that establishes a correlation of R1000 3MIS and an internal metric. It was the ONLINE 

metric expressed as a percentage. This relationship had a Pearson correlation 

coefficient of 0.636 (R2-pred of 20%), which can be considered moderate to weak, but 

with a p-value of 0.019 – although its stability would not be particularly good, and it 

would have a high-risk level if used to make predictions. Despite this, there were 

additional correlations that, although weak, were present in other metrics: such as EL 

with a Pearson coefficient of -0.539 and a p-value of 0.057. Based on these findings, 

we could say that production model D would be the only model where it is possible to 

detect some failure modes that appeared after three months in service (3MIS). 



 
Figure 21. Regression of R1000 3MIS vs ONLINE – R2-pred ≈ 21% 

5. Conclusions 

Based on the results, the main conclusions are summarised in the following lines. 

Two different sections are presented for the aspects of quality predictability and quality 

feedback. 

The executive board of the company followed most of the recommendations made in 

phase 6 of this study, which are included in this section. For example, the FTT was 

included in the balanced scorecard for all production facilities around the world and 

strategies were initiated to improve the FTT. The improvement actions derived from 

these strategies caused the customer quality complaint metrics to improve within a few 

months. Due to this, the FTT was considered as a strategic KPI. In addition, the 

balanced scorecard was simplified by eliminating the KPIs of R1000 3MIS and the 

quality improvement teams began to only monitor R1000 1MIS and this implied a 

faster reaction time that also meant improvements in the quality KPIs related to 

customer satisfaction.  

5.1. Conclusions on quality predictability 

Conclusions on the aspect of the predictability of the QMS can be summarised as 

follows: 

- The stable (structural) and powerful relationship between FTT and R1000 
0MIS was confirmed regardless of the study period and even when using 
data from different model years.  

- Such a strong correlation implies an excellent calibration between the 
internal quality controls and the VoC. 



- Every 2% improvement in FTT equals approx. 0.4 R1000 0MIS. With FTT = 
78.94% it is possible to reach the ideal zero R1000 at 0MIS (assuming the 
existence of a linear model). 

- There was another strong and stable correlation between R1000 1MIS and 
R1000 3MIS. Since ρ>0.9, both indicators can be considered as different 
measures of almost the same thing. Therefore, it would make sense to use 
only one KPI for the balanced scorecard. The best option is to maintain 
R1000 1MIS and eliminate R1000 3MIS, since the KPIs of R1000 1MIS are 
obtained two months previously and the reaction to a deterioration of the 
metric would be faster. 

- The general leakage of defects can be quantified as between 0.8% and 0.9%, 
which is much better than what is considered a good leak, namely 10% for a 
Type II error (β Risk). 

- This study proved that statistical analyses of KPIs can be used to diagnose 
the predictability of quality systems in a manufacturing environment. 

- Since this method uses statistical tools with real data, it has the limitation of 
needing a sufficiently sized sample. Future research may focus on changing 
the data period (measure more frequently) to overcome or minimise this 
limitation. 

- Future research can focus on the generalisation of the method by applying it 
to the other six management systems. 

5.2. Conclusions on quality feedback 

Conclusions about the feedback ability of the quality system can be summarised as 

follows: 

- It took three months to provide feedback to the product audits (60 days for 
data maturity plus 30 additional days for the feedback process itself). 

- The strength of the relationships and their stability weakened as we increased 
MIS. Only the relationship between PA and R1000 0MIS remained 
independent of the study period. Therefore, the capacity and stability to 
capture warranties in product audits was reduced as MIS increased 

- Product audits were working as a calibrator of the internal quality system but 
not as a predictor. 

- It was recommended that R1000 1MIS appear in the balanced scorecard 
instead of R1000 3MIS. The reaction would be two months faster as R1000 
1MIS and R1000 3MIS were strongly correlated. 

- This study proved that the statistical analysis of KPIs can be used to 
diagnose how the quality management system works in terms of feedback. 

- Future research may focus on the generalisation of the method by applying it 
to other sectors beyond the manufacturing environment. 

- Since this method uses statistical tools with real data, it has the limitation of 
needing enough sample. Future research may focus on changing the data 
period (measuring more frequently) to overcome or minimise this limitation. 



6. Abbreviations 

- ACF: autocorrelation function 

- ANN: artificial neural network 

- ANP: analytical network process 

- BSC: balanced scorecard 

- CB-SEM: covariance-based structural equation modelling 

- EL: end of line 

- FA: factor analysis 

- KPI: key performance indicator 

- MIS: months in service 

- MLR: multiple linear regression 

- PA: product audit 

- PACF: partial autocorrelation function 

- PCA: principal component analysis 

- PLS: partial least squares 

- PLS-SEM: partial least squares structural equation modelling 

- PMS: performance management system 

- QMS: quality management system 

- SLR: simple linear regression 

- SME: subject matter expert 

- VIF: variance inflation factor 

- VoC: voice of customer 
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