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ABSTRACT Anomalies represent deviations from the intended system operation and can lead to 

decreased efficiency as well as partial or complete system failure. As the causes of anomalies are 

often unknown due to complex system dynamics, efficient anomaly detection is necessary. 

Conventional detection approaches rely on statistical and time-invariant methods that fail to address 

the complex and dynamic nature of anomalies. With advances in artificial intelligence and increasing 

importance for anomaly detection and prevention in various domains, artificial neural network 

approaches enable the detection of more complex anomaly types while considering temporal and 

contextual characteristics. In this article, a survey on state-of-the-art anomaly detection using deep 

neural and especially long short-term memory networks is conducted. The investigated approaches 

are evaluated based on the application scenario, data and anomaly types as well as further metrics. 

To highlight the potential of upcoming anomaly detection techniques, graph-based and transfer 

learning approaches are also included in the survey, enabling the analysis of heterogeneous data as 

well as compensating for its shortage and improving the handling of dynamic processes. 

Keywords Anomaly Detection, Artificial Intelligence, Autoencoder, Context Modeling, Long 

Short-Term Memory, Transfer Learning 

 

1. INTRODUCTION 

Anomalies pose a problem in various application areas, such as manufacturing, medical or communication 

systems. They often lead to a decrease in system performance and can cause instabilities and failure. Often, the 

causes of anomalies are unknown effects within complex systems. Hence, the capability of understanding and 

detecting these underlying effects with the aid of data is the key to ensure the desired outcome of complex technical 

systems. Due to the research progress in the field of machine learning, a wide range of new approaches for anomaly 

detection has been proposed in recent years. Different architectures of deep neural networks, and in particular, 

architectures based on Long Short-Term Memory (LSTM), have been designed proving to be capable of solving 

a variety of complex detection tasks, as is described in [1] or [2]. 

Existing high-profiled state-of-the-art surveys on anomaly detection techniques, such as [3] and [4], only 

marginally consider neural-network-based approaches. Current research developments regarding deep neural 

networks and LSTM architectures for anomaly detection are oftentimes not incorporated. The surveys mainly 

distinguish between statistical, classification-based, clustering-based and information-theoretic approaches. Thus, 

techniques based on the principal component analysis (PCA), the support vector machine (SVM), the k-nearest-

neighbor (k-NN) algorithm or different types of correlation analysis constitute a major part of the investigations. 

The common ground for all approaches is their aim to detect anomalies based on static and time-invariant models 

[3, 4]. For the detection of dynamic and time-variant anomalies, additional techniques such as sliding windows are 

utilized and combined with the aforementioned approaches. In consequence, the approaches do not include models 

to adequately capture time-variant system dynamics and therefore cannot characterize anomalous contexts. To 

tackle the problem of detecting complex contextual anomalies with dynamic and time-variant characteristics, new 

promising recurrent neural network (RNN) architectures emerged. Survey studies regarding such deep learning 

approaches for anomaly detection have been conducted in recent years: In [5], advantages and disadvantages as 

well as computational complexity of (semi-)supervised, unsupervised and hybrid deep learning approaches are 

described. However, a classification of different LSTM approaches is missing and a detailed investigation of 



                          Preprint: A Survey on Anomaly Detection for Technical Systems using LSTM Networks 

 

LSTM model architectures, scenario descriptions or detection mechanisms is not part of the work. An architectural 

analysis of deep-learning-based anomaly detection approaches with a focus on Boltzmann machines, 

Autoencoders (AE) and RNN is given by [6]. The survey conducted in [7] classifies existing detection approaches 

from the viewpoint of time series characteristics, namely approaches for uni- and multivariate time series data. 

LSTM approaches are mentioned in all of the existing deep learning surveys, but they are neither in central focus 

nor further classified and analyzed regarding architecture and detection mechanism. However, due to the recent 

emergence of different LSTM approaches that are widely used for different anomaly detection purposes, the 

present paper aims to present a detailed overview on anomaly detection for technical systems with a clear focus 

on such LSTM approaches.    

The objective of this article is to give an overview of promising LSTM based approaches for anomaly detection 

with an additional focus on upcoming graph-based and transfer learning approaches. All approaches are evaluated 

based on a set of application-oriented criteria such as the detection capabilities regarding temporal anomalies, 

achieved accuracies and use cases addressed in the original publication. 

This article is organized as follows: Chapter 2 introduces different anomaly types such as point, collective and 

contextual anomalies and gives an overview on temporal context modeling. Chapter 3 presents the investigated 

deep neural network and LSTM approaches for anomaly detection. The chapter is sectioned into regular LSTM as 

well as encoder-decoder-based and hybrid approaches. Chapter 4 then gives an overview on recent trends in deep-

learning-based anomaly detection using graph-based and transfer learning approaches. Chapter 5 discusses the 

results of this survey. Chapter 6 concludes this article and points out new research directions. 

2. ANOMALY CLASSIFICATION 

Anomalies occur in various domains and are therefore subject to intensive research in a wide range of different 

application areas, such as in network security [4], internet of things [7], medicine [8] or manufacturing systems 

[9]. The essential common ground for all areas is the understanding of an anomaly as a deviation from the rule or 

of an irregularity that is not considered as a part of the normal system behavior [3, 5]. This matches with the 

definition in [8] where anomalies are described as abnormalities, deviants or outliers. Anomalous dynamics are 

mostly unknown and occur inadvertently, lead to instabilities and are therefore drivers of increased inefficiencies 

and system errors. 

The taxonomy of anomalies applies for all investigated application areas: It can be characterized based on various 

aspects such as focus point (e.g. a certain actuator of a production machine), measurability, (non-)linearity and 

temporal behavior. Depending on the application, different focus points are possible. It can imply e.g. a direct 

affectation of the whole system’s dynamics or an interference on the level of (individual) sensors and actuators. 

Anomalies can either be directly measurable or they have to be observed using some kind of indirect state 

estimation. Furthermore, they can either show linear or nonlinear characteristics. In the scope of the investigated 

literature, anomalous system dynamics being detected and modelled using LSTM networks are rarely time-

invariant due to the properties of the LSTM cell. Regarding time-variant dynamics, it can be distinguished between 

stationary and non-stationary [10] or short-term and long-term behavior [11]. 

For the detection of such irregularities, originally, the main research focus was on stochastic methods for the 

detection of outliers, or so-called point anomalies. Thus, probability densities have been calculated for target 

parameters and defined percentiles have been declared as outliers and thereby as anomalies of a certain degree 

[12].  

The overview of stochastic methods for anomaly detection presented in [3] introduces further types of anomalies 

that occur in time series data of technical systems. In consequence, collective and contextual disturbances are 

defined as further anomaly types in addition to the statistically described outliers. Fig. 1 illustrates the three 

anomaly types being incorporated into a univariate time series according to [13]. 

Collective anomalies can be characterized as a group of data vectors where each individual data vector is in 

tolerance, but the composition of the group indicates an irregularity. Hence, the internal structure of the data 

sequence determines the degree of deviation. In [14], collective anomalies are defined for the case of multivariate 

time series. A multidimensional metric based on the degree of deviation of all single data vectors of the group is 

proposed for their detection. Their significance is modeled in a time-variant manner with an exponentially 

decaying function. If the collective metric based on all single deviations exceeds a dynamic threshold, a collective 

anomaly is detected. 

Contextual anomalies can be characterized as individual data vectors (being no point anomalies) or groups of 

data vectors (being no collective anomalies) that are in tolerance but indicate an irregularity in the scope of the 

specific surrounding data vectors or groups of data vectors, hereby referred to as context. 
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Applying contextual anomaly detection can contribute to a better anomaly detection by emphasizing or discarding 

a certain anomaly, thereby reducing false positives or by finding the root cause for a certain anomaly with the help 

of meta data, also referred to as anomaly attribution [15,16,17]. 

Therefore, in contrast to collective anomalies that are described by their internal structures or content, the detection 

of contextual anomalies highly depends on the short-term and long-term characteristics of the surrounding external 

data structures. With regard to multivariate time series, a context of a data vector or a group of data vectors can be 

interpreted as a union of all surrounding data vectors that lay in a defined time horizon. Distance-based metrics 

are primarily utilized for the characterization of contextual anomalies. This can be realized, for instance, based on 

a sliding window technique, of which the distance metric to a previous window is recalculated with every new 

data sample. The excess of dynamic thresholds indicates contextual anomalies [18]. Otherwise, the database of 

known contexts is further expanded. Depending on the application domain, context can have different definitions, 

scopes and dimensions. It can for example refer to temporal, spatial or spatio-temporal as well as further relevant 

environmental attributes. For the domain of discrete manufacturing, it can encompass data about the manufacturing 

process and the associated process parameters. 

Contextual anomaly detection represents a twofold challenge: Firstly, a shared context has to be defined and 

detected and, secondly, anomalous data points need to be identified within it. Therefore, contextual – sometimes 

referred to as external – attributes and behavioral attributes have to be identified [16]. 

3. ANOMALY DETECTION WITH LSTM NETWORKS 

This chapter begins with a short introduction of the LSTM cell to provide a basic understanding for network 

architectures and detection mechanisms of the LSTM networks discussed in the subsequent chapters. The LSTM 

cell has been developed by [19] to tackle the vanishing-gradient-problem that occurs with conventional RNN and 

leads to the inability to learn long-term dependencies. The vanishing-gradient-problem describes the circumstance 

where parts of weights in RNN tend to stop changing during the learning process. In consequence, a prioritization 

of current information could lead to neglecting past events. Thus, relations that recur over a long period of time 

(long-term dependencies) cannot be adequately learned. LSTM is constructed to control the whole information 

flow within neurons. For this purpose, a gating mechanism is introduced that controls the process of adding and 

deleting information from an iteratively propagated cell state. Thus, the process of forgetting can be controlled, 

and a defined memory behavior is realized to model 

both, short-term as well as long-term dependencies. 

The LSTM cell architecture is depicted in Fig. 2. 

In contrast to conventional RNN, the output of the 

neuron h(t) is not directly constructed with inputs x(t) 

and previous outputs h(t – 1), but based on the cell 

state z(t). The cell state on the other hand is determined 

by the LSTM gating mechanism. Vector f(t) as the 

output of the forget gate and vector n(t) as the output 

of the add gate iteratively adapt the cell state to control 

the memory behavior. In the depicted LSTM 

architecture, an inverse connection between these two 

gates is used to limit the memory capacity to a certain 

degree. Hence, with every iteration, information is 

added and deleted from the cell state. This procedure 

 

FIGURE 1.  Point anomaly (left), collective anomaly (middle) and contextual anomaly (right) according to [13] 

          

FIGURE 2.  LSTM cell with inverse mapping between forget and 
add gate according to [19]  
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is driven by the circumstance that no memory is infinite and that the human memory as a role model also possesses 

a limited capacity. The output gate further infers the updated cell state to calculate the desired output. Therefore, 

the most recent inputs do not necessarily dominate the generation of the output signals, because the cell state 

encapsulates a reduced and weighted representation of historic input information. This information is mapped onto 

the output. Hence, the influence of e.g. important past events is incorporated in the projection of the output and 

the negligence of current inputs with low information density is feasible. The gates themselves are constructed 

based on current inputs and past outputs. 

The LSTM cell can be incorporated into a wide range of neural network architectures. An overview of researched 

approaches is given in Table 1. In the further course of this article, we focus on the investigation of network 

architectures that are based on LSTM cells and that are developed to solve defined anomaly detection tasks. The 

subsequent chapter is divided into encoder-decoder-based, hybrid, graph-based and transfer learning approaches. 

3.1 LSTM-BASED APPROACHES 

LSTM networks are predestined to detect contextual anomalies due to their ability to learn temporal relations and 

to capture them in a low-dimensional state representation. Those relations can concern stationary and non-

stationary dynamics as well as short-term and long-term dependencies. LSTM networks are particularly suitable 

for modeling multivariate time series and time-variant systems [20]. Hence, the deviation of real system outputs 

from expected outputs being predicted by the network can be utilized for anomaly detection purposes. LSTM-

based approaches have proven to show excellent anomaly detection capability, such as in the fundamental work 

of [21]. The paper presents a stacked LSTM architecture to detect anomalies within time series data. In contrast to 

robust or denoising LSTM AE, no dimensionally reduced features are utilized as inputs. The detection is realized 

by evaluating the deviation of predicted outputs based on a variance analysis. In [22], a deep LSTM network is 

used as predictor of the regular bus communication behavior in vehicles. Significant deviations are detected using 

a dynamic threshold to detect anomalous communication behavior caused by cyber-attacks. In [23], a compound 

architecture is presented. Here, the LSTM network predicts regular system dynamics and a support vector machine 

is applied as classifier for anomalies to realize an adaptable and self-learning detection mechanism. Thus, temporal 

anomalies in multivariate data can be detected in a semi- or unsupervised manner. An approach to detect collective 

anomalies with LSTM networks is presented in [24]. The novelty consists of an evaluation of multiple one-step 

ahead prediction errors in contrast to evaluating each time step separately. LSTM networks enhance the detection 

accuracy by predictively modeling stationary and non-stationary time dependencies. Thereby, an efficient 

detection of temporal anomaly structures is realized. In [25] a real-time detection approach is realized based on 

two LSTM networks. One to model short-term characteristics and is able to detect single upcoming anomalous 

data points within time series and the other to control the detection based on long-term thresholds.  

3.2 ENCODER-DECODER-BASED APPROACHES 

In the majority of uses cases investigated in various application fields, such as manufacturing or communication, 

acquired data neither possesses any labels, nor are information models describing the data context available. In 

consequence, unsupervised learning methods are necessary to realize an indirect labeling of the data and to thereby 

detect anomalies. In particular, novel neural network approaches with an encoder-decoder architecture that have 

been developed in recent years show an excellent applicability for unsupervised detection tasks. AE networks are 

an example where the encoder part aims to learn a lower dimensional representation of the input data and the 

decoder part targets a reconstruction of these compressed features [26]. Hence, the AE is trained with data that 

represents normal system dynamics and learns how to compress and reconstruct this data. In contrast, the 

processing of anomalous data with the trained AE results in a reconstruction error. The error dynamics can be 

utilized to generate an anomaly detection mechanism, as presented in [27] for the example of a robust deep AE. In 

this case, a principal component analysis and regularization layers have been integrated in the AE to denoise the 

input data and to realize a robust detection behavior. To efficiently extract anomalous dynamics, the reconstruction 

metric consists of two parts. A similar approach is pursued with the contractive LSTM AE described in [28]. One 

part of the reconstruction metric evaluates the ability to separate anomalies such as outliers from the normal data 

and the other one evaluates the ability to discover relations within the data. In addition, [28] describes a denoising 

LSTM AE that aims to optimize prediction and detection accuracy by extracting underlying and uncorrupted 

relations in disturbed data. 
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 TABLE 1.  Overview of surveyed regular LSTM, encoder-decoder-based and hybrid approaches 

 Input Model Evaluation 

Source Data Type Labels 
Features 

Extracted 

Anomaly 

Type(s) 

Archi-

tecture 

Adap-

tiveness 
Scenario Metrics Performance 

Malhotra 

et al. (2015) 

[21] 

Multivariate 
time series 

No No Contextual 
Stacked 
LSTM 

No 

Several, 

such as 
power 

demand 

Precision, 

recall, F1-

score 

Higher than 
RNN 

Ergen et al. 

(2017) 
[23] 

Multivariate 

time series 
Both No 

Collective, 

contextual 

Stacked 

LSTM-
SVM 

No 

Several, e.g. 

HTTP 
requests 

AUC, 
ROC, 

Sign 

functions 

Higher than 

SVM and 
SVDD 

Bontemps et 

al. (2016) 

[24] 

Univariate 
time series 

No No Collective LSTM No 

Intrusion 

detection for 

PC networks 

Average 
relative 

error, 

danger 
coefficient 

No 
comparison 

with other 

methods 
carried out 

Lee et al. 

(2020) 

[25] 

Univariate 
time series 

No No 
Outlier, 

collective 
Dual 

LSTM 
Yes 

Multiple 

domain 
streaming 

data 

Precision, 

recall, F1-

score 

Higher than 

competitors, 
real-time-

capable 

Zhou et al. 

(2017) 
[27] 

Image 

sequences 
Yes 

Principal 

components 
Outlier 

Robust 

deep 
LSTM AE 

Yes 
Image 

processing 
L1-norm 

High on 

benchmark 
datasets 

Naseer 

et al. (2018) 
[28] 

Multivariate 

time series 
Yes 

Median and 

interquartile 
range 

Outlier, 

collective, 
contextual 

Contrac-

tive LSTM 
AE 

No 

Intrusion 
detection for 

computer 

networks 

AUC, 

ROC, 

precision, 
recall, 

accuracy 

Higher than 

conventional 
ML methods 

(ELM, k-

NN, RF, 
SVM) 

Park et al. 
(2018) 

[29] 

Multivariate 

time series 
No No 

Outlier, 

contextual 

Variational 

LSTM AE 
Yes 

Environ. 

anomalies in 

robot 
systems 

AUC, 

ROC, 

recons. 
error 

Higher than 
HMM, 

SVM, AE 

Lindemann 

et. al. 
(2020) 

[30] 

Multivariate 
time series 

No Yes 

Outlier, 

collective, 

contextual 

Observer-

based 

LSTM AE 

Yes 

Discrete 

manu-

facturing 

Recons. 
error 

No 
comparison 

with other 

methods 
carried out 

Fernando et 
al. (2017) 

[32] 

Image 

sequence 
No No 

Outlier, 

collective 
LSTM-AE No 

Pedestrian 
trajectory 

prediction 

Spatial 
error 

metrics 

No 

comparison 
with other 

methods 

carried out 

Loganathan 
et al. (2018) 

[33] 

Univariate 

time series 
No No Outlier 

Seq2Seq 

LSTM 
No 

Intrusion 

detection for 

computer 
networks 

Accuracy, 
sequence 

length 

Higher than 

competitor 

Zenati et al. 
(2018) 

[37] 

Several No 
Scaling, 
one-hot 

representation 

Outlier, 
collective, 

contextual 

GAN + 

LSTM 
No 

Several, 

such as 

image 
processing 

Precision, 
recall, F1-

score 

Higher than 

VAE, SVM 

Kim et al. 

(2018) 

[38] 

Multivariate 
time series 

No 
Based on 

convolution 

Outlier, 

collective, 

contextual 

CNN + 
LSTM 

No Web traffic 
Cross 

entropy 

Higher than 

RF, MLP, 

KNN 

Ding et al. 

(2020) 
[39] 

Multivariate 

time series 
No No Contextual 

LSTM + 

EWMA 
No 

Industrial 

robotic 
manipulators 

Precision, 

recall 

No 

comparison 

with other 
methods 

carried out 
Legend: ’Data Type’ refers to the type and dimensionality of input data, e.g. multi-variate time-series or RGB images. ‘Labels’ details whether the 
input data is labeled, e.g. as ‘normal’ or ‘anomalous’. ‘Features Extracted’ details whether the input data has been subject to a feature extraction 
process and with what method such a process would have been carried out. ‘Anomaly Type(s)’ refers to the type(s) of anomalies an algorithm can 
detect. See chapter 2 for details on those types. ‘Architecture’ refers to an algorithm’s network architecture, e.g. the type of cells used. 
‘Adaptiveness’ refers to an algorithm’s capability to expand its knowledge during operations, e.g. to detect previously unknown anomalies. ‘Scenario’ 
details the use case on which an algorithm’s performance is evaluated. ‘Metrics’ details the metrics used for evaluating an algorithm’s performance. 
Table 2 lists the most significant metrics used in the following chapter’s approach evaluations. ‘Performance’ details an algorithm’s performance 
compared to other approaches evaluated on the evaluation scenario. 
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The composition of LSTM and AE allows learning short-term and long-term dependencies in terms of temporal 

lower-dimensional features and thereby provides a found basis for detecting complex time-variant anomalies. 

Based on the described work, further extensions and studies have been conducted on anomaly detection with 

LSTM AE. In [29], a variational LSTM AE is introduced for anomaly detection purposes. The scheme utilizes 

probabilistic projection mechanisms in the encoder and decoder part. Thereby, input sequences are transformed to 

lower-dimensional feature distributions and reconstructed based on a defined feature value. The approach applies 

a log-likelihood-based anomaly detection by calculating a log-likelihood score for real and reconstructed outputs. 

In addition, the trained encoder can be used separately for probabilistic dimension reduction purposes. Another 

approach is presented in [30] where an LSTM AE is used to model the normal system behavior of discrete 

manufacturing processes. The trained decoder part of the network is utilized as inverse process model to detect 

anomalies by a disturbance observer-based comparison of real and reconstructed actuating variables. Hence, 

effects of different characteristics, such as stationary and non-stationary anomalies, that disturb the actuation 

systems can be detected. 

In addition to AE, sequence-to-sequence 

(Seq2Seq) LSTM networks possess an 

encoder-decoder structure and have been 

used for anomaly detection tasks [31]. This 

network type is utilized in [32] to detect 

anomalies based on the cell states being 

propagated through the network. Unknown 

cell states and highly deviating copying 

vectors between encoder and decoder layer 

are considered as anomalies. They are 

further evaluated by a postprocessing 

clustering algorithm. Another Seq2Seq 

approach is described in [33] where 

different anomaly types can be detected by modeling and predicting a variety of attributes. This approach has 

outperformed the stacked LSTM by [21] in the scope of an empirical study on a benchmark data set. An approach 

to enhance the generalization and extrapolation abilities of Seq2Seq LSTM networks for an optimized anomaly 

detection is presented by [34]. The proposed architecture is illustrated in Fig. 3. It consists of sparsely connected 

encoders and decoders containing skip connections that depend on the information density in the input sequences 

and enable a more flexible propagation of the cell state. Multiple encoders use the same copying layer to propagate 

a reduced feature vector to the decoder. This procedure prevents overfitting and leads to better generalization 

characteristics. The cost function for detecting anomalies minimizes the entirety of all reconstruction errors and 

contains a penalty term to control the information flow in the joint copying layer. 

3.3 HYBRID APPROACHES 

The approaches described in this chapter have the commonality of using a composition of two neural networks in 

the scope of a compound anomaly detection architecture. Thus, these hybrid approaches consist of an LSTM and 

a second network. Primarily, one copes with the task of predicting process dynamics and the second detects 

TABLE 2.  Detection approach performance metrics 

Metric Definition 

Precision Precision measures the number of actual anomalies being detected in relation to all detected anomalies. 

Recall Recall measures the number of detected anomalies in relation to all actual anomalies. 

Accuracy 
Accuracy measures the number of actual anomalies being detected and normal data instances being 

classified as such in relation to the entire data set 

F1-Score 
F1-Score is calculated based on precision and recall and measures the quantity of any type of false 

detections in detection mechanisms. 

Receiver operating 

characteristic curve (ROC) 

ROC describes a curve that visualizes the ratio of correctly detected anomalies against incorrectly 

detected anomalies for varying thresholds. 

Area under the curve (AUC) 
AUC Is the integral under the ROC. A high value represents a model with high recall and low false 

positive rate 

Cross entropy 
Cross entropy compares distributions in terms of a quantification of their difference. Hence, detected 

anomaly distributions can be evaluated based on known distributions of test data sets. 

 

 

FIGURE 3.  Ensemble of LSTM AE with skip connections according to [34] 
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deviations from the actual process outcome and detects anomalous dynamics. The aim of hybrid approaches is to 

benefit from the advantages of both network types while simultaneously compensating inaccuracies. The 

occurrence of local anomalies consists of deviations with regard to single or multiple data instances and is 

temporarily restricted to a fix time span. On the contrary, global anomalies primarily describe drifting deviations 

from the reference that explicitly show non-stationary long-term characteristics. In [35] a novel composition of 

stacked AE and LSTM is presented for the detection of anomalies based on unlabeled data and unknown system 

dynamics. The encoder part is constructed to process multiple sequences at every discrete time step and can either 

process raw data or reduced input features. It extracts relations by maximizing the entropy within the compressed 

information. The anomaly detector is realized using a second network in the scope of a compound architecture. 

Hence, a LSTM network is trained to identify deviation characteristics in the reconstructed feature space. A further 

example for a hybrid approach with LSTM AE is presented in [36] where it is extended by a clustering algorithm 

that characterizes reconstructed system dynamics using a state space representation. Hence, anomalous dynamics 

are identified in the case of an abrupt or drifting state transition or in the case of the creation of new states. To 

further optimize the cooperation of predictor and detector, generative adversarial networks based on LSTM are 

utilized in [37]. The network architecture consists of two interacting networks, the generator that aims to replicate 

the data of the real system and the discriminator that targets to distinguish this artificially generated data from real 

data. The generator behaves like a decoder and reconstructs real time series data whereas the discriminator 

classifies the reconstruction as originated from normal or anomalous inputs. This depends on the difficulty of 

distinguishing the reconstruction from real data. 

To enable a multidimensional anomaly detection, convolutional neural networks (CNN) and LSTM are combined 

in the method developed by [38]. The ability to efficiently compress high-dimensional data enables extracting 

dependencies in several dimensions. Thereby, the 

compound use of CNN and LSTM allows anomaly 

detection in multiple and interconnected 

dimensions such as spatial, temporal or other 

application-specific dimensions. Hence, it is 

possible to detect complex contextual anomaly 

structures by correlating different dimensions even 

if they do not show anomalous behavior in all 

dimensions. The classification is conducted based 

on the cross entropy. The approach is illustrated in 

Fig. 4. In the work of [39], LSTM is combined with 

Exponentially Weighted Moving Average 

(EWMA) and a dynamic thresholding technique. 

Temporal structures of multivariate time series are 

analyzed to extract patterns of similar 

characteristics. These patterns are continuously 

identified and evaluated. The EWMA is used in combination with the dynamic thresholding to evaluate the 

prediction results of the LSTM network. This allows the detection of anomalous structures in the data by 

investigating the prediction residuals with the aforementioned technique. A major advantage of the approach is 

the fact that all contextual anomalies of new time sequences can be identified in the scope of a single detection 

process so that a significant efficiency increase can be achieved. 

4. RECENT TRENDS IN LEARNING-BASED ANOMALY DETECTION 

In this chapter, recent trends in deep-learning-based anomaly detection are presented. They aim at expanding the 

versatility and robustness of the approaches described in chapter 3: Graph-based approaches allow for an improved 

representation of contextual information, whereas transfer learning approaches focus on the amount of data needed 

for training anomaly detection algorithms.  

4.1 GRAPH-BASED APPROACHES 

A graph is a network of vertices and edges, which can be directed or undirected with weighted or unweighted 

edges depending on the nature and the domain of data being modeled. Detecting anomalies within a graph or using 

a graph-based approach represents further promising approaches for anomaly detection. The main advantage of 

these approaches is a graph’s capability to model correlations between datapoints rather than individually 

representing them. This way, the inherent interdependencies between data, also with reference to other external 

factors can be highlighted and analyzed. Another advantage is the applicability of graphs for detecting collective 

and contextual anomalies by clustering nodes based on contextual attributes and detecting anomalous edges or 

 

FIGURE 4.  CNN and LSTM for anomaly detection according to [38] 



                          Preprint: A Survey on Anomaly Detection for Technical Systems using LSTM Networks 

 

nodes within the clusters. Graph-based anomaly detection has been present in research in the past decades, with 

mostly a focus on static graph analysis. With emerging machine learning and deep learning algorithms, 

dynamically evolving graphs over time are also considered for anomaly detection [15,16]. 

In essence, detecting anomalies within graphs requires two or three steps depending on the structure of input data. 

Fig. 5 depicts a simplified overview of the process. Initially, either data is already represented in a graph or needs 

to be modeled in one from various heterogeneous databases and data formats, where the graph schema with nodes 

and edges are defined depending on the use case. Graph models are then stored and managed within a graph 

database while being versioned based on different time instances to enable the analysis of time-based anomaly 

progression. A second step generally includes a clustering or partitioning of the graph to sub-graphs, which can be 

based on structural or temporal features as well as a combination of both. This initial graph analysis helps identify 

the network structure as well as weakly or strongly connected nodes and clusters. Furthermore, context and content 

features can be defined and detected. Building on this step, the third step requires a time-based analysis within the 

clusters to detect anomalous nodes or edges, based on the defined graph model and contextual features. To mark 

these clusters, node edges, i.e. relationships, can be iteratively assigned weights. 

The result of this described process can be further used and enhanced in different possible ways. The initially 

identified anomalous clusters can be further investigated by applying graph embeddings, i.e. transforming the sub-

graph structure to a vector representation to apply additional machine learning algorithms. Alternatively, the 

resulted features can be used as an input for LSTM networks, therefore enabling a more efficient use of them.  

Subsequently, some existing approaches in literature for graph-based anomaly detection will be presented. 

Primarily, the authors were interested in finding approaches for contextual anomaly detection for time-series data 

using graphs – preferably as a combination or extension for LSTM. Due to the lack of investigations of these 

approaches in literature, some representative approaches with varying complexity and scope have been chosen 

out, which can be seen on Table 3. 

In [40], an algorithm for detecting contextual collective anomalies is presented. Having an attributed graph as an 

input, nodes represent individual datapoints, thus behavioral attributes and edges contextual attributes. Manual 

feature selection within the graph is suggested and a Louvain clustering algorithm used. Within the clusters, an 

anomaly score was given to each node in order to detect anomalous nodes.  

In [41], contextual outliers in sensor data are detected in a graph-based approach. Behavioral attributes are given 

by temperature and humidity values, whereas the contextual attribute is represented by time. From a stored server 

dataset, a graph is created, representing each datapoint as a node and the edges based on the Euclidean distance 

and an assigned weight accordingly. Based on the graph, clusters are built with an iterative minimum spanning 

tree algorithm. Outliers are then detected using a sliding time window, where the cluster with the most data is 

considered as normal and other clusters as anomalous with a higher assigned outlier score. Training or labeling 

data are not necessary in this scenario.   

Anomalies tend to have a dynamic nature and detecting them within dynamic graphs is a challenging task, because 

not only structural and content, but also temporal features should be considered. Those can be detected by capturing 

long-term as well as short-term node patterns. 

In recent years, approaches for detecting anomalies within dynamic graphs have evolved, taking advantage of deep 

learning. Graph embeddings for instance map a graph to a vector space and analyze nodes based on their structural 

similarity. Furthermore, using graph convolutional networks (GCN) allows for an extension by extracting 

structural and content feature of nodes. Using GCN, a node’s anomalous probabilities can be propagated to 

neighboring nodes. However, there still is little consideration regarding long-term feature detection. Extending on 

GCN to consider temporal features, Zheng et al [42] build upon gated recurrent unit (GRU) for anomaly detection 

 

FIGURE 5.  Graph-based approach for anomaly detection as a pre-step to LSTM-based approaches 
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purposes. They propose an approach for detecting anomalous network edges by also using a GRU as an LSTM 

variant with a contextual attention-based model to capture short and long-term node similarities. The GCN 

therefore outputs a node state considering its structural and content features and is complemented with a GRU for 

long-term information capturing. 

In conclusion, it can be stated that encompassing further available meta-data and external attributes when detecting 

anomalies can lead to better detection results or provide more insight for understanding the causes of anomalies. 

This effect increases when combined with graph-based methods. With data being represented in a graph, contextual 

information can be used to enhance anomaly detection. Detected and evaluated anomalies can then be an input to 

an LSTM, where the highly dynamic process behavior is modeled with uncertainties. 

4.2 TRANSFER LEARNING APPROACHES 

Similar to other use cases, the widespread utilization of data-driven anomaly detection in manufacturing needs to 

overcome a major challenge: Datasets required for training such algorithms need to be large and diverse, making 

them hard to acquire [43, 44]. To overcome this challenge, transferring knowledge between several learning agents 

training on independent datasets can be a valuable approach. 

An area of research focusing on utilizing knowledge acquired while training on previous tasks to improve the 

training of a new task is the field of transfer learning [45]. Here, different approaches have been identified to solve 

this kind of problem: a) transferring either instances (or transformations thereof) of the old tasks’ datasets to the 

new one or b) (parts of) the algorithm itself (or transformations thereof). Although the former is usually easier to 

implement, it does not address the challenges named above. Therefore, only the latter shall be further considered. 

It consists of parameter transfer, a (partial) re-use of a network pre-trained on the source task, and relational 

knowledge transfer, which enhances parameter transfers with domain adaption. Both reduce the need for training 

data on the target task (see Fig. 6) [46]. 

Despite the practical application of transfer learning methods still being in its earliest stages, some exemplary 

implementations of anomaly detection algorithms can be found (see Table 4). Unfortunately, due to a lack of 

benchmark datasets, their performances are not directly comparable. 

In [47], transfer learning is used to improve anomaly detection in electricity consumption across different 

aluminum extrusion machines. A denoising AE is pre-trained unsupervisedly on a large source dataset and then 

fine-tuned on the target dataset (see Fig. 6, middle). Unfortunately, no reference values acquired with other 

algorithms are given, so that the detection performance cannot be evaluated. 

 TABLE 3.  Overview of surveyed graph-based approaches 

 Input – Graph Type Model Evaluation 

Source Data Type Labels 
Features 

Extracted 

Anomaly 

Type(s) 

Archi-

tecture 

Adap-

tiveness 
Scenario Metrics Performance 

Prado-
Romero 

et al. 

(2016) 
[40] 

Attributed 

graph and 
attribute 

identifiers 

Yes Yes 
Collective 
contextual 

Graph-
clustering 

and outlier 

score 
function 

No 

Amazon 

dataset of 
purchased 

products 

AUC 

Slightly 

higher than 
outlier 

ranking in 

clustered 
attributed 

graphs 

Haque et 

al. 

(2018) 
[41] 

Multi-
variate 

time series 

– dynamic 
weighted 

graph 

No No Contextual 

Minimum-
spanning 

tree 

clustering 
and voting 

scheme 

Yes 
Wireless 
sensor 

network 

Average 

Accuracy, 

Precision 
Recall 

No 

comparison 
with other 

methods 

carried out 

Zheng et 

al. 

(2019) 

[42] 

Time-

stamped 

dynamic 

graph 

No Yes 

Anomalous 

edges - 
outlier 

GCN with 

GRU 
No 

Directed 

network of 
messages 

AUC 

Higher 

compared 

against 3 

graph-

outlier 
algorithms 

Legend: ’Data Type’ refers to the type and dimensionality of input data, e.g. multi-variate time-series or RGB images. ‘Labels’ details whether the 
input data is labeled, e.g. as ‘normal’ or ‘anomalous’. ‘Features Extracted’ details whether the input data has been subject to a feature extraction 
process and with what method such a process would have been carried out. ‘Anomaly Type(s)’ refers to the type(s) of anomalies an algorithm can 
detect. See chapter 2 for details on those types. ‘Architecture’ refers to an algorithm’s network architecture, e.g. the type of cells used. 
‘Adaptiveness’ refers to an algorithm’s capability to expand its knowledge during operations, e.g. to detect previously unknown anomalies. ‘Scenario’ 
details the use case on which an algorithm’s performance is evaluated. ‘Metrics’ details the metrics used for evaluating an algorithm’s performance. 
Table 2 lists the most significant metrics used in the following chapter’s approach evaluations. ‘Performance’ details an algorithm’s performance 
compared to other approaches evaluated on the evaluation scenario. 
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In [48], transfer learning is used to improve anomaly detection in the operation of service elevators by allowing 

for differences in the type and number of sensors at different operating locations. This implementation relies on 

one-dimensional CNNs for each sensor to extract features. Those features are then aggregated and classified by 

different kinds of neural networks, among them LSTM, GRU and RNN (see Fig. 6, left). The ensuing analysis is 

methodologically very thorough, considering multiple distributions of ‘normal’ and ‘anomalous’ samples as well 

as different algorithms on this very elaborate application scenario. Although the accuracy achieved by the set of 

proposed algorithms is very high, unfortunately, no competing approaches are tried on the dataset. 

In [49], transfer learning is used to improve anomaly detection on process sequences across different production 

modules. Here, the last encoding and decoding layer of a pretrained LSTM-based AE are re-trained on the 

respective target datasets. This allows for a swift adaption of a roughly pre-trained algorithm to the different 

production modules for which only small, normally insufficient datasets are available. Although showing better 

performances than conventional deep learning algorithms, the informative value is limited due to the simple 

process sequence dataset being far from realistic. 

 TABLE 4.  Overview of surveyed transfer learning approaches 

 Input Model Evaluation 

Source Data Type Labels 
Features 

Extracted 

Anomaly 

Type(s) 

Archi-

tecture 

Adap-

tiveness 
Scenario Metrics Performance 

Liang et 

al. (2017) 
[47] 

Uni- 

variate 
time series 

No No Outlier 
Denoising-

AE 
Yes 

Electricity 
consumption 

False rate, 

missing 
rate 

No 
comparison 

with other 
methods 

carried out 

Canizo et 
al. (2019) 

[48] 

Multi- 
variate 

time series 

Yes No 
Outlier, 

collective, 

contextual 

CNN + 

varr. 
Yes 

Service 
elevator 

operation 

Precision, 
recall, F1-

score 

No 

comparison 
with other 

methods 

carried out 

Hsieh et 
al. (2019) 

[49] 

Multi- 
variate 

time series 

No No 
Collective, 

contextual 

LSTM + 

AE 
Yes 

Simple 
production 

process 

Precision, 
recall, F1-

score 

Higher than 

statistical 

methods or 
CNN 

Tariq et 

al. (2020) 

[50] 

Multi- 

variate 

time series 

Yes No 
Collective, 
contextual 

Conv-
LSTM 

Yes 

Intrusion 

detection on 

CAN 

Precision, 

recall, F1-

score 

Higher on 

unknown 

anomalies 
than SVM, 

IF and 

eRNN 

Maschler 

et al. 

(2021) 
[51] 

Uni- 
variate 

time series 

Yes No 
Outlier, 

collective, 

contextual 

LSTM No 
Discrete 
manu-

facturing 

Accuracy 
Higher than 
non-transfer 

approach 

Legend: ’Data Type’ refers to the type and dimensionality of input data, e.g. multi-variate time-series or RGB images. ‘Labels’ details whether the 
input data is labeled, e.g. as ‘normal’ or ‘anomalous’. ‘Features Extracted’ details whether the input data has been subject to a feature extraction 
process and with what method such a process would have been carried out. ‘Anomaly Type(s)’ refers to the type(s) of anomalies an algorithm can 
detect. See chapter 2 for details on those types. ‘Architecture’ refers to an algorithm’s network architecture, e.g. the type of cells used. 
‘Adaptiveness’ refers to an algorithm’s capability to expand its knowledge during operations, e.g. to detect previously unknown anomalies. ‘Scenario’ 
details the use case on which an algorithm’s performance is evaluated. ‘Metrics’ details the metrics used for evaluating an algorithm’s performance. 
Table 2 lists the most significant metrics used in the following chapter’s approach evaluations. ‘Performance’ details an algorithm’s performance 
compared to other approaches evaluated on the evaluation scenario. 

 

 

FIGURE 6.  Transfer learning approaches: parameter transfer and relational knowledge transfer 
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In [50], transfer learning is used to improve intrusion detection on controller area networks (CAN) by enabling the 

algorithm to learn new types of intrusion upon first encounter. Convolutional LSTM (ConvLSTM) are utilized to 

process the multi-variate time-series input as 2-D information, whereas Bayesian one-shot learning [51] provides 

transfer learning functionalities. An evaluation is carried out on CAN data collected from two different types of 

cars during more than 24 hours of driving. The algorithm outperforms several baseline models, e.g. SVM, isolation 

forests (IF) or ensemble RNNs (eRNN), on tasks that were not included in the training data, i.e. new tasks. On 

known tasks, it performs slightly worse than the best competing approach. Compared with the CAN data rate, the 

algorithm detects intrusions in real time. 

An altogether different approach is used in [52]: Here, continual learning, i.e. multi-task machine learning using 

knowledge transfer between different tasks in order to benefit performance on old and new tasks, is used to improve 

anomaly detection. The use case is a metal forming process involving frequent changes of manufactured products. 

A stacked LSTM is combined with an enhanced loss function, causing the algorithm to retain previous capabilities. 

A thorough comparison of different continual learning approaches and a baseline conventional algorithm reveal 

significant improvements using so-called (online) elastic weight consolidation [53, 54].  

Concludingly, there have only a few approaches been examined, covering merely a small subset of possible 

methods and techniques. While altogether promising, no clear trends can therefore be discerned yet, calling for 

more research in this area.  

5. DISCUSSION 

This paper gives an overview on LSTM networks for anomaly detection and divides existing approaches in five 

categories. The investigated, conventional neural network-based approaches are then further divided into regular 

LSTM architectures, encoder-decoder based LSTM networks as well as hybrid approaches. 

Chapter 3 shows that regular LSTM allow the precise detection of collective and contextual anomalies. Compared 

with those pure LSTM approaches (see subchapter 3.1), encoder-decoder based architectures enable LSTM to 

further optimize their detection abilities for high-dimensional data spaces (see subchapter 3.2). Different 

architectures, such as contractive AE and variational AE, have been utilized for specific detection purposes. Hybrid 

approaches as described in subchapter 3.3 primarily aim to combine the benefits of two methods in one 

architecture. These approaches often contain a predictor and detector component so that the tasks are precisely 

divided. 

Subchapter 4.1 outlines, that graph-based approaches for anomaly detection have the advantage of enabling a 

unified representation of heterogeneous data and data sources. This way, the cause and propagation of anomalies 

can be analyzed, especially within their contextual frame. Thus, many graph-based approaches address contextual 

anomalies. As an example, anomaly detection within physical processes can consider data about the process, the 

system as well as environmental attributes within a single graph to infer anomalies. Applying machine learning in 

combination with graph-based data representations and graph-analytics would theoretically be a promising 

approach for more accuracy in detecting and predicting anomalies especially in networked systems. However, so 

far, no actual implementations have been published. 

Some open challenges remain regarding graph-based approaches, namely their input data structure. Compared 

with the challenge of lacking labeled data for machine learning, representing data within a graph and managing 

vertices and edges based on the domain application can be a complex and time-consuming task. A further challenge 

is the selection of contextual features within the graph and the complexity of encompassing multi-dimensional 

context features in the clustering and outlier ranking process. This problem is referred to as context-profiling, 

where multi-dimensional context cannot be discretized and requires a multi-variate graph-clustering approach. 

Finally, the lack of publicly available benchmark datasets hinders scientific advancement in this area as direct 

comparisons of different methodologies are hard to obtain. 

As outlined in subchapter 4.2, transfer learning addresses the challenge of frequently not having sufficiently large 

and diverse datasets for training deep learning algorithms in anomaly detection use cases. By sequentially training 

on multiple datasets representing different tasks or different states of one task and transferring knowledge from 

one training to another, both challenges can be mitigated. Although still fairly new, there is a growing number of 

implementations reflecting the different approaches in conventional neural network-based learning (see chapter 3) 

being evaluated on industrial application use cases. It could be shown that transfer learning’s capability to combine 

different datasets promises to allow training across systems and scenarios for a mutual benefit. 

So far, to the authors’ knowledge, there are no publicized results on combinations of transfer and graph-based 

learning. However, based on the presented findings, such a combination of approaches would be needed for the 

big challenges of practical machine learning facing the industrial community today: Detecting anomalies, e.g. 
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intrusions or potentially un-safe behavior in autonomous systems has hitherto proven to be too complex for 

conventional approaches. This is caused by these systems’ high level of independence of pre-defined rules and 

their adaptability to new situations, constituting degrees of freedom that make it very hard to successfully discern 

between anomalies and normal, but newly learnt behavior. 

6. CONCLUSION 

Anomalies occur in a wide range of technical applications and can have significant effects on the performance and 

stability of the system as well as the quality of its output. They can be described by different characteristics. LSTM 

networks allow to particularly detect temporal characteristics. Hence, in the scope of the present work, different 

LSTM approaches for anomaly detection in time series data have been investigated regarding a detailed set of 

criteria. Additionally, recent advances in graph-based and transfer learning approaches towards anomaly detection 

were surveyed, focusing especially on their level of applicability towards real life problems. 

Existing surveys on anomaly detection techniques deliver broad overviews on popular statistical, machine learning 

and deep learning approaches. However, they lack focus on current trends and the dynamic development that 

evolves in the area of neural networks for anomaly detection. Therefore, this paper presents anomaly detection 

approaches based on LSTM networks that have been applied in different technical systems, such as manufacturing 

or robotics. The conducted study indicates that different LSTM network architectures are available and capable of 

precisely detecting a varying range of complex anomalies, such as collective and contextual anomalies. Thereby, 

this article provides a range of state-of-the-art examples and analyses for anyone considering to enter the field of 

anomaly detection. 

From the presented study, it is concluded that further research should be conducted regarding the detection of 

anomalies not solely in delimited systems but also in networks of interacting systems. Thus, future developments 

could focus on the incorporation of LSTM networks into graph-based approaches for an optimized characterization 

of contextual anomalies. To further enhance the detection accuracy, the combination of LSTM networks and 

transfer learning techniques could be examined more intensively to investigate the potential of transferring 

detected anomaly characteristics and knowledge between systems or networks of systems. 
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