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Abstract
The active surface technique using gradient vector flow allows semi-automated segmentation of
ventricular borders. The accuracy of the algorithm depends on the optimal selection of several key
parameters. We investigated the use of conservation of myocardial volume for quantitative
assessment of each of these parameters using synthetic and in vivo data. We predicted that for a given
set of model parameters, strong conservation of volume would correlate with accurate segmentation.
The metric was most useful when applied to the gradient vector field weighting and temporal step-
size parameters, but less effective in guiding an optimal choice of the active surface tension and
rigidity parameters.
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II. Introduction
In human and small animal echocardiography studies, the majority of analyses are performed
using two-dimensional B-mode scans. However, in many situations, it is preferable to calculate
left ventricular end diastolic volume (LVEDV) and left ventricular end systolic volume
(LVESV) since the ejection fraction (EF) is determined by these two values (EF = (LVEDV−
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LVESV)/ LVEDV). EF is a widely used metric to assess the health and effectiveness of the
heart as a blood pumping organ. True volume measurements require true volumetric imaging
- as opposed to the frequently employed technique of extrapolating from discrete 2D image
frames.

Modern human cardiovascular research makes extensive use of the mouse species as an animal
model of human cardiovascular disease. The mouse is preferred due to its low cost, level of
characterization and short gestation period. Accurate animal models are important for assessing
the efficacy of novel treatment regimens, e.g., those for myocardial infarction and heart failure.
By exploring the anatomy, physiology and progression of disease in genetic mutants (i.e.,
transgenics and knock-outs), we can expand our understanding of the role of genetic factors
in cardiovascular disease. Consequently, this paper focuses on the challenges of quantifying
LV chamber volume in mice. The technique described here may be extended to use in human
echocardiography and studies involving volume quantification tasks using other animals.

Recently, 2D arrays acquiring 3D volume data sets have become widely available for human
echocardiography [1,2]. Due to technical and economic reasons it is unlikely that a 2D array
system will become available for mouse imaging in the foreseeable future. The most
straightforward approach to small animal 3D ultrasound imaging involves the acquisition of a
series of equally-spaced parallel 2D B-mode images [3,4], synchronized using ECG gating.
The 2D images are then assembled, taking account of the inter-slice spacing, to produce a series
of 3D image data sets. The endocardial border (i.e. the inner border of the LV chamber) is
identified and segmented in each dataset to generate 3D models which are used to compute the
LVEDV and LVESV. The segmentation is frequently performed manually, by selecting points
along the border of the endocardium, using a graphic user interface (GUI) in each 2D cross
section of the data, but this approach is time-consuming and susceptible to inter/intra -operator
bias and variation.

The 3D active surface provides a method for automatic segmentation of myocardial boundaries,
originally described by Terzopoulos, et al. [5]. The 3D active surface is defined as x(m,n) =
[x(m,n), y(m,n), z(m,n)]T, (m,n) ∈ [0,1]2 which is iteratively deformed and translated through
the spatial domain of a 3D image data set to satisfy the force balance equation

(1)

where m and n are spatial indices for the surface,  is the surface Laplacian
operator, and α and β are weighting parameters of the internal force corresponding with the
surface's tension and rigidity, respectively. τ is the temporal step-size constant which
determines the amount of deformation applied for each iteration of the algorithm, thereby
controlling the "viscosity" of the model. The external force Fext is based on the underlying
image data such that it attracts the surface to the features of interest, and can be computed using
a variety of algorithms [6–8]. In our study, we selected the gradient vector flow (GVF) field
approach. This external force was demonstrated by Xu and Prince [9] to yield a robust surface
tracking algorithm which converges well to concavities in the image data given a wide range
of potential initialization surfaces, making it well-suited to echocardiography applications
[10–13]. A GVF field is the vector field v(x,y,z) = [u(x,y,z), v(x,y,z), w(x,y,z)] that minimizes
the energy functional

(2)

in which f is an edge map derived from the image data and μ is a parameter governing the
smoothness of the gradient vector field. The GVF field was filtered to remove light-to-dark
gradients (caused by noise and speckle rather than image features). The remaining dark-to-
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light gradient vectors were projected onto vectors which were normal to the endocardial surface
- processes which ensured that the GVF field accurately represented image boundaries and
eliminated some error resulting from speckle and image dropout.

The accuracy and robustness of the GVF active surface (GVFAS) algorithm is highly
dependent upon the values selected for each parameter in the algorithm - specifically, α, β, τ,
and μ. Poor selection of these parameters results in an active surface which either collapses or
converges to a shape that bears little resemblance to the target myocardial surface. Thus, the
need arises for a metric that enables the rapid evaluation of a particular set of values for these
parameters. One approach to the optimization of active contour tension and rigidity parameters
in 2D is presented by Larsen in [14]. Extending the model into 3D becomes impractical,
however, as it requires the user to identify and quantify the precise amount of signal dropout
in the B-mode images. In Garson [15], we proposed the use of measures of the conservation
of myocardial volume through the complete cardiac cycle as a quality metric applied to
segmentation. This paper expands upon this recent presentation. The myocardial volume may
be defined using the difference between the volumes contained within the epicardial (outer)
and endocardial (inner) left ventricular surfaces. Since the myocardium is a single mass of
largely incompressible blood-perfused muscle tissue, we expect that its volume is conserved
– except for the anticipated small variation due to slight differences in blood perfusion of the
cardiac tissue through the cycle. Studies performed in dogs [16,17] and humans [18–20]
indicate that variation in this volume (i.e., the muscle volume associated with the left ventricle)
is approximately 5% or less - significantly less than the potentially gross errors resulting from
poorly selected model parameters. Thus, we anticipate that GVFAS parameters can be
evaluated on the basis of conservation of myocardial volume: relatively small variation in
myocardial volume over the cardiac cycle will correspond with an active surface with optimal
parameters which accurately tracks the shape and movement of the myocardium in the image
data. While our work focuses on B-mode ultrasound image segmentation, similar work has
been reported recently applying conservation of myocardial volume to the segmentation of
cardiac MR images [21,22].

III. Methods
A. Synthetic data validation study

We initially demonstrate the correlation between conservation of volume and accuracy of the
tracking algorithm using a synthetic dataset created in MATLAB that resembles real
myocardial data. Specifically, target data was created consisting of two nested ellipsoids,
corresponding to the epicardial and endocardial borders of the myocardium. The volume of
the epicardial ellipsoid first contracted to 70% of its initial volume, then expanded to its original
size over the course of 100 frames, simulating one complete heart cycle. The volume of the
endocardial ellipsoid was adjusted so that the volume of the "myocardium" - that is, the volume
of the region between the two ellipsoids - remained constant over the cycle. The myocardial
region was masked to represent regions of signal dropout found in in vivo echocardiography
images. These target data were applied to a 3D array of random scatterers (83 scatterers were
generated per resolution cell - significantly greater than the minimum of 5 scatterers needed
for fully developed speckle [23]) and the product was convolved with a point spread function
calculated using appropriate transducer parameters (specifically, a design chosen to closely
match those of the Vevo (VisualSonics 770 Small Animal Ultrasound Scanner, Toronto,
Ontario, Canada) scanner used in our laboratory – i.e. a 6.0 mm diameter axisymmetric
transducer focused at 12.7 mm operated at 30 MHz center frequency). 2D orthogonal cross
section images of the synthetic dataset are illustrated in Fig. 1.
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B. In vivo study
To test the efficacy of conservation of volume as a metric for accuracy of the segmentation
algorithm in vivo, we studied three healthy, C57BL6 mice (Jackson Laboratories, Bar Harbor,
ME). Each mouse was anesthetized using an isoflurane / atmospheric air mix and placed on a
translation stage for precise image slice location. The mouse core temperature was monitored
and maintained at 37.0±0.2°C using a heater built into the translation stage. Carefully
maintaining the level of anesthesia and temperature ensures that the physiological condition
of the mouse (i.e. principally heart rate) is maintained within a narrow range for the duration
of the scanning. The study was performed in accordance with a protocol approved by the
University of Virginia Animal Care and Use Committee. Each mouse was scanned using a
high-frequency (30 MHz, 50% fractional BW) VisualSonics Vevo 770 scanner. The single-
element, mechanically-swept transducer possessed 6.0 mm diameter and 12.7 mm focal depth.
The transducer was used to acquire a high-resolution (50 µm axial, 100 µm lateral) short-axis
B-mode image sequence at the base of the heart. Using the scanner's "ECG based Kilo-Hertz
Visualization" (EKV) function, we acquired approximately 110 frames per heart cycle [24].
The mouse was translated in 1.0 mm increments and a new image sequence was acquired at
each position, producing eight equally-spaced, parallel image sequences from base to apex of
the left ventricle. Speckle-reducing anisotropic diffusion (SRAD) was applied to each image
sequence offline in order to reduce speckle-induced errors in the segmentation algorithm
[25]. SRAD uses the partial differential equation framework governing conventional
anisotropic diffusion in conjunction with a specialized diffusion coefficient that promotes
diffusion in homogenous regions and inhibits diffusion at edges, thereby preserving and
enhancing edge regions in the image data. Corresponding frames were taken from each time
step, assembled in a 3D matrix, and interpolated to form a full 3D data set.

C. Automatic segmentation
For both the synthetic data and in vivo studies, the epicardium was segmented using the same
set of active surface parameters - specifically, 0.08, 0.2, 1.0, and 0.2 were used for the tension
(α), rigidity (β), temporal step-size (τ), and GVF weighting parameter (μ), respectively. The
epicardial surface is approximately a uniform curved surface, with relatively little signal
dropout in the image data set; thus, the 3D GVF active surface converged accurately and
quickly (within few iterations) given this "typical" set of surface parameters. Meanwhile,
accurate segmentation of the endocardial border requires careful tuning of the active surface
parameters because of signal dropout and complex geometry (i.e. the papillary muscles extend
inwards as a pair of well defined bulges). Thus, we applied the principle of conservation of
myocardial volume to adjust the parameters of the endocardial GVF active surface. An initial
survey study was performed on representative simulated and in vivo data sets to determine the
minimum and maximum possible values for each of the four parameters under consideration
- the tension (α) and rigidity (β) of the active surface, the temporal step-size (τ), and the GVF
field weighting parameter, μ. Beyond these limits, the active surface was found to either
“collapse” (i.e. shrink until the surface disappeared entirely), “explode” (i.e. expand beyond
all reasonable limits), or converge to a shape bearing no resemblance to the underlying source
data. To investigate the behavior of the active surface over a the complete range of possible
values for each parameter, the remaining three parameters were fixed at the midpoint of their
respective ranges, and the parameter in question was adjusted, logarithmically, over ten values
between that parameter's minimum and maximum.

For each set of active surface parameters in question, the two myocardial surfaces was
segmented according to the temporally propagated GVFAS algorithm described in [26]
(summarized in Fig. 2):
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1. For the initial time step (representing end diastole), the user initializes the active
contour model with a series of eight parallel circles, corresponding approximately
with the shape and location of the epicardium in each of eight short-axis 2D cross
sections of the data set between base and apex. During the in vivo study, these cross
sections were the actual B-mode images obtained using the transducer.

2. Using this initial model, the GVFAS algorithm was iterated until convergence (i.e.
approximately 20 iterations) to segment the epicardial surface at the first time step.

3. This surface was used to initialize the epicardial surface at the second time step. The
GVFAS algorithm was iterated until convergence, producing a model of the
epicardium at this time step. This model was used to initialize the third time step, and
so on, until the epicardium had been segmented over the complete heart cycle.

4. The endocardial border was initialized at the first time point according to the process
described in step 1.

5. Using this initial model, the GVFAS algorithm was iterated until convergence to
segment the endocardial surface over at the first time step.

6. In some regions, the endocardial model expanded and incorrectly converged to the
epicardial region of the image data set. The epicardial border (segmented in steps 2–
3) was used to correct these errors in the endocardial model, "pushing" these local
erroneous regions back towards the center of the model (the GVFAS algorithm was
able to identify the epicardial border with greater accuracy than the endocardial border
as the epicardial border region was less susceptible to signal drop-out and smoother
in shape).

7. The corrected endocardial border was used to initialize the endocardial surface at the
second time step. The GVFAS algorithm was iterated until convergence, producing
a model of the endocardium at this time step. This model was corrected according the
process described in step 6, used to initialize the third time step, and so on, until the
endocardium had been segmented over the complete heart cycle.

The volumes contained within the epicardial and endocardial surfaces at each time point were
computed. The difference between these volumes was multiplied by the myocardial density
(1.05 g/mL [3]) to obtain the myocardial volume. Conservation of volume was evaluated by
computing the ratio of the standard deviation of myocardial mass over the complete heart cycle
to the mean myocardial mass. For the simulation data, the degree of conservation of volume
was analyzed and the accuracy of the segmented model volume compared to the known true
volume of the source data.

For the in vivo study, each 3D dataset was segmented manually by identifying the border of
each endocardial and epicardial surface in a series of cross sections through the data. Two
metrics were used to compare automatically segmented models to the manual segmentation of
the left ventricle of each mouse. The Hausdorff distance [27] is the maximum distance between
any point in each automatically segmented model to the closest respective point in the manually
segmented model. The Hamming pseudo-distance [28] is the percentage of points on each
automatically segmented model which are larger than D pixels (here, five) from the manually
segmented model. For both metrics, lower values indicate greater similarity between a pair of
models.

IV. Results
For the initial survey study, the tension of the active surface, α, was found to vary from
approximately 0.01 to 0.10 for all synthetic and in vivo studies‥ Beyond these limits, the active
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surface would either collapse or explode. Thus, the logarithmic "midpoint" value used for α
while adjusting the other parameters was 0.03. The rigidity of the active surface, β, was varied
from 0.1 to 0.9. Beyond these limits, the active surface would either get become warped around
image speckle or other noise sources (rather than conforming to image features) or collapse to
a sphere. Therefore, the midpoint value for β was 0.30 when examining variations in other
parameters . The temporal step-size parameter, τ, was varied from 0.001 to 10, beyond which
the model would either deform so slowly that iterating the model until convergence became
infeasible, or would deform too rapidly and overshoot edge regions in the gradient vector field.
The midpoint value used for τ was 0.6. The weighting parameter of the gradient vector field,
μ, varied from 0.03 to 1.4. Outside of these limits, the model would either converge to a shape
bearing little resemblance to the source data or become warped around image speckle or other
noise sources. The midpoint value used for μ was 0.2.

Each parameter was adjusted over the range of stable values while the other three parameters
were fixed at their midpoint values. The time-propagated GVFAS algorithm was performed
for each value of each parameter. The variation in volume (that is, the ratio of the standard
deviation of volumes for the region between the endo- and epicardial surfaces over the complete
cardiac cycle to the mean volume) for each parameter tested is presented in Fig. 3–Fig. 6 (note
that a small value for volume variation corresponds with strong conservation of volume).

Both the variation and accuracy of the myocardial volume for each value of the parameter μ
exhibited local minima for values of μ between 0.16 and 0.18 for synthetic data. In vivo, the
variation in myocardial volume was minimal at approximately μ = 0.10 for the three data sets.
Both Hamming and Hausdorff distances are smallest at or near this value of μ. A 2D, short-
axis slice of one of the 3D in vivo data sets is presented in Fig. 7A for μ = 0.8 (a non-optimal
value predicted by the metric), illustrating relatively poor accuracy of the endocardial model.

The active model converged quickly (i.e. within few iterations) to the synthetic target data for
all investigated values of the temporal step size parameter τ, resulting in relatively constant
volume variation over the range and rendering optimization of this parameter unnecessary for
the data set. The active model surfaces exhibited local minima in variation in volume for the
in vivo data set for values of τ between 0.06 and 0.17. Both Hamming and Hausdorff distances
were minimal at these values of τ. A short-axis slice illustrating poor segmentation,
corresponding with a value of τ = 0.001, is presented in Fig. 7B. 2D short axis slices illustrating
surfaces generated by optimal values of μ = 0.10 and τ = 0.17 (and the "midpoint" values of
α = 0.03 and β = 0.30) are presented in Figs. 8A–B at end diastole and end systole, respectively,
illustrating an endocardial surface that accurately reflects the shape and features of the
underlying B-mode image data. Full 3D active surface models generated by optimal parameters
for in vivo and synthetic data are presented in Figs. 8C–D.

Volume variation remained relatively constant over all values investigated for the parameter
α for both in vivo and synthetic data – although the exceptionally large values using in vivo
data set 2 were the result of the endocardial active surface collapsing near end systole, as
illustrated in Fig. 7C. Volume variation over the range of values investigated for the parameter
β exhibited trends that, while not entirely random, did not correspond with accuracy of the
GVFAS algorithm. For extremely large values of β, the active surface would collapse to a rigid,
small sphere, as illustrated in Fig. 7D.

V. Discussion
It was found that conservation of volume was a useful predictor for the accurate selection of
the GVF weighting parameter μ and the temporal step-size parameter τ. In the synthetic data
study, models generated using the GVFAS algorithm exhibited the least variation in volume
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when μ was between 0.16 and 0.18, indicating that the algorithm was able to most effectively
track the synthetic data for this range of values of μ. The models generated for these values of
μ were also the most accurate, indicating that a GVFAS with a μ parameter which exhibits the
least variation in volume (greatest conservation of volume) is the most accurate segmentation
of the image data. This is confirmed when comparing automatically and manually segmented
models for the in vivo data. The GVFAS generated by the value of μ which exhibited the greatest
conservation of volume (μ = 0.10) accurately segmented the image data, closely mirroring
automatically segmented models of the endocardial border and yielding small Hamming and
Hausdorff distances. GVF active surfaces which exhibited poor conservation of volume were
malformed in certain sections of the model and corresponded less accurately with the
underlying image data, resulting in larger Hamming and Hausdorff distances.

The active surface model converged quickly (i.e. within few iterations) for the synthetic data
sets for all investigated values of the temporal step-size parameter τ due to the relatively
uniform, round shape of the synthetic target data. Thus, variation in volume remained
consistently low over the entire range of values. Meanwhile, for the in vivo data sets, the active
contour algorithm generated models which exhibited greatest conservation of volume for τ
values of 0.06–0.17. These models represented accurate segmentation of the image data,
yielding small Hamming and Hausdorff distances. Conversely, active surfaces which exhibited
poor conservation of volume would either fail to converge to any shape at all or converge to
an amorphous ellipsoid which did not resemble the image data, resulting in larger Hamming
and Hausdorff distances.

In the evaluation of the two active surface parameters, tension (α) and rigidity (β), conservation
of volume was found to be a poor predictor of accuracy of the GVFAS algorithm due to several
complicating factors. Behavior of the algorithm over the range of values investigated for α
approximated to "all or nothing". While the model would “collapse” or “explode” for extremely
small or large values of α (and in unusual mid-range values for the second in vivo data set),
performance of the algorithm remained consistently strong between these extremes, exhibiting
only small, random changes.

For the rigidity parameter β, behavior of the algorithm exhibited trends in which strong
conservation of volume did not necessarily correspond with accuracy of the model. The model
exhibited strong conservation of volume at extremely low values of β due to superior ability
to accurately segment the well-defined midventricular region of the 3D image data set.
However, performance of the model was poor at the base and apex regions of the heart (where
the underlying image data was more obscured by noise and signal drop-out), exhibiting random
fluctuations and artifacts between time points in the cardiac cycle. Conservation of volume
was again strong for higher values of β, which produced a model which was extremely smooth
and nearly spherical. This model was also inaccurate, failing to correctly segment the complex
geometry of the myocardium.

VI. Conclusion
We have demonstrated that conservation of volume is a useful metric for optimizing parameters
when the GVFAS algorithm is applied to endocardial surface identification in 3D ultrasound
image data. Specifically, the approach assists with appropriate selection of the GVF weighting
parameter μ and the temporal step-size parameter τ. The metric was able to assess the efficacy
of a wide range of potential values for these parameters and accurately identify the values
which yielded the most accurate segmentation model in synthetic and in vivo data for μ and in
vivo data for τ, indicating that metric should be effective across data sets acquired under diverse
conditions. The algorithm is currently implemented in MATLAB to enable convenient
“tuning” of the algorithm. However, it is currently a time-consuming process to test
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permutations of initialization parameters. The computation of a complete set of time-
propagated GVFAS segmentations using a particular set of parameters takes one to two hours,
limiting the quantity of synthetic and in vivo data sets which could be processed within a
reasonable amount of time. Optimized implementation in C++ running on parallel processors
could improve performance substantially, enabling efficient and more rigorous analysis over
a greater quantity of data sets. With properly selected parameters, the GVFAS algorithm should
provide an acceptable alternative to time-consuming manual segmentation, reducing the
amount of time needed for data processing and reducing or eliminating user bias. While current
work has focused on murine cardiac imaging, the algorithm and techniques described can be
applied to human cardiac studies as well, where 3D echocardiography datasets have become
available. Additionally, the a priori knowledge regarding conservation of myocardial volume
through the cardiac cycle can also be applied to endocardial segmentation using other
algorithms and imaging modalities.
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Fig. 1.
Orthogonal cross sections of the 3D synthetic dataset. 1A illustrates a "short-axis" slice through
the data, 1B illustrates a cross section of the "long axis".
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Fig. 2.
Schematic of the temporally propagated GVFAS algorithm.
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Fig. 3.
Variation in volume and error of mean volume over the range of investigated values for the
GVF parameter, μ, for simulation data. Note that the plots have minima for approximately the
same value of μ, indicating that strong conservation of volume corresponds with high accuracy
of the model volume to the true volume of the synthetic data set.
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Fig. 4.
Variation in volume (i.e. the inverse of conservation of myocardial volume) over the range of
values investigated for GVF weighting parameter μ for in vivo data. The Hamming pseudo-
distance and Hausdorff distance, computed by comparing each model with manually
segmented data, are also presented.
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Fig. 5.
Variation in volume (i.e. the inverse of conservation of myocardial volume) over the range of
values investigated for temporal step-size parameter τ for in vivo data. The Hamming pseudo-
distance and Hausdorff distance, computed by comparing each model with manually
segmented data, are also presented.

Garson et al. Page 15

Comput Med Imaging Graph. Author manuscript; available in PMC 2009 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Variation in volume over the range of values investigated the active surface tension (α) and
rigidity (β) parameters.
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Fig. 7.
Midventricular slices through one of the three 3D in vivo image datasets, with superimposed
2D cross sections of the corresponding 3D active surfaces for both the epicardium and
endocardium. Figs. 7A–D illustrate poorly-converged models corresponding with non-optimal
values for each of the four parameters under consideration. 7A illustrates a an endocardial
segmentation resulting from a non-optimal μ value of 0.80 - the right-hand side of the border
becomes "stuck" in the myocardium. 7B illustrates segmentation resulting from a non-optimal
τ value of 0.001, which yielded a contour which does not move quickly enough to track the
contour from ED to ES. 7C illustrates the effect of extreme values of the α parameter
(specifically, α = 0.1) - the high tension value pulls the contour away from the endocardial
surface. 7D illustrates the effect of extreme values of the parameter β (specifically, β = 1.28)
- at these values, the snake collapses as the tracking algorithm approaches end systole,
eventually vanishing completely.
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Fig. 8.
8A and 8B illustrate 2D short-axis slices of well-converged models at end diastole and end
systole, respectively, resulting from a GVF weighting parameter μ of 0.10 and a temporal time
step τ of 0.17. 8C and 8D illustrate full 3D reconstructions of the synthetic and in vivo data for
optimal values of μ and midpoint (synthetic) and optimal (in vivo) values of τ, as predicted by
the conservation of volume metric.
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