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Abstract
Dermoscopy is a non-invasive skin imaging technique, which permits visualization of features of
pigmented melanocytic neoplasms that are not discernable by examination with the naked eye.
One of the most important features for the diagnosis of melanoma in dermoscopy images is the
blue-white veil (irregular, structureless areas of confluent blue pigmentation with an overlying
white “ground-glass” film). In this article, we present a machine learning approach to the detection
of blue-white veil and related structures in dermoscopy images. The method involves contextual
pixel classification using a decision tree classifier. The percentage of blue-white areas detected in
a lesion combined with a simple shape descriptor yielded a sensitivity of 69.35% and a specificity
of 89.97% on a set of 545 dermoscopy images. The sensitivity rises to 78.20% for detection of
blue veil in those cases where it is a primary feature for melanoma recognition.
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1. INTRODUCTION
Malignant melanoma, the most deadly form of skin cancer, is one of the most rapidly
increasing cancers in the world, with an estimated incidence of 59,940 and an estimated total
of 8,110 deaths in the United States in 2007 alone [1]. Dermoscopy is a non-invasive skin
imaging technique which permits visualization of features of pigmented melanocytic
neoplasms that are not discernable by examination with the naked eye. Practiced by
experienced observers, this imaging modality offers higher diagnostic accuracy than
observation without magnification [2–5]. Dermoscopy allows the identification of dozens of
morphological features one of which is the blue-white veil (irregular, structureless areas of
confluent blue pigmentation with an overlying white “ground-glass” film) [6]. This feature
is one of the most significant dermoscopic indicator of invasive malignant melanoma, with a
sensitivity of 51% and a specificity of 97% [7]. Figure 1 shows a melanoma with blue-white
veil.

Numerous methods for extracting features from clinical skin lesion images have been
proposed in the literature [8–10]. However, feature extraction in dermoscopy images is
relatively unexplored. The dermoscopic feature extraction studies to date include two pilot
studies on pigment networks [11][12] and globules [11], and three systematic studies on dots
[13] and blotches [14][15]. To the best of our knowledge, there is no published systematic
study on the detection of blue-white veil.

In this article, we present a machine learning approach to the detection of blue-white veil in
dermoscopy images. Figure 2 shows an overview of the approach. The rest of the paper is
organized as follows. Section 2 describes the image set and the preprocessing phase. Section
3 discusses the feature extraction. Section 4 presents the pixel classification. Section 5
describes the classification of lesions based on the blue-white veil feature. Finally, Section 6
gives the conclusions.

2. IMAGE SET DESCRIPTION AND PREPROCESSING
2.1. Image Set Description

The image set used in this study consists of 545 digital dermoscopy images obtained from
two atlases. The first is the CD-ROM Interactive Atlas of Dermoscopy [6], which is a
collection of images acquired in three institutions: University Federico II of Naples, Italy,
University of Graz, Austria, and University of Florence, Italy. The second atlas is a pre-
publication version of the American Academy of Dermatology DVD on Dermoscopy, edited
by Harold Rabinovitz et al. These were true-color images with a typical resolution of 768 ×
512 pixels. The diagnosis distribution of the cases was as follows: 299 dysplastic nevi, 186
melanomas, 28 blue nevi, 14 Reed/Spitz nevi, 8 combined nevi, 8 basal cell carcinoma, and
2 intradermal nevi. The lesions were biopsied and diagnosed histopathologically in cases
where significant risk for melanoma was present; otherwise they were diagnosed by follow-
up examination.

2.2. Preprocessing
Prior to the feature extraction two preprocessing steps, namely the determination of the
background skin color and selection of the training and test pixels, were performed on the
images. Figure 3 shows an overview of this procedure.
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The lesion borders were obtained manually under the supervision of an experienced
dermatologist (WVS). The motivation for using manual borders rather than computer-
detected borders [16][17] was to separate the problem of feature extraction from the problem
of automated border detection. The procedure for manual border determination was as
follows. First, a number of points were selected along the lesion border. These points were
then connected using a second-order B-spline function. Finally, the resulting closed curve
was filled using a flood-fill algorithm to obtain the binary border mask. Figure 4a–b
illustrates this procedure.

For the extraction of the color features, the background skin color needs to be determined.
First, the region outside the border with an area equal to 10% of the lesion area was omitted
to reduce the effects of peripheral inflammation and errors in border determination. The
background skin color was then calculated as the average color over the next region outside
the border with an area equal to 20% of the lesion area. The non-skin pixels (black image
frames, rulers, hairs, and bubbles) were not included in the calculation. The omitted pixels
were those that are determined not to satisfy the following empirical rule [18]: (R>90 ∩ R>B
∩ R>G), where R, G, and B denote the red, green, and blue values, respectively, of the pixel
under consideration. The 10% and 20% areas outside the lesion were determined from the
binary border mask using the Euclidean distance transform. Figure 4c shows these areas for
a sample lesion.

In order to select training and test pixels for classification, 100 images were chosen from the
entire image set. Forty-three of these images had sizeable pure veil regions and 62 had
sizeable pure non-veil regions. In each image, a number of small circular regions that
contain either veil or non-veil pixels were manually determined. Training and test pixels
were then randomly selected from these manually determined regions. The selection method
was designed to ensure a balanced distribution of the two classes (veil and non-veil) in the
training set [19]. Figure 4d shows two manually selected regions on a sample image.

For each lesion, two additional features, primary blue-white veil and veil-related structures,
were determined by a dermatologist (WVS). A feature such as a veil is said to be a primary
feature if the veil is the feature most characteristic of melanoma, i.e. the feature present in
the lesion which is most recognizable and specific for melanoma. Some structures related to
blue-white veils were also considered in this study. These included gray or blue-gray veils or
any veils which lacked the whitish film seen in the classic veil. These were identified as
veil-related structures.

3. FEATURE EXTRACTION
After the selection of training and test pixels, features that will be used in the classification
of these pixels need to be extracted. There are two main approaches to pixel classification:
non-contextual and contextual [20]. In non-contextual pixel classification, during feature
extraction, a pixel is treated in isolation from its spatial neighborhood. This often leads to
noisy results. On the other hand, in contextual pixel classification, the spatial neighborhood
of the pixel is also taken into account. In this study, the latter approach is followed. Several
features were extracted in the 5 × 5 neighborhood of each pixel. For each feature, the
median value in the neighborhood was then taken as the value for that feature of the center
pixel. To speed up the median search in a 5 × 5 neighborhood, instead of fully sorting the 25
values, a minimum exchange network algorithm that performs a partial sort was employed
[21]. Fifteen color features and three texture features were used to characterize the image
pixels.
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3.1. Absolute color features
The absolute color of a pixel was quantified by its chromaticity coordinates F1, F2, and F3
(see Table 1). An advantage of F1, F2, and F3 over the raw R, G, and B values is that while
the former are invariant to illumination direction and intensity [22], the latter are not. This
invariance is essential for dealing with images that are acquired in uncontrolled imaging
conditions.

3.2. Relative color features
Relative color refers to the color of a lesion pixel when compared to the average color of the
background skin. A total of 12 relative color features were extracted from each pixel (see
Table 1). In the table, the lesion pixel and the average background skin color in the RGB
color space are denoted as (RL, GL, BL) and (RS, GS, BS), respectively. The relative color
features offer several advantages. First, they compensate for variations in the images caused
by illumination and/or digitization. Second, they equalize variations in normal skin color
among individuals. Third, relative color is more natural from a perceptual point of view.
Recent studies [15][23][24] have confirmed the usefulness of relative color features in skin
lesion image analysis.

3.3. Texture features
In order to quantify the texture in the 5 × 5 neighborhood of a pixel, a set of statistical
texture descriptors based on the Gray Level Co-occurrence Matrix (GLCM) were employed
[25]. Although many statistics can be derived from the GLCM, three gray-level shift-
invariant statistics (entropy F16, contrast F17, and correlation F18) were used in this study to
obtain a non-redundant texture characterization that is robust to linear shifts in the
illumination intensity [26]. In order to achieve rotation invariance, the normalized GLCM
was computed for each of the 4 directions {0°, 45°, 90°, 135°} and the statistics calculated
from these matrices were averaged.

4. PIXEL CLASSIFICATION
Popular classifiers used in pixel classification tasks include k-nearest neighbor [27],
Bayesian [28], artificial neural networks [29], and support vector machines [28]. In this
study, a decision tree classifier was used to classify the image pixels into 2 classes: veil and
non-veil. The motivation for this choice was two-fold. First, decision tree classifiers
generate easy-to-understand rules, which is important for the clinical acceptance of a
computer-aided diagnosis system. Second, they are fast to train and apply. The well-known
C4.5 algorithm [30] was used for decision tree induction.

Given a large training set, decision tree classifiers, in general, generate complex decision
rules that perform well on the training data, but do not generalize well to unseen data [31].
In such cases, the classifier model is said to have overfit the training data. The C4.5
algorithm prevents overfitting by pruning the initial tree that is, by identifying subtrees that
contribute little to predictive accuracy and replacing each by a leaf [30]. The confidence
factor (C) parameter controls the level of pruning and has a default value of 0.25. Another
parameter that influences the complexity of the induced tree is the minimum number of
samples per leaf (M). The default value for M is 2. In order to induce a simple tree that
generalizes better, C and M were set to 0.1 and 100, respectively. Using these parameter
values, the C4.5 algorithm was trained with the manually selected training pixels (Section
2.2). Figure 5 shows the induced decision tree. It can be seen that only 2 of the 18 features
were included in the classification model. One of these is an absolute color feature (F3),
whereas the other one is a relative color feature (F10). The classification performance of the
tree on the manually selected test pixels was a sensitivity (percentage of correctly detected
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veil pixels) of 84.33% and a specificity (percentage of correctly detected non-veil pixels) of
96.19%.

In order to evaluate the effectiveness of the classification model, the induced decision rules
were applied to the entire image set. In the classifier training phase, 18 features were
extracted from the training pixels. In contrast, in the rule application phase, only the two
features that appear in the decision tree, namely F3 and F10, need to be extracted from the
pixels. For each image, an initial binary veil mask was generated as a result of the rule
application. To smooth the borders, a 5 × 5 majority filter [32] was applied to the initial
masks. This filter replaces each pixel’s value with the majority class label in its 5 × 5
neighborhood. Figure 6 shows the initial and final veil masks for a sample image.

Figure 7 shows a sample of the detection results. In this figure, parts (a) through (f) are
melanomas, (g) is a Reed/Spitz nevus, and (h) is a blue nevus. It can be seen that the
presented method detects most of the blue-white areas accurately.

5. LESION CLASSIFICATION BASED ON THE BLUE-WHITE VEIL FEATURE
In the second part of the study, we developed a second classifier to discriminate between
melanoma and benign lesions based on the presence/absence of the blue-white veil feature.
In order to characterize the detected blue-white areas, we used a numerical feature defined
as follows:

(1)

The problem with using S1 alone is that a blue nevus (such as the one in Fig 7h) might be
misclassified as melanoma due to its high percentage of blue-white areas. We can solve this
problem by using additional features that characterize the circularity and/or ellipticity of the
lesion. The circularity of a lesion can be characterized by [33]:

(2)

where P is the number of points on the lesion boundary, (rk, ck) is the spatial coordinate of
the kth boundary point, and (r ̄, c̄) is the centroid of the lesion object (see Fig. 4b). The
ellipticity of a lesion can be measured by [34]:

(3)

where, I is the binary lesion image (see Fig. 4b), Nr and Nc are the number of rows and
number of columns in I, respectively.
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The rationale behind the inclusion of S2 and S3 is that benign lesions with blue-white areas
might be distinguished from melanomas by their highly circular (S2) and/or elliptical (S3)
shapes. As in the pixel classification procedure, we used the C4.5 algorithm with 10-fold
cross-validation to generate a classification model based on the features S1, S2, and S3.
Figure 8 shows the induced decision tree.

As expected, a lesion is classified as benign if it contains none to very small, i.e. less than
0.9%, blue-white areas. On the other hand, if the lesion contains significantly large blue-
white areas, the ellipticity value is checked. If the lesion is highly elliptical, i.e. the S3 value
is greater than 0.979, then it is classified as benign; otherwise, it is classified as melanoma.
Note that, the circularity feature (S2) was discarded by the induction algorithm possibly
because its characteristics are captured by the more general ellipticity feature (S3).

The performance of this decision tree on the entire image set (545 images) was a sensitivity
(percentage of correctly classified melanomas) of 69.35% and a specificity (percentage of
correctly classified benigns) of 89.97%. The overall classification accuracy for all areas,
including structures related to blue-white veil, was 82.94%. This included some areas
closely related to blue-white veil such as blue-gray or gray veil. On the subset of images that
are known to have blue-white veil areas (44 benigns, 134 melanomas), the sensitivity and
specificity were 76.87% and 75.00%, respectively. On the other hand, on the subset of
melanomas (133 cases) for which the blue-white veil is the primary feature the sensitivity
was 78.20%.

6. CONCLUSIONS
In this article, a machine learning approach to the detection of blue-white veil in
dermoscopy images was described. The method is comprised of several steps including
preprocessing, feature extraction, decision tree induction, rule application, and
postprocessing. The detected blue-white areas were characterized using a numerical feature,
which in conjunction with an ellipticity measure yielded a sensitivity of 69.35% and a
specificity of 89.97% on a set of 545 dermoscopy images. The presented blue-white veil
detector takes a fraction of a second for a 768 × 512 image on an Intel Pentium D 2.66GHz.
computer.
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Figure 1.
Melanoma with blue-white veil (a) clinical image and (b) dermoscopy image. The steps of
the blue-white veil detection procedure will be demonstrated on image (b).
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Figure 2.
Overview of the approach
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Figure 3.
Preprocessing
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Figure 4.
Preprocessing steps (a) B-spline approximation of the border, (b) binary border mask, (c)
10% (gray) and 20% (white) areas outside the lesion, and (d) manually selected veil (left
circle) and non-veil (right circle) regions
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Figure 5.
Pixel classification tree
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Figure 6.
Postprocessing (a) initial veil mask and (b) final veil mask
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Figure 7.
Sample blue-white veil detection results. The veil and non-veil region borders are delineated
with thick and thin lines, respectively.
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Figure 8.
Image classification tree
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Table 1

Description of the color features

Feature Group Description

F1 =
RL

RL + GL + BL
; F2 =

GL
RL + GL + BL

; F3 =
BL

RL + GL + BL

Chromaticity Coordinates

F4 =
RL
RS

; F5 =
GL
GS

; F6 =
BL
RS

Relative R, G, B Ratio

F7 =
F4

F4 + F5 + F6
; F8 =

F5
F4 + F5 + F6

; F9 =
F6

F4 + F5 + F6

Normalized Relative R, G, B Ratio

F10 = RL − RS; F11 = GL − GS; F12 = BL − BS

Relative R, G, B Difference

F13 =
F10

F10 + F11 + F12
; F14 =

F11
F10 + F11 + F12

; F15 =
F12

F10 + F11 + F12

Normalized Relative R, G, B Difference
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