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Abstract
Diffusion tensor imaging (DTI) is an effective modality in studying the connectivity of the brain.
To eliminate possible biases caused by fiber extraction approaches due to low spatial resolution of
DTI and the number of fibers obtained, the fast marching (FM) algorithm based on the whole
diffusion tensor information is proposed to model and study the brain connectivity network. Our
observation is that the connectivity extracted from the whole tensor field would be more robust
and reliable for constructing brain connectivity network using DTI data. To construct the
connectivity network, in this paper, the arrival time map and the velocity map generated by the
FM algorithm are combined to define the connectivity strength among different brain regions. The
conventional fiber tracking-based and the proposed tensor-based FM connectivity methods are
compared, and the results indicate that the connectivity features obtained using the FM-based
method agree better with the neuromorphical studies of the human brain.
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1. Introduction
One of the tasks of neuroscience is to understand inter-neuronal connectivity and inter-
regional connectivity across the human brain [1]. Axons connecting about 100 billion
neurons in the human brain and carrying signals to, from, and within the brain are the key
factors to study brain network connectivity. However, no structural human brain networks
have been mapped at the cellular resolution in vivo due to the limitation of current
neuroimaging techniques. On the other hand, at the inter-regional connectivity level, through
detecting the white matter neural bundles, we can study the connections among different
neuroanatomical regions. Armed with the network system theory, along with recent
advances in neuroimaging, increasing number of recent reports suggested that the brain
behaves like a complex small-world network [2–7].
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In the literature, several anatomical networks of mammalian animals, such as cats and
primates, have been constructed using morphology and systemic collection methods [8–10].
In these works, histological dissection and staining, degeneration and axonal tracing
methods were used to construct cerebral white matter connections. Research on these
networks showed that the two major features characterizing the organization of mammalian
animal brain networks are cliquishness and cooperation: (1) brain evolutes to highly
functional compartmentalization, which modularizes and accelerates high-level information
processing; and (2) different functionally segregated regions are effectively connected
together through neural fiber bundles to deal with complex tasks beyond the capability of
individual compartments.

These advances of animal brain network analysis stimulate the research on human brain
network. For example, neuroanatomical (or histological) methods [11,12] were used to
analyze the structure of the white matter. However, neuroanatomical methods are time
consuming, and the reliability is dependent on the skills and experience of individual
researchers. It is further hampered by relatively lengthy post-mortem delays of the tissue and
the scarceness of human brain tissue available for anatomical study. Moreover, we cannot
conduct the patient-specific connectivity analysis in vivo using these post-mortem
techniques.

With the aid of advanced brain imaging technologies, such as functional MRI (fMRI)
[13,14], electroencephalography (EEG), magnetoencephalography (MEG) [15], or
multielectrode array (MEA), different aspects of brain neural connectivity networks and
their characteristics can be investigated with graph theory. However, the poor spatial
resolution and task-dependence nature of these functional imaging technologies limit their
power in studying the brain connectivity network as a whole.

Diffusion Tensor Imaging (DTI), a non-invasive neuromorphical imaging technique to
obverse 3-D white matter architectures, can be used to detect network connectivity
information about human brain at different time points and under different
pathophysiological conditions [16–18]. Tractographic methods have been developed to
reconstruct and visualize the neural fiber bundles in vivo [19,20]. In order to quantitatively
study the brain connectivity network, fiber tracking results have been employed to define
inter-region connectivity strength. [21] used the number of fibers between any two brain
regions to measure the neuro connectivity strength, after applying an orientation density
function (ODF)-based tractography method. [22] first utilized an iterative algorithm to find
the most probable trajectory between any two nodes and then applied anatomical connection
probabilities (ACP) to measure the connectivity strength between two brain regions. [23]
constructed the popularity-based anatomical network from a large number of datasets,
comprising a streamline-like tractography method and statistics-based nonparametric sign
test.

These methods use the number of fibers or metrics derived from the extracted fiber bundles
to measure the connectivity strength between neuroanatomical regions. Thus, the
construction of human brain neuroconnectivity network is dependent on the results of fiber
tracking, which might be biased by the assumptions of the tracking algorithm, low image
spatial resolution, and the number of fibers obtained. For example, Fig. 1 shows that the
fibers extracted from DTIStudio [24] only followed one direction in a known fiber crossing
regions. In terms of network modeling, in [21,23] the brain network was treated as a binary
network, which ignores the connectivity strength information among different brain regions.
In [22], the binary network was extended to weighted network. However, only the lowest
weight of arcs belonging to the most probable path was utilized as the connectivity strength
measure, which is not reliable in eliminating image noise.
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In summary, it is necessary to develop an alternate and robust method for brain connectivity
analysis. Our rationale is that the connectivity extracted from the original tensor field could
be more robust and suitable for analyzing DTI connectivity [25]. Previously, the methods in
[26–28] applied the fast marching (FM) technique to derive connection paths between brain
regions by using the principal eigenvectors of the tensors. In this paper, we extend the
algorithm and model the connectivity between different anatomical regions by performing
tensor-based FM using the whole tensor field rather than just the principal directions. The
connectivity strength between two anatomical regions is then calculated based on the time
map and velocity map generated by the FM algorithm.

In our approach, an elastic registration is first used to align a 3-D neuroanatomical atlas onto
the DTI space to label various brain regions automatically. Then, an improved tensor-based
FM algorithm is used to simulate the diffusion dynamics from one region to another so as to
calculate the connectivity strength among different brain regions. The hypothesis is that
faster diffusion along the tensors between anatomical regions indicates stronger white
matters fiber bundle connectivity and vice versa. The connectivity strengths among sixty-
eight selected anatomical regions overlapping the cortical surface and subcortical tissues are
quantified to construct the brain connectivity network. Finally, topological analysis of the
connectivity network is performed. Since no fiber tracking is necessary in this algorithm, we
can eliminate the measurement errors by using tractography techniques. It is believed that
the new measured region-to-region connectivity strength captures more global neural
connectivity information and reflects the neuroanatomical connectivity network more
realistically than conventional fiber tracking-based methods.

In the first experiment, the performance of the proposed tensor-based FM algorithm is
evaluated on simulated tensor images. In the second experiment, the results of brain
connectivity were compared between the fiber tracking-based method and the proposed
approach using human brain data. Our experimental results indicate that the connectivity
obtained from the proposed algorithm matches the neuroanatomical knowledge known in the
literature better than the fiber tracking-based methods. Finally, we verified the small-world
characteristics of the reconstructed neuroconnectivity network.

2. Method
2.1. The Analysis Framework of Neuro-connectivity Network

A schematic diagram of the proposed brain connectivity network analysis is illustrated in
Fig. 2. This framework uses the FMRIB Software Library (FSL) FMRIB's Diffusion
Toolbox (FDT) [29] for eddy current correction and the DTIStudio [24] for tensor
calculation and channel image generation. It then employs the multi-channel DTI
segmentation method in [30] to perform tissue segmentation based on DTI data. Afterwards,
a high-dimensional registration method is adopted to register the brain atlas onto the DTI
data [31,32]. The brain atlas used in our study is the Montreal Neurological Institute (MNI)
atlas. In this way, we obtain a map of labeled WM and GM structures in the DTI space. An
improved tensor-based FM algorithm [33] is used to simulate diffusion dynamics to get the
connectivity strength among different brain regions. Based on the hypothesis that faster
diffusion between brain regions indicates stronger white matter fiber bundle connectivity
and vice versa, the connectivity strength among sixty-eight selected brain regions
overlapping the cortical surface and the subcortical regions are quantified to construct the
brain neuroanatomical connectivity network. Finally, topological analysis is performed on
the brain connectivity network.

In the following subsections, after briefly introducing the tissue segmentation and
anatomical region labeling, we present the FM algorithm for brain connectivity analysis.
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2.2. Tissue Segmentation and Anatomical Region Labeling
The DTI segmentation algorithm in [30] is employed to segment the image into different
tissue types. The idea is to classify the brain into two compartments by utilizing the tissue
contrast existing in a single channel; for example, apparent diffusion coefficient (ADC)
image can be used to separate cerebrospinal fluid (CSF) and non-CSF, while the fractional
anisotropy (FA) image can be used to separate WM from non-WM tissues. Other channels,
such as eigenvalues of the tensor, relative anisotropy (RA) and volume ratio (VR), can also
be used for tissue segmentation. Finally, the STAPLE algorithm [34] is used to combine
these two-class maps to obtain a complete segmentation of CSF, GM, and WM.

After segmenting DTI images, we employ a hierarchical warping method to register the atlas
onto each subject image and automatically label the anatomical regions [31,32]. Fig. 3
shows an example of this procedure. Fig. 3 (a) is the FA image. Fig. 3 (b) provides the tissue
segmentation map, and Fig. 3 (c) shows labeled neuroanatomical regions. In our work, sixty-
eight regions overlapping the cortical surface and subcortical tissues are automatically
labeled for constructing of the brain connectivity network.

2.3. Tensor-Based Fast Marching
In DTI images, the diffusivity of water molecules at a location is characterized by a tensor.
Fig. 4 shows the principal directions of DTI overlaid on the color-coded FA map. Regular
tractography method will follow the principal directions to extract fiber tracts. Thus, the
brain connectivity strength dependent on the results of fiber tracking may not be stable in
regions where fibers cross or branch out.

To remedy this problem, we hypothesize that the connectivity strength extracted from the
original tensor field could be more robust and suitable for network analysis. Therefore,
rather than performing fiber tracking along the principal directions, an improved FM
algorithm is performed on the whole tensor field. Then, the connectivity strength among
brain regions is calculated by combining the diffusion time map and velocity map. We will
introduce how to get the time map and velocity map and the connectivity strength
subsequently in detail.

As shown in Fig. 5, first the evolution of a front starts from the current voxel and marches
according to the neighboring tensors. Suppose at a specified time point the evolving front
comes to point i, the marching speed from i to another neighboring candidate point j outside
the evolving front can be defined as,

(1)

where  is the major evolution speed calculated from the tensor at the current point i

toward point j along direction r : i → j, and  is the evolution speed of the
previous marching step projected onto the current marching direction. In this work η is set to
0.9, so that 90% of the evolution speed is calculated from the current tensor.

(2)

where Di is the tensor at current point i, and w is the coefficient to eliminate fast evolution
within cerebrospinal fluid (CSF) and gray matter (GM). Thus, w is calculated according to FA

values as w = 1/(1 + exp(−α · (FA − β))). α and β are constants to control the effects of FA. α
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controls the slope of the Sigmoid function (α = 50) and β is set as the FA threshold (β = 0.3).
When the FA value is smaller than 0.3, it is more likely that the voxel is in CSF and GM.

The second term in Eq. (1) is the inertia term used to smooth the evolution procedure,

(3)

which reflects the projection of the previous speed v′ onto the current direction. Fig. 6
illustrates the marching speed in one slice. To facility the observation, we project the 3D
speed into X, Y and Z axis, corresponding to the Fig 6(a)–(c) respectively.

According to the FM method, the arrival time of the evolution front and the evolution speed
are associated by the Eikonal equation [33],

(4)

∇T represents the gradient of the arrival time of the evolving surface, and V denotes the speed
of the marching front. Eq. (4) says that the gradient of arrival time surface is inversely
proportional to the speed of the front. According to (Parker et al., 2002) the arrival time Tj of
the front at point j can be approximated as,

(5)

Ti is the arrival time at point i, d(i, j) is the distance from point i to point j, and vi→j is the
marching speed determined in Eq. (1). For each neighboring point of i outside the evolving
front, we calculate its arriving time using Eq. (5), and the one with the least arrival time is
then updated as the new front point.

Fig. 7 shows an example of the diffusion time map calculated from a given voxel, where red
indicates small arrival time, and yellow indicates large arrival time. It can be seen that the
evolving front aligns well with the neural fibers, thus the time map can reflect the
microstructure situation of tissues around the selected voxel.

With the tensor-based FM method, we not only obtain the arrival time map originating from
a seed voxel or seed ROI, but also record the front evolutionary track, which shows how the
evolving front advances to connect the target region from the initial region. Therefore, if the
length of the track at voxel i is Li, the length of the track at voxel j will be,

(6)

and the average speed along the track can be calculated as

(7)

Fig. 8 shows an example of the resultant diffusion time map and velocity map using the
tensor-based FM method. The green zone, indicated by the arrow, is the seed region where
the FM algorithm starts. Here, the seed region is selected in the WM adjacent to the middle
frontal gyrus. It can be clearly seen that the arrival time is smaller and the velocity is higher
for regions connected to the seed region through fibers. For example the contralateral middle
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front gyrus and the ipsilateral occipital lobe are connected with the middle frontal gyrus
through corpus callosum and association fibers, respectively. Thus the time maps on these
regions are smaller, and the velocity values are larger. This observation inspires us that by
combing the time map and velocity map carefully, we can measure the connectivity strength
between two brain regions.

To calculate the network connectivity strength between two anatomical regions, we can set
one as the seed region and calculate the average of the time map and the velocity map in
another region as follows,

(8)

and

(9)

where N is the number of voxels in region M, Vj is the velocity of one voxel j in region M, Tj is
the diffusion time of voxel j, and S stands for the seed ROI. Therefore, given a seed region,
the average arrival time values and velocity values of other anatomical structures can be
calculated. Next, we will describe how to construct a weighted connectivity network by
simultaneously considering the average arrival time and velocity in Section 2.4.

2.4 Calculating the Neuro-Connectivity Matrix
The whole brain connectivity network can be constructed as follows:

Step 1: Set the ROI as one of the sixty-eight automatically labeled neuroanatomical
regions (names are shown in Fig. 11);

Step 2: Set the ROI as the seed region and perform the proposed tensor-based FM
algorithm toward the whole brain and generate the corresponding time and velocity
maps.

Step 3: Calculate the average arrival times and the average velocities for all the other
sixty-seven regions.

Step 4: Iterate step 2 and step 3 for all the sixty-eight regions. Therefore, for each brain
image, we can get the matrices of the average time values and velocity values,
respectively.

Fig. 9 provides an example of the results, where Fig. 9 (a) shows the matrix defined by the
average time values, and Fig. 9 (b) shows the matrix using the average velocity values.
Nevertheless, neither the matrix calculated from the average time values nor the one
calculated from the average velocity values can be used to precisely define the connectivity
strength among brain regions. The arrival time is dependent on not only the speed but also
the distance, but in fact, the information transformation along white matter fibers might not
be that sensitive to the length of fibers [35]. Also, evolving front can always grow from one
region to another by crossing a “bridge” region, even there is no actual neural fiber, and the
average velocity along that track might be large. Thus, we combine the diffusion time and
velocity maps to define the neural connectivity strength. Our hypothesis is that the
connectivity strength between two brain regions should be stronger if the average time is
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smaller and if the average velocity is larger. Therefore, the connectivity strength can be
defined by combing time and velocity values as follows:

(10)

Eq. (10) provides a new metric for measuring the connectivity strength through moderating
the velocity value with arrival time. The purpose of this moderation is to remove those false
positive connections caused by the “bridge” region because such connections usually have
relatively large average time value. k and t control how time affects the strength. The
sparsity of the connectivity network can also be adjusted by changing these parameters. In
Section 3.2, we will give the definition of the degree of network sparsity in detail. It should
be noted that, there is no biological evidence reported for Eq. (10), which is our attempt to
create a more reasonable metric for connectivity strength metrics among brain regions
through combining the time values and velocity values. Owing to the lack of convincing
validation method, currently there has been no golden standard of connectivity network in
the human brain.

3. Results
3.1 Phantom Studies

To evaluate the performance of the proposed algorithm, the simulated phantom dataset from
the School of Psychology, Cardiff University, UK was used. The DWI images were
simulated with the following parameters: matrix size 150×150×16, 30 diffusion directions, b
= 1000 s / mm2, TE=90ms. Additional detailed information can be found from
http://cubric.psych.cf.ac.uk/commondti/CommonDTIDataset/Common DTI Dataset-
Welcome.html. Two kinds of datasets, the curve crossing and orthogonal crossing
trajectories were used for this experiment. Fig. 10 shows the phantom data and the
experiment results. Each seed ROI (red line in the first column) is composed with pixels in
one circularity perpendicular to the simulated tracts. FM algorithm starts from the seed ROIs
and the marching speed is calculated from the tensor information, as described in Eq. (1).
The images in the second column show the evolution speed in the horizontal direction and in
the third column display the evolution speed in the vertical direction. The fourth column
provides the diffusion time map, and the fifth column represents the velocity map.

It can be seen from the results that for the crossing tracts with small angle in the first row,
the marching front evolves towards two directions simultaneously after going through the
crossing region. For the crossing with a large angle, such as orthogonal crossing tracts in the
second row, the front wave can go through the crossing regions and keep the evolution
direction. Because these two simulated datasets are corresponding to two common situations
found in human neuroanatomy, such as fiber branching and crossing, we expect similar
performance in dealing with real DTI datasets.

The problem with the fiber tracking-based methods is that the fiber tracts can only follow
the principal directions such that it always follows one direction regardless of the crossing
angles. The FM-based connectivity analysis calculates regional connectivity based on the
whole tensor field and thus can overcome this problem.

3.2 Connectivity Matrix on Real Subject Data
The proposed human brain connectivity network construction method was also applied to
five human brain DTI data. The DTI data was acquired on a Philips 1.5T Intera using 15-
direction diffusion encoding, with b0=0 and b1=860 s/mm2. One example of the
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connectivity matrix is shown in Fig. 11, and the names of the sixty-eight brain regions are
listed for reference. In this study, k is set as 20 and t as 0.5. From Fig. 11, we can see that the
ipsilateral connectivity is notably stronger than the contralateral connectivity. To facilitate
the observation of the connectivity map, the data of the second row and the 57th row of the
connectivity matrix, which are corresponding to left middle front lobe gyrus and left
thalamus respectively, are selected and mapped onto the GM/WM (grey matter/white
matter) surface. Fig. 12 and Fig. 13 illustrate the results. It can be seen from both figures that
the regions with strong connections between the left middle front lobe gyrus and the
associating tracts are: the contralateral front lobe (corpus callosum), the precentral gyrus, the
ipsilateral front lobe (U-fiber connecting adjacent gyri), the temporal lobe (uncinate
fasciculus), the precentral and postcentral gyrus (superior fronto-occipital fasciculus,
superior longitudinal asciculus), and the occipital lobe (superior fronto-occipital fasciculus
and inferior fronto-occipital fasciculus). Most of contralateral regions have strong
connections with the left thalamus.

We compared our algorithm with the fiber tracking-based method. In [23], the authors first
used DTIStudio to do the fiber tracking and then constructed the cortical neuroanatomical
network. Here, we used the same method and the same tools to implement the fiber tracking
with FA threshold set to 0.30 and angle turn threshold 70°. Based on the number of fibers
between any two brain regions, the connectivity network is constructed, as shown in Fig. 14
(a). Totally, there are 764 connections, the sparsity degree of this connection matrix is
16.8% and is much scantier than the pathologically-confirmed sparsity degree of the known
cat cortical network (30.1%) [8]. On the other hand, the sparsity degree of FM-based method
is 33%. Here, the sparsity degree of a network is defined as:

(11)

where, Cm,n is the connectivity strength of two brain regions and for unweighted network,
Cm,n ∈ {0,1} is the number of brain regions in the whole brain, and it is 68 in our research.
m,n are the region indexes. We can see the sparsity degree calculated from the fiber
tracking-based method is much smaller than that from the proposed method. The reason is
that the conventional DTI-based tractography often fails to reveal those fiber tracts, which
are lengthy or cross over to other main fiber tracts. For example, studies showed that the
entire cortex is connected by the commissural fibers, but it is hard to find the commissural
connections to the lateral areas of the hemispheres because there are massive projection
fibers and long association fibers located lateral to the corpus callosum, which prevent the
reconstruction tracking from penetrating these areas using conventional tractography
methods [36].

To facilitate the observation of the connectivity situation based on the tractography method,
the connectivity of the left middle front gyrus to other anatomic regions is mapped onto
WM/GM surface, as shown in Fig. 14 (b–e). We can see that the regions with strong
connections of the left middle front lobe are limited only on the contralateral frontal lobe,
the ipsilateral frontal lobe and the superior temporal lobe. Compared with Fig. 12, it can be
seen that only those connections with a massive tract, such as the corpus callosum, the
uncinate fasciculus, et al., can be found with the tractography-based method, and lot of
connections are missed. This indicates that the tractography-based method has limited
ability to uncover the connectivity situation among the whole brain, and our FM based
method can recover more connections than the tractography based method.
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When it comes to parameters k and t in Eq. (10), the sparsity, as well as other characters of
the network are heavily dependent on the choice of them. In this study, k is set as 20 and t as
0.5 so that the network sparsity is comparable with that of the cat. In order to show the effect
of varying these parameters on the final connectivity network, Fig. 15 shows the sparsity of
constructed network with different combinations of k and t around this setting. It can be seen
that bigger k and t will generate a network with more connections among the anatomical
regions.

To illustrate why the proposed algorithm is more suitable for connectivity analysis using
DTI and more efficient to resolve the problems of fiber crossing and branching caused by
partial volume effect (PVE), we also compared the results when only the principal vector is
used in the FM, i.e., v = λe, where e is the principal eigenvector and λ is the largest
eigenvalue. Fig. 16 illustrates the influence of different evolution speeds. It can be seen that
the marching velocity generated from the whole tensors captures more authentically the
neuro-connectivity as compared with the principal direction-based ones. Coming back to the
results obtained in Fig. 12, the connectivity generated using the proposed algorithm is in
consistent with the neuroanatomic results as in [37,38].

3.3 Characterization of Network Topological Structure
Many works have been done on the network structure analysis of the brain [4,22,39]. We
calculated several network metrics to demonstrate the well-organized patterns of the human
brain neuro-connectivity network, including clustering coefficient (CC) and characteristic
path length (CL), using the brain connectivity toolbox (brain-connectivity-toolbox.net) [39].
A network would be considered to exhibit small-world characters, if the clustering

coefficient is much larger than that of the random network , and the

characteristic path length is nearly equal to that of the random network  [39].

Namely, the small-worldness condition is that  [40]. Fig. 17 shows the constructed
connectivity matrix for all the five cases (Fig. 17(a–e)) with the proposed method, as well as
the average connectivity matrix for them (Fig. 17(f)). Table 1 shows the network
parameters, and average value of σ is 1.35, which demonstrate the small-worldness of the
constructed human brain neuro-connectivity network. The results indicate the human brain
behaves like one well-organized system with good local connectivity and effective inter-
region communication. It should be noted that the value of σ varies much in different
studies. For example, in [6], it ranges from 1.30 to 2.18, and in [22], σ ranges from 1.37 to
2.04.

4. Discussion and Conclusion
Fast marching methods are commonly used to find the optimal or minimum cost track, and
they also act as the basis for fiber tracking in DTI field [26,27]. Herein, we used this method
to calculate the connectivity strength between any two brain regions. Since the marching
procedure is based on the whole tensor field, not only the principal directions, the evolving
front can always grow from one region into another by crossing a small unconnected region,
and the average velocity along that track might be large. For example, Fig 6 (b) shows a
strong connectivity between left middle frontal gyrus and right temporal lobe (green circle
region) if we just use the velocity as the metrics of connectivity strength. Therefore, the
velocity map only reflects one aspect of the connectivity. On the other hand, the diffusion
time map also indicates how two regions are connected each other. Since the arrival time is
an accumulated value along the evolving tracks, two connected regions with longer distance

Li et al. Page 9

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



can have relatively a larger average time. Thus, combining the time map and velocity map,
we can get a reasonable calculation of the connectivity strength. This work is one
preliminary attempt to create more reasonable connectivity strength metrics among brain
regions through combining the time map and velocity map.

Although the proposed FM method can provide abundant information about the connectivity
situation among brain regions and control the false-negative as much as possible, it is still
likely to induce the false positive connection. Our next step is to evaluate the consistence of
our method with specific known connectivity networks obtained from other image
modalities, such as fMRI. DSI (diffusion spectrum imaging) [41], Q-ball image [42], and
higher imaging resolution of DTI will also be investigated to help construct more
comprehensive and robust neural connectivity networks. For example, for Q-ball image,
multiple fiber directions within a single voxel can be inferred, and in this case the marching
front evolves faster only along the tract directions, as opposed to evolving in all directions
with similar speed, which would occur in fiber crossing regions with DTI. It is believed that
such advantage of Q-ball imaging can help to reduce the false positive caused by the
“bridge” regions using the DTI approach.

The parameters k and t in Eq.(10) are of great impact on the construction of network. Own to
the poor knowledge of human brain connectivity information and the lack of gold stand of
connectivity network, it is not trivial to optimize these parameters. But when applying the
proposed method on neuropathology associated diseases and comparing them with normal
controls, it would be possible to optimize the parameters in the feature selection and
classification training stage in order to better separate patient data from the matched
controls.

We used the Montreal Neurological Institute (MNI) atlas as a reference map for brain
parcellation, and totally 68 brain regions were considered for the construction of the
connectivity network. The accuracy of the brain parcellation algorithm certainly will have a
large influence on the accuracy of white matter fiber network reconstruction. Although the
hybrid volumetric and surface warping method used in this paper has reasonably good
performance in parcellating human brains, improved brain parcellation and recognition
algorithms in the future would further improve the quality and robustness of the
reconstructed network, such as identifying more nodes in the network and enhancing the
precision of the measurement of the connectivity strength via better segmentation and
recognition of cortical structures following the cortical folding patterns [43].

In conclusion, we proposed a diffusion tensor-based FM approach to construction and
analysis of the brain connectivity network. Given the relatively low resolution of DTI and
limited ways to validate the tractography results, conventional fiber tracking-based
connectivity analysis might be biased by the assumptions of fiber tracking, poor image
resolution, and the incorrect number of fibers extracted. The proposed connectivity extracted
from the original whole tensor field has been shown to be more robust and suitable for
analyzing DTI connectivity than the conventional tractography-based method. The
comparative experiments using both simulated and real human DTI data indicated that the
connectivity features obtained using the FM-based method better agreed with the
neuromorphical studies of the human. The diffusion tensor-based FM algorithm can also be
applied to investigate the brain connectivity between normal subjects and disease groups
relating to abnormal network distribution, including autism spectrum and pervasive
developmental disorders.
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Figure 1.
Illustration of the shortcoming of fiber tracking-based connectivity analysis. (a) T1-weighted
image; (b) FA image; (c) three-directional color-coded FA images; (d) fiber tracking results;
and (e–h) the respective enlarged images of (a–d). Fig. (e) illustrates the actual connectivity
known from neuroanatomical studies [37,38], however, the fiber tracking method [20]
mistakenly followed one direction in the fiber closing regions as shown in (h).
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Figure 2.
A schematic framework based on diffusion tensor-based fast marching for brain fiber
connectivity analysis. After automatically segmenting DTI images and labeling the
anatomical regions of an input data, the tensor-based fast marching algorithm is performed
to determine the connectivity strength among different neuroanatomical regions. Brain
connectivity network can be reconstructed for further statistical analysis.
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Figure 3.
An example of the tissue segmentation and anatomical region labeling results. (a) FA image;
(b) tissue segmentation map; and (c) labeled anatomical brain regions.
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Figure 4.
The principal vector color-coded by FA map. (a) The principal vector map color-coded by
FA, and (b) the enlarged region of the rectangle box in (a). Red indicates large FA; and blue
indicates small FA.
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Figure 5.
Illustration of the calculation of the marching speed.
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Figure 6.
The speed map along each axis. (a) and (d) are the speed maps along x-axis (left-right)
direction; (b) and (e) are the speed maps along y-axis (anterior-posterior) direction; (c) and
(f) are the speed maps along z-axis (superior-inferior) direction. The top row illustrates the
axial view while the bottom line shows the coronal view. Bright indicates large speed; and
dark stands for small speed.
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Figure 7.
The diffusion time map derived from a given seed voxel. (a) – (e) illustrate the evolution of
the marching front (the boundary of the blue region) at different iterations from the seed
point; arrow in (a) points to the seed point. It can be seen that the front moves quickly in the
direction along the fibers; (f) the colored diffusion time map generated from the tensor-
based fast marching algorithm. The color map shows the values of the arrival time at each
voxel starting from the seed point.
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Figure 8.
The diffusion time map and the velocity map for middle frontal gyrus. (a) Diffusion time
map for axial view; (b) diffusion time map for coronal view; (c) velocity map for axial view;
and (d) velocity map for coronal view. Yellow arrow points to the ROI.
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Figure 9.
(a) Connectivity maps calculated from the diffusion time maps; and (b) connectivity map
calculated from the velocity maps. Label numbers are list in Fig. 11.
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Figure 10.
Fast Marching-based brain connectivity analysis using phantom dataset. Two kinds of data
are selected for the simulated experiments. (a)–(e): Curve crossing; (f)–(j): orthogonal
crossing; In the first column, (a) and (f) show the FA maps of these two datasets under
different projections; second column (b) and (g) display the speed maps in X-direction; third
column (c) and (h) show the speed maps in Y-direction; fourth column (d) and (i) show
diffusion time maps; and fifth column (e) and (j) illustrate velocity maps.
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Figure 11.
A connectivity matrix calculated from both the diffusion time map and the velocity map on
the 68 anatomatical regions of the cerebral cortex; the colorbar is same with Fig. 9.
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Figure 12.
A connectivity map of the left middle frontal gyrus. (a) The blue ROI shows the left middle
frontal lobe gyrus; (b–e), 3-D rendering of the connectivity map on the GM/WM surface.
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Figure 13.
A connectivity map of the left thalamus. (a) The blue ROI shows the left thalamus; (b–e), 3-
D rendering of the connectivity map on the GM/WM surface;
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Figure14.
Results of fiber tracking-based connectivity analysis. (a) Connectivity matrix based on
conventional tractography method; (b–e), 3-D rendering of the connectivity map on the GM/
WM surface. Yellow arrow points to the ROI.

Li et al. Page 27

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 15.
Effect of network sparsity with different parameters k and t.
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Figure 16.
Comparison between the results of the fast marching methods using the whole tensor and
those of the principal direction-based fiber tracking. (a) Marching speed based on the whole
tensor space, (b) marching speed (left-right) based on the principle vector space, (c) velocity
map based on (a), and (d) velocity map based on (b). It can be seen that in the region where
fibers cross (within the yellow circles), the fast marching goes through the region in (c), but
not in (d). For (a) and (b), red indicates large speed; and blue indicates small speed; for (c)
and (d), white indicates large velocity; and blue indicates small velocity.
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Figure 17.
Connectivity matrices for five cases (a–e); (f) is the average connectivity matrix of those
five cases.
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