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Abstract
Tensor scale (t-scale) is a parametric representation of local structure morphology that
simultaneously describes its orientation, shape and isotropic scale. At any image location, t-scale
represents the largest ellipse (an ellipsoid in three dimensions) centered at that location and
contained in the same homogeneous region. Here, we present an improved algorithm for t-scale
computation and study its application to image interpolation. Specifically, the t-scale computation
algorithm is improved by: (1) enhancing the accuracy of identifying local structure boundary and
(2) combining both algebraic and geometric approaches in ellipse fitting. In the context of
interpolation, a closed form solution is presented to determine the interpolation line at each image
location in a gray level image using t-scale information of adjacent slices. At each location on an
image slice, the method derives normal vector from its t-scale that yields trans-orientation of the
local structure and points to the closest edge point. Normal vectors at the matching two-
dimensional locations on two adjacent slices are used to compute the interpolation line using a
closed form equation. The method has been applied to BrainWeb data sets and to several other
images from clinical applications and its accuracy and response to noise and other image-
degrading factors have been examined and compared with those of current state-of-the-art
interpolation methods. Experimental results have established the superiority of the new t-scale
based interpolation method as compared to existing interpolation algorithms. Also, a quantitative
analysis based on the paired t-test of residual errors has ascertained that the improvements
observed using the t-scale based interpolation are statistically significant.
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1 INTRODUCTION
Scale [1–4] plays an important role in many medical imaging applications and is useful in
determining the optimum trade-off between noise smoothing and perception/detection of
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structures. It may be thought of as the spatial resolution, or, more generally, a range of
resolutions needed to ensure a sufficient yet compact representation of target information
[1]. Witkin [2] and Koenderink [3] mathematically formulated the concept of scale in the
form of scale-space theory. Discrete scale-space representations [4] have been used in
several imaging applications including segmentation [5], clustering [6], classification [7],
and structural analysis [8]. The notion of “local scale” [9–12] emerged from the needs of
spatially tuning neighborhood kernel size [13] or developing space-variant parameter
controlling strategies [14] toward improving the performance of different methods. Local
structure-based morphometric scale information would be useful in several applications
including filtering, edge detection, object segmentation, registration, and analysis of regional
structural properties. We refer to this notion of scale as “local morphometric scale” and
briefly “local scale”.

Saha et al. [13, 14] initiated the notion of local morphometric scale using a spherical model
that was applied to image segmentation [13, 15, 16], filtering [14], registration [17], and
removal of partial volume effects in rendering [18]. Although the preliminary results have
demonstrated effectiveness of this notion of local scale in different image processing
applications, a major limitation of the spherical model is that it ignores orientation and
anisotropy of local structures. To overcome these limitations, Saha et al. [19, 20] introduced
the notion of tensor scale (abbreviated as “t-scale”) – a parametric representation of the
largest ellipse (an ellipsoid in three dimensions) centered at the given image point and
contained inside the same homogeneous region. Effectiveness of t-scale in image
segmentation [21], registration [22], filtering [20] and also in quantifying local morphometry
in complex quasi random networks of trabecular bone [23, 24] have been studied. Andalo et
al. presented an efficient computational solution for t-scale and demonstrated its usefulness
in detecting salient points on a given contour [25, 26]. Although the computational
framework for t-scale as proposed by Saha et al. is robust and effective, optimization of
individual steps has mostly been ignored. One major contribution of this paper is to improve
the steps needed for t-scale computation. Specifically, we have optimized digital LoG and
DoG kernels for edge detection at varying kernel sizes and edge characteristics, and have
developed an effective ellipse fitting algorithm by combining both algebraic and geometric
features.

Another major contribution of the current paper is the presentation of a new t-scale based
image interpolation method that produces a closed form solution for interpolation of lines at
individual image points in a gray level image. Medical images are commonly represented as
stacks of slices and, often, slice thickness is larger than in-plane resolution leading to
anisotropic voxels. However, isotropic data commonly facilitate most image analysis tasks
and therefore, image interpolation has become a popular pre-processing step to restore voxel
isotropy. Image interpolation techniques may be classified into two groups [27]: (1) image-
based and (2) object-based methods. Image-based interpolating approaches including nearest
neighbor, linear, spline, and kernel-based interpolation methods [28] are primarily based on
local image intensities in adjacent slices and require no structural correspondence between
two slices. Although image-based techniques are computationally faster, such methods often
suffer from several artifacts caused by nonlinear structural deformities in the slice direction.
On the other hand, object-based interpolation techniques determine point-wise structural
deformation in successive slices to capture structural alterations in the slice direction. The
primary difference among algorithms within this group is essentially in the method of
building structural correspondence between successive slices. Many methods are proposed
in this category, for example, shape-based methods [29], registration-based methods [30]
and morphology-based methods [31]. Here, we present a new deterministic method using t-
scale to determine the structural correspondence and to compute interpolation lines at
different image locations. In Section 2, we present an improved t-scale computation

Xu et al. Page 2

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



algorithm followed by the theory and algorithms for a new t-scale based image interpolation
method. In Section 3, the experimental plans and methods are outlined. The results are
presented and discussed in Section 4.

2 THEORY AND ALGORITHMS
In this section, we present an improved method for two-dimensional t-scale computation
along with a new theory and algorithm for t-scale-based medical image interpolation. We
will use “image point” to refer to a two- or three-dimensional grid point while a “point” will
refer to any location in the Euclidean 2- or 3-D space. In 2-D, we will use “pixel” to denote
the spatial extent represented by an image point while “voxel” will be used to serve the same
purpose in 3-D.

2.1 T-scale Computation
At a given image point p in 2-D, its t-scale is the parametric representation of the largest
ellipse centered at p and contained in the same homogeneous region. T-scale at p is
computed by locating edge points visible from p along different directions which are then
used to compute the t-scale ellipse at p. Basic steps of t-scale computation are as follows
(refer to Figure 1):

Step 1 Trace image intensity along a set of pairs of radially opposite sample lines
emanating from p.

Step 2 Locate the closest edge point on each sample line (triangles and black dots).

Step 3 Reposition the edge locations on each pair of opposite sample lines according
to the axial symmetry of an ellipse (black dots to white dots).

Step 4 Compute the t-scale at p using the best-fit ellipse derived from the
repositioned edge points (triangles and white dots).

It may be mentioned that basic steps for t-scale computation adopted here are same as
presented in [20] and Figure 1 is a modified version of Figure 1 in [20]. In this paper, we
report significant improvements of the algorithms employed in individual steps of t-scale
computation. Edge detection (Step 2) and ellipse fitting (Step 4) are the two crucial steps in
t-scale computation framework that largely determine the overall performance and accuracy
of the method. Often, image noise and blurring cause errors in edge detection leading to
artifacts in local structural definition represented by t-scale. Here, we present a new
optimization scheme to determine edge detection kernels for given kernel size and edge
parameters. For the ellipse fitting step, algebraic and geometric approaches are combined in
a synergistic manner leading to an improved solution within the constraints of computational
complexity. Steps 1 and 3 are straightforward and the original solutions by Saha et al. [20]
are adopted here.

At this point it may be clarified that, although the medical image interpolation addressed
here is a 3-D problem, it is solved by using structural correspondence between every two
successive image slices. Here, the role of t-scale is to provide this structural correspondence
which is solved in 2-D. Therefore, we describe t-scale computation in 2-D only. However,
the method immediately generalizes to 3-D with appropriate changes in Steps 1 and 4. In 2-
D, profiles are intended to be uniformly distributed over 2-D angular space around a
candidate image point.

Step 1: Intensity computation along sample lines—We select m pairs of mutually
opposite sample lines at an approximately uniform angular distribution ensuring that the
computed t-scale is not skewed in one direction. Three parameters are identified with sample
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lines, namely, the number of sample lines, the length of each sample line, and the interval
length between two successive sample points on each line. Following our experience, we
recommend using ten to fifteen pairs of sample lines. The length L of a sample line
represents the largest distinguishable local scale/structure size; i.e., the extent of locality or
neighborhood. Obviously, too small a value of sample line length is not desirable; again a
very large value of this parameter adds to the computational burden while the additional
information may not be so important. Therefore, a correct choice of the sample line length
parameter is important and application dependent. The sample interval length δ between two
successive points on a sample line is determined by the trade-off between the computational
complexity and the scale of the finest detectable structure. Assuming that the image
resolution is appropriate for the target application, we recommend choosing δ between ‘1’
and ‘0.5’ times the smallest dimension of a pixel. Following the Nyquist theorem of
sampling, δ = 0.5 is the sufficient condition for reconstruction of a signal and therefore, any
δ < 0.5 will bring no additional benefit. On the other hand, if δ >1 is used, we clearly miss
one voxel thick structures in an image. The intensity at any sample points is determined
using bilinear interpolation of the four binding image points. As we mentioned earlier, t-
scale is computed over individual image slice and therefore, a sample point always falls
inside a box bounded by four image points. Let  denote the intensity computed at the
vth sample point on the ith sample line emanating from a pixel p.

Step 2: Improved edge location on each sample line—To eliminate the effects of
locally disconnected structures of similar intensities during edge detection, two connected-
intensity profiles μUP and μDN are derived from the intensity values  along
the ith sample line:

(1)

(2)

The above two connected-intensity profiles along a sample line significantly eliminate the
effects of locally disconnected structures intersecting with the sample line without causing
any blurring and thus preserving thin structures (Figure 2). In Figure 2, the connected-
intensity profile μUP successfully eliminates effects of locally disconnected structures of
bright intensities. However, it fails to identify the step down edge which may be detected
with μDN only. The purpose of using the two different connected-intensity profiles is to
separately handle the cases of “step-up” and “step-down” edges.

Conventional Laplacian of Gaussian or LoG [32] is used for detecting edges on the intensity
profile along a sample line. An edge is located at the first zero crossing of the LoG with its
strength of intensity gradient, computed using a derivative of Gaussian or DoG kernel,
exceeding a predefined gradient threshold. A critical issue with this approach is how to
determine optimum discrete kernels for the LoG and DoG operations under given
constraints. Gunn [33] has reported a task- and image-dependent approach of optimizing a
discrete kernel for LoG. However, a kernel optimized for one image may not necessarily be
optimal for another image. Here, we develop a task- and image-independent optimization
approach for computing discrete LoG or DoG kernels that is based on minimizing total
discretization errors under given constraints of kernel length and edge characteristics.
Essentially, a discrete kernel is computed from the corresponding function by sampling it at
a regular interval Δ generating 2N + samples for a given value of N as illustrated in Figure
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3(a). We will use LoG(x), where x ∈ ℝ, to denote a continuous LoG function and LoG[n],
where n ∈ {−N, ···, 0, ···, N}, to denote the sample value of the continuous LoG function at
nΔ, i.e., LoG[n] = LoG(nΔ). To avoid any confusion, we will use “LoG” as an abbreviation
of “Laplacian of Gaussian” while the italicized LoG to denote a LoG function. An important
observation here is that, although, ∫ LoG(n)dx = 0, due to the finite length of the kernel, the
sum of positive sample values over LoG[n]|n=−N,···,−1,0,1,···,N may not equate the sum of

negative values leading to a nonzero value for . This discrepancy may lead to
artifactual shifts in computed zero crossings. This challenge is overcome by scaling the
sample values as follows:

(3)

where

Note that s2 is the ratio of the sum of positive LoG sample values to that of negative values.
It is worth mentioning that such scaling factor is not needed for the computation of DoG
kernels.

As illustrated in Figure 3(b), a discretization process with a fixed kernel length is always
associated with two types of errors and we refer to these errors as step error and truncation
error. Note that the scaled sample values are used in the final kernel and therefore the errors
are computed after scaling. It may also be noted from Figure 3(b) that the truncation error
monotonically decreases with sample interval size Δ; however such monotonicity property is
absent for the step error primarily due to the scaling factor. The optimization algorithm
determines the sample interval size Δ that minimizes total discretization error which is the
sum of step and truncation errors and uses the sample interval size to compute the kernel.
For all experiments presented in this paper, the LoG and DoG kernels are optimized
separately. Further, it may be mentioned that if a sample line hits an image boundary
without finding an edge point, the algorithm enforces an edge at the end of the sample line.

To evaluate the performance of our kernel optimization algorithm, we have performed the
following experiment. We computed an ideal LoG kernel LoGideal by densely sampling the
LoG function. Specifically, we represented LoGideal by 10001 uniform samples covering
±5×sigma of the analytical LoG function leaving only ~10−7% unaccounted energy of the
function. For a given kernel size 2N + 1 and a given sample interval size Δ, a discrete LoG
kernel LoGN,Δ was constructed by sampling a LoG function on both sides of zero. One
hundred sample lines were randomly selected from each of the sixteen images used in our
experiments resulting in 1600 sample lines. At each point t on a sample line l, both ideal and
discrete LoG maps, denoted by lideal and lN,Δ, respectively, were computed by convolving
with LoGideal and LoGN,Δ. Finally, the error function ErrorN,Δ was computed from all
sample lines as follows:
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In the above equation of error computation, we used the central two-third points on each
sample line to avoid edge effects in LoG computations. Results of experimental error for
kernel size of nine at different sample interval Δ are presented in Figure 3(b). It may be
observed from the figure that the theoretical error function is notably different from the
experimental error function. Despite the difference in two error functions, the theoretical
optimum value for Δ is close to the experimental optimum value for the same. Also, we
performed the same experiment for different kernel sizes and the results of optimum
theoretical and experimental sample interval sizes are presented in Table 1. It may be
observed that for an extremely small kernel size (3 or 5), the difference between the
theoretical and experimental optimum sample sizes is relatively high and it may be caused
by instability of a discrete LoG kernel due to insufficient number of samples at extremely
small kernel size. Also, it may be observed from the table that the standard deviation of
experimental optimum sample size for different images is relatively high suggesting that the
interval size optimized for one image may not be optimum for another image supporting our
image-independent optimization approach.

Step 3: Repositioning of edge points—The edge points obtained in the previous step
are intended to roughly describe the boundary of the t-scale ellipse centered at the candidate
image point p. Following the axial symmetry of an ellipse, for each pair of opposite sample
lines, the two edge points should be equidistant from p, which is the center of the t-scale
ellipse. However, the detected edge points on a local structure do not necessarily satisfy this
property. For example, in Figure 1, the edge locations marked as black dots on the
northbound sample lines are mostly farther from p than the edges on corresponding opposite
sample lines. Therefore, the edge points need to be repositioned by analyzing the edge
points on every pair of sample lines. Specifically, between the two edge points on a pair of
sample lines, the one closer to the candidate image point p is selected and reflected on its
complementary sample line. The edge points marked as white dots in Figure 1 are obtained
using this repositioning scheme.

Step 4: T-scale ellipse fitting—The final step in t-scale computation is to fit an ellipse
to the repositioned edge points obtained by Step 3. In our application, the number of edge
points is significantly larger as compared to the number of parameters needed to represent
an ellipse. The literature on ellipse fitting is quite mature and there are several established
approaches available in the literatures [34–36] to accomplish the task. All ellipse fitting
approaches essentially minimize the error between the observed data (here, the edge points)
and the computed ellipse. Primarily, these methods differ with respect to the definition of
these errors. We have investigated two different distance measures defining these errors,
namely, algebraic and geometric distances [37]. As mentioned by Gander et al. [37], the
algebraic approach to ellipse fitting suffers from stability and often fails to provide a “good
looking” result. These problems of the algebraic approach are enhanced with the increase of
anisotropy of an ellipse and such situations may occur frequently in t-scale computation,
especially, when a candidate image point is close to an edge. However, the algebraic
approach for ellipse fitting leads to a canonical solution and is well-known for its efficiency.
On the other hand, a geometric distance approach generates stable solutions for most ellipses
and also uses more natural Euclidean distance metric. Unfortunately, it is difficult to derive
a closed form solution for geometric distance minimization in ellipse fitting, and therefore, a
geometric distance based approach is commonly realized using a stochastic search process
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raising the issue of initialization. The primary motivation behind our ellipse fitting algorithm
is to utilize the benefits of both algebraic and geometric approaches. Here, we use the
algebraic distance based solution for initialization to the geometric distance based approach
providing that the former method yields a real ellipse. Under the situation where algebraic
distance fails, principal component analysis (PCA) of repositioned edge points is used to
obtain the initial solution. In the following algorithm for optimal ellipse computation, edge
points refer to repositioned edge points.

Step 1 Translate all edge points so that the candidate image point p is moved to the
origin.

Step 2 Compute the covariance matrix of the translated edge points and compute its
eigenvectors i1 and i2 and the eigenvalues λ1 and λ2.

Step 3 Rotate the edge points around the origin so that i1 and i2 are aligned with
coordinate axes. Solve canonical equations [20] to compute the ellipse that
minimizes algebraic distance errors.

Step 4 If the ellipse computation in Step 3 is a real one, use it for Step 5; otherwise,
use the ellipse with semi axes λ1i1 and λ2i2.

Step 5 Compute the final ellipse by minimizing geometric distance errors from edge
points with the initialization obtained in the previous step. Newton’s
algorithm along with the Jacobian of the error function is iteratively used to
obtain the optimization of the target ellipse.

Figure 4 illustrates the final ellipse fitting with both PCA and algebraic distance based
initialization. It can be noticed that both initializations lead to the same ellipse. However, the
initialization with the algebraic distance based solution leads to a faster convergence. To
evaluate the performance of our ellipse-fitting algorithm, we performed an experiment on
ten thousand ellipse datasets randomly selected from our t-scale computation experiments on
medical images. Specifically, we applied the stochastic optimization algorithm for geometric
distance optimization with five different initializations – (1) a circle with radius equal to the
distance between the central candidate point and its closest repositioned edge point, (2) same
as (1) but for the farthest point, (3) same as (1) but for the average distance, (4) ellipse
computed by PCA, and (5) ellipse computed using algebraic approach. In our experiment,
the algebraic approach failed to provide a valid solution for approximately 1% datasets and
we used PCA-based initialization for such data. Average numbers of iterations required for
five different initializations were: 24.5, 21.3, 18.5, 14.9, and 11.8, respectively.

Let us use ι1(p) and ι2(p) to denote the major and the minor semi axes of the t-scale ellipse
at an image point p. It may be noted that the length of the minor semi axes |ι2(p)| alone
represents local scale at the image point p using a spherical model [13]; we will refer to it as
the isotropic scale of p.

T-scale Visualization—To display a t-scale image, we apply a HSI color coding scheme
following the fact that an ellipse centered at origin is uniquely defined by three factors.
Specifically, the color at an image point p is defined from its t-scale as follows: hue =

orientation of the major semi axis ι1(p); , and
intensity = normalized thickness = |ι2(p)|/Slength, where Slength denotes the length of sample
lines used for t-scale computation. Results of application of both the previous method [20]
(here onward, we will refer to this method as the “old” method) and the new method for t-
scale computation to a sagittal slice from an MR brain data are presented in Figure 5(c) and
(d) respectively. In both images, the HSI color coding scheme of Figure 5(b) are used to
represent t-scales at individual points. It may be noted from Figure 5(c) and (d) that although
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the two color-coded t-scale images are visually similar, the result using the new method is
significantly cleaner with less noise (spurious dots).

2.2 T-scale Based Image Interpolation
The general purpose of medical image interpolation is to increase image resolution along the
slice direction using an image post-processing algorithm. Although classical interpolation
methods use neighborhood intensity analysis techniques over adjacent slices, more advanced
algorithms follow the approach of detecting “interpolation lines” [38] using the
correspondence of local structures in adjacent slices. Here, we present a new interpolation
method that provides a closed form solution for identifying this correspondence using its t-
scale information in adjacent slices, which is used to compute local deformation as well as
the interpolation line at the individual image point. The key idea is to compute the local
deformation between two adjacent slices from their t-scale information which is
accomplished in two steps – (1) computation of t-scale-derived normal vector (Figure 6(a))
associating each image point on a slice to its nearest edge point and (2) determine local
deformation between two adjacent slices using a closed form equation involving normal
vectors in two adjacent slices (Figure 6(b)). Let pA and pB be the spatially matching image
points on two adjacent slices, namely, slA and slB; thus pA and pB have the same two-
dimensional (2D) coordinates, say p, in the two slices. Let NA and NB be the normal vectors
at pA and pB, respectively. It is interesting to observe from the figure that the deformation
τ(p,slB,slA) from slB to slA at the 2D image point p may be determined by subtracting the
vector NB from NA, i.e.,

(4)

In the following, we first describe the method of computing normal vectors from local t-
scales and then explain the interpolation method using normal vectors. Finally, we discuss
the challenges with the method and offer their solutions.

2.2.1 Computation of normal vectors using t-scale—As mentioned earlier, the
purpose of normal vector is to represent the nearest edge point associated with each image
point and its direction is orthogonal to the orientation of the local structure (Figure 6(a)).
Following the fact that t-scale represents the orientation of the local structure along with its
size in different directions, the association between normal vector and t-scale is obvious.
Specifically, the normal vector is related to the minor semi-axis of the t-scale at an image
point p. However, as illustrated in Figure 7(a), an ambiguity arises as the t-scale of a point p

fails to directly indicate which of the two vectors  and  points to the nearest boundary.
This ambiguity is solved by analyzing t-scale-derived isotropic scale along the direction of

minor axis bb′. As illustrated in Figure 7(b), isotropic scales reduce along the vector 

pointing to the local boundary; therefore,  represents the normal vector at p. The color
coded representation of normal vector map for the image of Figure 8(a) is presented in
Figure 8(e).

2.2.2 Interpolation algorithm—In Section 2.2, we have described the basic principle of
computing local deformation using t-scale derived normal vectors. Here, we describe the
new interpolation algorithm. Let us consider two image slices slA and slB separated by a
distance of Δsl as shown in Figure 9(a) and we want to interpolate the intensity at a target
point p = (x, y,t0) in between the two slices. Here, the location t0 of p in the z-direction is
defined with respect to the location of the base slice slB; thus, 0 < t0 < Δsl. Also, we assume
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that x and y are integer valued. The interpolation method essentially computes the
interpolation line l(t)0≤t≤Δsl passing through the target point p; the line l(t) gives three
dimensional coordinates of a point at the height of t from the base slice. Once the
interpolation line l(t) is determined, the two points cA and cB at the intersection of the line
with respective slices are computed and the intensity at p is determined using linear
interpolation of the intensities at cA and cB. Thus, to complete the algorithm, we need to
describe the method of computing the interpolation line l(t). First, the projections pA and pB
of the point p on the two slices slA and slB are determined; thus, pA = (x, y, Δsl)and pB = (x,
y, 0). Let NA and NB be the normal vectors at pA and pB with bA and bB being the nearest
points on respective local boundaries as illustrated in Figure 9(a). It may be noted that the
line l′(t) obtained by joining the two points bA and bB results in a local 2D deformation of
NA − NB along the slice plane when the image slice slA warped onto slB; let NAB = NA − NB.
However, the line l′(t) may not pass through the point p. Therefore, the interpolation line is
computed by appropriately shifting the line l′(t) along the slice plane so that it passes
through p. The final interpolation line is computed using the following equation:

(5)

In the above equation, ix and iy denote the two unit vectors along the x- and y-coordinate
axes, respectively. It may be interesting to note that, if the target point p is moved close to
lower slice slB at (x, y, tlow) as illustrated in Figure 9(b), the initial line l′(t) is not changed.
However, in this situation, we need to translate the line l′(t) differently so that it passes
through the target point, which is now closer to slice slB. Thus, the final interpolation line
l(t) is changed as illustrated in Figure 9(b); note that in Eq. 5, t0 should be replaced by tlow.
Since, l(t) intersects the line pApB at p, the point cB should be close to pB. Again, on the
interpolation line l(t), the target point p is much closer to cB than to cA. Thus, following
linear interpolation, the interpolated intensity at p should be very close to that of the point cB
which is again close to the point pB. The method works similarly when the target point p is
moved close to the upper slice slA. Further, it may be pointed out that the shifting of initial
interpolation line l′(t) to l(t) to determine the final interpolation line at p essentially assumes
that deformation vectors over a small neighborhood are similar and ignores local variations
in the deformation field. This assumption is made by most registration-based medical image
interpolation algorithms [30] where the deformation field is represented using a smooth
function. It may be noted that, in our algorithm, the shift of an interpolation line is always
smaller than one voxel in the slice direction.

2.2.3 Algorithm: Challenges and Their Solutions—As discussed above, the basic
principle of the method lies in identifying the nearest boundary point at each image point
which is represented by its normal vector. A major challenge with this approach is that the
normal vector is less stable near the medial axis of a local structure as it may point to any of
the two opposite boundaries of the local structure leading to an ambiguity. Depending upon
which of the two opposite boundary points is selected, the normal vector will significantly
differ thus being a source of errors in the computation of deformation vectors used for
interpolation.

This problem is overcome by detecting local medial points and taking a special care at those
points while computing the deformation vector or the interpolation line. The medialness at
an image location is determined by comparing its isotropic scale with another t-scale-
derived feature indicating the “local structure width”. At any image point p, the local
structure width denoted by LSW(p) represents the width of the local structure around p and
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is defined as twice the closest maximal isotropic scale along the direction of the t-scale
minor axis iota;2(p). Figure 10 illustrates the local structure width map for a phantom image
computed using the above definition. Finally, the medialness of an image point p, denoted
by M(p), is defined as follows:

(6)

Here, image points with a medialness value greater than or equal to 0.75 are considered as
medial points which are treated separately to avoid the errors due to the ambiguity outlined
above. Selection of a threshold close to ‘1’ makes the algorithm vulnerable to noise. On the
other hand, a lower value of the threshold leads to exclusion of image points. Here, we have
used a threshold of 0.75 to ensure that 75 percent of image points may directly be used in the
interpolation algorithm. To solve the problem of ambiguity at medial points, we assume that
that the displacement of a structure between two adjacent slices is less than half of the local
structure width. Let us consider the situation of Figure 11 where the projection of the
interpolation point p on the slice slA is a medial point and let a and a′ be the nearest points
on the two opposite edges of the structure around pA. It may be noted from the figure that
the point a on the slice slA corresponds to the edge point b on the matching structure around
pB on the slice slA. Due to the ambiguity near the medial point pA, it is difficult to say

whether  or  is the true normal vector. However, with the assumption that the local
deformation is less than half of the structure width, the magnitude of the deformation using
the correct correspondence of a and b must be less than that of the wrong correspondence of
a′ and b. Therefore, the 2D deformation NAB is computed using the following equation

(7)

The situation where the projection point pB is a medial point may be solved similarly.
Finally, a Gaussian smoothing filter of kernel size 5 × 5 is applied on the computed
deformation field to capture larger contextual information.

3 EXPERIMENTAL METHODS
In this section, we describe our experimental approach to examine the performance of the
improved t-scale computation algorithm and the new t-scale based image interpolation
method. Specifically, we quantitatively examine the robustness of the improved t-scale
computation method at various levels of noise and blurring and compare its performance
with that of the old method [20]. For image interpolation, we evaluate the accuracy of the t-
scale based method and compare the performance with current state-of-the-art methods.

3.1 Robustness of t-scale computation at varying noise and blurring
Performance of the improved t-scale computation has been examined both qualitatively and
quantitatively. The experimental setup of [20] has been followed in this paper to
quantitatively evaluate the robustness of t-scale computation under varying levels of noise
and blurring. For this purpose, a set of 250 realistic 2D phantom images at five different
levels of noise and five different levels of blurring were generated from manual
segmentations of white matter regions in image slices from ten different MR head data sets
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using 3DVIEWNIX [39] graphical interface; see Figure 12 for examples. Let |i=1,2,···,10

denote a true phantom image and let  denote the phantom image obtained from  at the

level of blurring B and noise N. Also, let ΓTi(p) (or, ) denote the t-scale ellipse

computed at an image point p in the image  (respectively, ). In order to evaluate the
robustness of a t-scale computation method under noise and blurring, ΓTi(p) is considered as
the truth because it is computed from  with no noise and blurring. A “similarity measure”
of two concentric ellipses is crucial to compute the robustness of a t-scale computation
algorithm. Unlike scalar and vector quantities, similarity between two ellipses (tensor) is not
trivially defined. Here, we have utilized the natural mapping (see Section 2.1) that exists
between the set of all ellipses and the RGB color space. Specifically, the disagreement
between two ellipses is defined as the difference between their representative RGB vectors

(the range of each component of RGB vector is [0, 1]). Let RGB(ΓTi(p)) and 

denote the RGB vectors onto which the ellipses ΓTi and,  respectively, are mapped.

Thus,  captures the difference between true and
computed t-scales at p in terms of their distance in the color-space used here to represent t-
scales. Here, a division by √3 is applied to normalize the error measure so that its value lies

in the [0,1] interval. The figure of merit  (a measure of similarity) of a t-scale

computation method for a phantom image  is defined as follows:

(8)

In the above equation, || || denotes the number of pixels in  and |·| returns the absolute
value of its parameter. For a given method, at a given level of noise and blurring, the mean

and standard deviation of  values have been computed. Also, at a given level

of noise and blurring, a paired t-test has been performed on the  values
obtained by the old [20] and the new methods.

3.2 Accuracy of t-scale based image interpolation
The accuracy of the t-scale based interpolation method has been examined both qualitatively
and quantitatively on phantom and real images and has been compared with a current state-
of-the-art registration based method [38]. For the registration based method, both B-spline
and Demons registration techniques, implemented in ITK [40], were used for comparison.
For the B-spline registration based algorithm, we used the parameter setting recommended
in [38]. Also, for both the B-spline registration based and Demons registration based
algorithms, we used the stopping criterion as minimization of the residual errors for known
truths. Thus, we experimental results presented here represent the optimum performance for
the two methods in terms of iteration number. On the other hand, for the new method, no
such stopping criterion or iteration number is needed.

Quantitative evaluation experiments were designed following the conventional approach
[38] of evaluating an image interpolation approach. Specifically, for a given 3D image
consisting of k uniformly spaced slices, each slice except the first and the last one was
removed one at a time and was regenerated from its two neighboring slices by a given
method of interpolation. The error of the specific interpolation method was computed by
comparing the original slice and the one obtained by interpolation. The mean absolute
difference was used to measure the accuracy of the corresponding interpolated slice. Let

Xu et al. Page 11

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ioriginal(x, y, i) and Iinterpolated(x, y, i), respectively, denote the original and the interpolated
image intensities at the in-plane image location (x, y) on the ith slice of image of size m × n
× k. The interpolation error for the ith slice, denoted as MADi, is computed as follows:

(9)

Finally, the interpolation error over the entire image, denoted by MAD, is computed as:

(10)

In our experimental study, we have used both phantom and real medical images. In the
following, we describe each of these data sets.

3.2.1 Simulated brain phantom data—The phantom data set was generated from the
simulated brain MRI data from the BrainWeb site (http://www.bic.mni.mcgill.ca/brainweb).
Specifically, the T1 weighted MR image (in plane size: 181 × 217; number of slices: 181) of
anatomical model for normal brain at 0% noise, 0% intensity non-uniformity and 1 × 1 × 1
mm3 voxel size was used. Two sets of test phantoms were generated from this simulated
data. The first dataset was created by adding correlated white Gaussian noise at different
SNR values while the other dataset was produced by adding different levels of intensity
inhomogeneity. Ten different SNR values ranging between 50 and 10 were selected for the
experiment. To examine the robustness of the method with respect to the intensity
inhomogeneity, a multiplicative Gaussian inhomogeneity model was used with its center,
height, and width chosen randomly. Altogether, fifteen images at different intensity
inhomogeneity levels with the width of the inhomogeneity Gaussian varying between 68 and
132 mm and the height varying between 10% and 50% of the image intensity range were
used for the experiment. Specifically, three Gaussian inhomogeneity images were randomly
generated at varying heights, widths, and locations of the center. Each of these initial
inhomogeneity maps was multiplied by a constant α and added to the original image to
obtain a test image at a given percentage of intensity inhomogeneity as defined by the
following equation:

(11)

For a given percentage of inhomogeneity and a given initial inhomogeneity map, a test
image was generated and was used for the experiment. For a given method, the error MADi
was computed for each slice i = 2,3, …, k − 1 in the test image using Equation 9. Since we
used three initial inhomogeneity maps, we got three measures of MADi for the i-th slice and
a given method at a fixed percentage of inhomogeneity; an average of these three errors was
used to compute MAD (Equation 10) and for paired t-test while comparing with results from
another method.

3.2.2 Medical Images—Sixteen 3D images from different body regions and different
clinical applications were used to examine the performance of our method on real data. Our
first data set consists of five abdominal CT datasets from five different subjects with voxel
size: 0.59 × 0.59 × 1.00 mm3 and in-plane grid size: 512 × 512 with the number of slices
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varying between 64 and 319. For convenience, we will refer to these images as Abdomen1,
Abdomen2,…,Abdomen5, respectively. Our next data set included CT images of four
cadaveric ankle specimens scanned with a Siemens Sensation 64 Multi-slice CT scanner at
120 kVp and 140 mAs (voxel size: 0.21 × 0.21 × 0.3 mm3) adequately displaying trabecular
bone micro-architecture. For these images, the common in-plane image grid size was 512 ×
512 and the number of slices varied between 334 and 336. We will refer to these images as
Ankle1, Ankle2, Ankle3, and Ankle4, respectively. The last group consisted of seven
pulmonary CT images from seven different subjects scanned on a Siemens Sensation 64
Multi-slice CT scanner at 120 kVp and 200 mAs yielding 0.55 × 0.55 × 0.5 mm3. The in-
plane grid size for these images was 512×512 and the numbers of slices varied between 519
and 728. These images will be referred to as Lung1, Lung2, …, Lung7. Ankle and lung data
sets were chosen to evaluate the performance of an algorithm under changing topology and
shapes of micro-structures along the slice direction. For each of the phantom as well as
medical data, the overall interpolation error was compared by analyzing their MAD values.
The errors on individual slices were computed for different methods and paired t-tests were
performed to evaluate statistical reliability of differences in overall interpolation errors by
different methods. The p-value of 0.05 was considered significant.

4 RESULTS AND DISCUSSION
In this section, first, we discuss the results of the experiments described in Section 3.1
comparing the performance of the new t-scale computation algorithm reported here with the
old method [20]. Results of application of the old and new t-scale computation algorithms
on a sagittal MR image of human head are presented in Figure 5 and qualitatively compared
in a zoomed-in region. Improvements obtained by the new method are visually apparent.
Results of application on a phantom image referred to in Section 3.1 at low, medium and
high levels of noise and blurring are illustrated in Figure 12. Here too, the new method
appears to show more robustness and to better preserve structural information at different
levels of noise and blurring. Table 2 presents the mean (first entry) and standard deviation
(second entry) of FOM (figure of merit) values for different phantom images referred to in
Section 3.1. Here, each cell presents the statistics of ten phantom images at a specific level
of noise and blurring with noise increasing from top to bottom while blurring increases from
left to right. Table 3 presents the results of comparison between the new method and the old
method reported in [20] for ten images at different levels of noise and blurring. It may be
noted from Table 3 that the new method outperforms the old method at all levels of noise
and blurring except for three cases (N1, B5), (N2, B5) and (N3, B4). The p-values of paired
t-tests for these cases indicate that the differences between the old and new methods are not
statistically significant. The performance of the new method is statistically significantly
better in all other tested cases (p < 0.01). It may also be noted from the table that the margins
in FOM values between the two methods increases with the increase of noise suggesting
increased relevance of the new method at higher noise levels. The exceptional behavior of
the three cases in our comparative experimental results may be explained by the fact that, at
low noise and extremely high blurring, the difference in performance of the two methods is
reduced. High blurring leads to high uncertainty in edge location and both methods suffer
from this uncertainty. On the other hand, low noise levels give only a little room to the new
method for improvement resulting in statistically equal performance. In the current paper,
we have not focused on the computational efficiency of t-scale computation. The original
algorithm for t-scale computation takes 32 seconds for a 256×256 image using a 2.53 GHz
Intel(R) Xeon(R) CPU running under Linux OS. The improved t-scale computation method
presented here takes 53 seconds for the same image running on the same machine. The extra
time is mostly consumed by the improved ellipse fitting algorithm.
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Here, we present results of the experiments described in Section 3.2.1 to compare the new
interpolation method with two registration based methods using B-spline and Demons
techniques at various levels of added noise and intensity inhomogeneity on the BrainWeb
phantom dataset. Results of quantitative analysis for three different methods at various noise
levels are presented in Figure 13. At every level of noise, the t-scale based interpolation
method has outperformed the demons registration based method and the results are found to
be statistically significant using a paired t-test. As compared with the B-spline registration
based method, the new method has outperformed (p < 0.01) at all levels of noise except at
SNR = 10, 12, 14, and 16 where interpolation errors by the two methods are not statistically
different. These results indicate, that although the t-scale based method outperforms the two
registration based methods, the overall difference in performance is reduced with increasing
noise. A possible argument behind the observation is that the closed form equation for the
interpolation line in t-scale based approach uses the t-scale of only two points, one from
each adjacent slice. Thus, the approach has less strength for statistical noise smoothing as
compared to the two registration-based methods and the performance of the current t-scale
based registration method on high noisy images may be a limitation. A possible avenue for
improving the performance of the t-scale based method may be to amalgamate the closed
form solution into the registration framework and a research effort is currently ongoing in
our laboratory along this direction.

Comparative results of the three methods at various levels of image inhomogeneity are
presented in Figure 14. It may be noted from these results that effects of image
inhomogeneity for all three method are minimal which was expected as intensity
inhomogeneity has only limited effects on local structural information in an image. Also, it
is important to note that at all examples of inhomogeneity, the t-scale based interpolation
method has outperformed the two registration based methods (p < 0.001). Here, it may be
observed from Figure 13 and Figure 14 that the standard deviation values are somewhat high
as compared to the corresponding differences of MAD values. Yet, the p-values indicated
statistical significance of the measured differences in errors which is associated with a
proper use of a paired t-test. The results of these experiments suggest that although there are
significant variations in interpolation errors from one slice to another, the differences in
performance for two methods are consistent from one experiment to another. Results of
applications of the three methods on several medical images are illustrated and visually
compared in Figure 15-Figure 17. In each of these figures, the top row show three
consecutive image slices from the specific dataset. The middle row presents the interpolated
results for the central slice of the top row computed by three different methods using the left
and right image slices of the top row. The last row indicates the absolute error maps for
corresponding interpolated result as compared with the original image slice. In the middle
and last rows, the images on the left and central columns represent the results of B-spline
and Demons based registration based methods. The right column presents the results of the
t-scale based method. In all these examples, reduction of interpolation errors by the t-scale
based method is visually notable. For the example of Figure 15, it may be noted that all
methods including the t-scale based algorithm produce high concentration of interpolations
errors in the trabecular bone region. These errors are primarily contributed by the high-
frequency changes in trabecular bone topology from one slice to another. Similar to other
algorithms, t-scale based registration method may fail to compensate for large topological
variations from one slice to another. A quantitative analysis of the results is presented in
Figure 18 which indicates the mean and standard deviation of interpolation errors by three
methods for different medical images described in Section 3.2.2. The mean error was
computed as the MAD value over the entire image while the standard deviation of errors was
computed as the standard deviation of MADi values from individual slices (see Section 3.2).
As observed in this figure, the t-scale based method has always outperformed the other two
methods with a clear margin. It may be interesting to observe from the quantitative results
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that, across all data and methods, the standard deviation values are small as compared to
corresponding mean error. It indicates that the interpolation error is a highly reliable
parameter to determine the quality of individual methods. Also, a paired t-test of errors over
individual image slices was performed between t-scale based methods and each of the two
registration based methods. The results of every paired t-test comparing the performance of
the t-scale and another method demonstrated the superiority of the t-scale method at high
significance levels (p-value < 0.001), see Figure 18. Further, it may be observed that errors
for ankle and pulmonary images are relatively larger as compared to abdominal images.
Possibly, it is caused by rapid changes in both topology and geometry of trabecular bone in
ankle images and both airways and vasculature in pulmonary images. As for the
computation time, the speed of B-spline and Demons registration largely depends on the
image size and the minimization procedure; on the other hand computation time for t-scale
computation mostly depends on image size and the parameter setting for t-scale
computation, i.e., the number and length of sample lines. For all above experiments, we
have used 90 sample lines with each sample line being 50 pixel long. In the following, we
present the average computation time of the three methods for different real image sets used
in our experiments:

Lung images: B-spline (12 minutes), Demons (8 minutes), and t-scale (10 minutes)

Ankle images: B-spline (9 minutes), Demons (7 minutes), t-scale (10 minutes)

Abdomen images:, B-spline (10 minutes), Demons (3 minutes), t-scale (9 minutes).

5 CONCLUSION
An improved t-scale computation method has been presented and its application to medical
image interpolation demonstrated. In the context of t-scale computation, a new algorithm for
task-independent optimization of edge detection kernels under a given computational
constrains and edge characteristics has been developed. An effective ellipse fitting algorithm
has been presented that uses both algebraic and geometric distance optimization approaches
in a synergistic manner. The improved t-scale computation method has significantly reduced
errors (p < 0.01 except for three out of twenty five different combinations of noise and blur)
in computed t-scale images as compared to the previous method. A closed form solution for
computing interpolation lines using t-scale has been introduced which has contributed to a
new t-scale based interpolation algorithm. Experimental results have demonstrated that the
new interpolation method outperforms state-of-the-art registration based interpolation
techniques on real clinical images and the statistical significance of the improvements was
observed.

Acknowledgments
This work is partly supported by internal funds from the Departments of Radiology and Electrical & Computer
Engineering at the University of Iowa.

References
1. Marr, D. Vision. San Francisco, CA: W. H. Freeman and Company; 1982.
2. Witkin, AP. Scale-space filtering. presented at the 8th International Joint Conference Artificial

Intelligence; Karlsruhe, West Germany. 1983.
3. Koenderink JJ. The structure of images. Biological Cybernatics. 1984; 50:363–370.
4. Lindeberg T. Scale-space for discrete signals. IEEE Transactions on Pattern Recognition and

Machine Intelligence. 1990; 12:234–254.
5. Vincken KL, Koster ASE, Viergever MA. Probabilistic multiscale image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence. 1997; 19:109–120.

Xu et al. Page 15

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6. Leung Y, Zhang JS, Xu ZB. Clustering by scale space filtering. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 2000; 22:1396–1410.

7. Lovell BC, Bradley AP. The multiscale classifier. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 1996; 18:124–137.

8. Ferraro M, Bocclgnone G, Caell T. On the representation of image structures via scale space entropy
conditions. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1999; 21:1190–1203.

9. Tabb M, Ahuja N. Multiscale image segmentation by integrated edge and region detection. IEEE
Transactions on Image Processing. 1997; 6:642–655. [PubMed: 18282958]

10. Pizer SM, Eberly D, Fritsch DS. Zoom-invariant vision of figural shape: the mathematics of core.
Computer Vision and Image Understanding. 1998; 69:55–71.

11. Elder JH, Zucker SW. Local scale control for edge detection and blur estimation. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 1998; 20:699–716.

12. Liang, P.; Wang, YF. Local scale controlled anisotropic diffusion with local noise estimate for
image smoothing and edge detection. presented at the International Conference in Computer
Vision; Bombay, India. 1998.

13. Saha PK, Udupa JK, Odhner D. Scale-based fuzzy connected image segmentation: theory,
algorithms, and validation. Computer Vision and Image Understanding. 2000; 77:145–174.

14. Saha PK, Udupa JK. Scale based image filtering preserving boundary sharpness and fine
structures. IEEE Transactions on Medical Imaging. 2001; 20:1140–1155. [PubMed: 11700740]

15. Jin, Y.; Laine, AF.; Imielinska, C. SPIE: Medical Imaging. San Diego, CA: 2002. Adaptive speed
term based on homogeneity for level-set segmentation; p. 383-390.

16. Zhuge, Y.; Udupa, JK.; Saha, PK. SPIE: Medical Imaging. San Diego, CA: 2002. Vectorial scale-
based fuzzy connected image segmentation; p. 1476-1487.

17. Nyúl, L.; Udupa, JK.; Saha, PK. Task specific comparison of 3D image registration methods.
SPIE: Medical Imaging; San Diego, CA. 2001. p. 1588-1598.

18. Souza ADA, Udupa JK, Saha PK. Volume rendering in the presence of partial volume effects.
IEEE Transactions on Medical Imaging. 2005; 24:223–235. [PubMed: 15707248]

19. Saha, PK. Novel theory and methods for tensor scale: a local morphometric parameter. SPIE:
Medical Imaging; San Diego, CA. 2003. p. 314-324.

20. Saha PK. Tensor scale: a local morphometric parameter with applications to computer vision and
image processing. Computer Vision and Image Understanding. 2005; 99:384–413.

21. Saha, PK.; Udupa, JK. Tensor scale-based fuzzy connectedness image segmentation. SPIE:
Medical Imaging; San Diego, CA. 2003. p. 1580-1590.

22. Saha, PK.; Gee, JC.; Xie, Z.; Udupa, JK. Tensor scale-based image registration. SPIE: Medical
Imaging; San Diego, CA. 2003. p. 743-753.

23. Saha PK, Wehrli FW. A robust method for measuring trabecular bone orientation anisotropy at in
vivo resolution using tensor scale. Pattern Recognition. 2004; 37:1935–1944.

24. Saha, PK.; Wehrli, FW. In vivo assessment of trabecular bone architecture via three-dimensional
tensor scale. SPIE: Medical Imaging; San Diego, CA. 2004. p. 750-760.

25. Andalo, FA.; Miranda, PAV.; Torres, RdS; Falcao, AX. A new shape descriptor based on tensor
scale. the 8th International Symposium on Mathematical Morphology; Rio de Janeiro, Brazil.
2007. p. 141-152.

26. Andalo, FA.; Miranda, PAV.; Torres, RdS; Falcao, AX. Detecting contour saliences using tensor
scale. presented at the IEEE International Conference on Image Processing; 2007.

27. Grevera GJ, Udupa JK. An objective comparison of 3-D image interpolation methods. IEEE
Transactions on Medical Imaging. 1998; 17:642–652. [PubMed: 9845319]

28. Thevenaz P, Blu T, Unser M. Interpolation revisited. IEEE Trans Med Imaging. 2000; 19:739–58.
[PubMed: 11055789]

29. Raya SP, Udupa JK. Shape-based interpolation of multidimensional objects. IEEE Transactions on
Medical Imaging. 1990; 9:32–42. [PubMed: 18222748]

30. Penney GP, Schnabel JA, Rueckert D, Viergever MA, Niessen WJ. Registration-based
interpolation. IEEE Trans Med Imaging. 2004; 23:922–6. [PubMed: 15250644]

Xu et al. Page 16

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



31. Lee TY, Wang WH. Morphology-based three-dimensional interpolation. IEEE Transactions on
Medical Imaging. 2000; 19:711–721. [PubMed: 11055786]

32. Sonka, M.; Hlavac, V.; Boyle, R. Image Processing, Analysis, and Machine Vision. 3. Toronto,
Canada: Thomson Engineering; 2007.

33. Gunn SR. On the discrete representation of the Laplacian of Gaussian. Pattern Recognition. 1999;
32:1463–1472.

34. Fitzgibbon A, Pilu M, Fisher RB. Direct least square fitting of ellipses. IEEE Transactions on
Pattern Analysis and Machine Intelligence. 1999; 21:476–480.

35. Bookstein FL. Fitting conic sections to scattered data. Computer Graphics and Image Processing.
1979; 9:56–71.

36. Rosin PL. A note on the least squares fitting of ellipses. Pattern Recognition Letters. 1993; 14:799–
808.

37. Gander W, Golub GH, Strebel R. Least-squares fitting of circles and ellipses. BIT Numerical
Mathematics. 1994; 34:558–578.

38. Penny GP, Schnable JA, Rueckert D, Viergever MA, Niessen WJ. Registration-based
interpolation. IEEE Transactions on Medical Imaging. 2004; 23:922–926. [PubMed: 15250644]

39. Udupa, JK.; Odhner, D.; Samarasekera, S.; Goncalves, R.; Iyer, K.; Venugopal, K.; Furuie, S.
3DVIEWNIX: an open, transportable, multidimensional, multimodality, multiparametric imaging
software system. SPIE: Medical Imaging; San Diego, CA. 1994. p. 58-73.

40. Ibanez, L.; Schroeder, W. The ITK Software Guide. Kitware, Inc; 2005.

Xu et al. Page 17

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
A schematic description of t-scale computation. The method starts with edge locations
(triangles and black dots) on sample lines emanating from the candidate image point.
Following the axial symmetry of an ellipse, the edge points on each pair of radially opposite
sample lines are repositioned (black dots to white dots). Finally, t-scale ellipse is computed
from repositioned edge points (triangles and white dots).
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Figure 2.
Illustration of two connected-intensity profiles. The connected-intensity μUP successfully
eliminates the effect of locally disconnected structures intersecting with the profiles.
However, it fails to identify the step-down edges. Therefore another connected-intensity
profile μDN is used to separately locate the step-down edges.
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Figure 3.
Errors in a discrete LoG kernel. (a) Sampling of a LoG function and different types of
discretization errors after scaling. (b) Relationships among different types of errors with
sample interval size Δ.
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Figure 4.
Results of geometric distance based optimization of an ellipse (solid line in both (a) and (b))
with initializations using principal component analysis (a: dotted line) and algebraic distance
based solution (b: dashed line).
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Figure 5.
Results of t-scale computation on a sagittal image slice from an MR brain data. (a) An
original image slice with computed t-scale ellipse marked at several locations. (b) HSI color
coding used to represent t-scale images. (c,d) Color-coded illustrations of t-scale images
computed by the old (c) and the new (d) algorithms. In both (c) and (d), the image on the
right is a magnified display of the marked region. Noise and blur induced errors in t-scale
computation cause spurious white and black points on the color illustration of a t-scale
image. Reduction of such errors in the result using the new method as compared to the old
method is clearly visible.
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Figure 6.
Schematic descriptions of the principle of t-scale based image interpolation. (a) Examples of
normal vectors at different points inside and outside of a shape. (b) A closed form solution
exists for computing the deformation vector using normal vectors.
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Figure 7.
Computation of the normal vector from local t-scale. (a) An ambiguity in selecting the

normal vector between  and – the opposite vectors along the minor axis of t-scale. (b)
This ambiguity is solved by analyzing t-scale-derived isotropic scales along the direction of
the minor axis bb′.
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Figure 8.
Intermediate results of t-scale based image interpolation on MR brain data. (a–c) Three
successive slices from the BrainWeb MR phantom data. (d,e) Normal vector fields
computed from (a,c). (f) Color-coded deformation vector field computed from (d,e) on the
slice plane located at the middle of the slice of (a,c). (g) Image interpolated from (a) and (c).
Compare the result with (b). (h) Interpolation error computed from (b) and (g). (i)
Magnitude of the deformation field.
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Figure 9.
(a) Illustration of computing the interpolation line l(t) associated with an image point p on
the interpolation plane with the information from t-scale in images of slA and slB. (b) Same
as (a) except that the target point p is close to the lower slice slB. Although, the line l′(t) is
same in both (a) and (b), the final interpolation line l(t) is changed due to different shifts
required under the two cases. Note that the point cB is close to pB in (b).
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Figure 10.
Illustration of t-scale derived local structure width. (a) A binary phantom image. (b) T-scale-
derived isotropic scale image. (c) Local structure width map. (d) Computed medialness.
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Figure 11.
A schematic description to solve ambiguities of selecting normal vectors at medial points.

At a medial point pA, there is an ambiguity of the true normal vector between  and .
With the assumption that a local deformation is less than half the structure width, the
magnitude of the deformation using the correct correspondence of a and b must be less than
that of the wrong correspondence of a′ and b. Therefore,  is selected as the correct
correspondence to generate the interpolation line.
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Figure 12.
Performance of the old [20] and the new t-scale computation algorithms at varying noise and
blurring. (a–c) Original images. (d–e) T-scale images resulting from the old algorithm. (g–i)
T-scale images obtained by the new algorithm. Reduction of errors in t-scale computation
(spurious dots caused by noise and blur) by the new method as compared to the old one is
visible on color illustrations, especially at medium and high noise and blur levels.
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Figure 13.
Performance of three interpolation methods on the BrainWeb phantom dataset with additive
white Gaussian noise at various levels of signal-to-noise ratio. The mean error was
computed as the MAD value over the entire image while the standard deviation of errors was
computed as the standard deviation of MADi values from individual slices. As compared
with the two registration based methods, the new method outperforms both of them except
for the four cases for which the differences between the B-spline and the new method are
statistically identical - marked with “NS” (non-significant).
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Figure 14.
Performance of three interpolation methods on the BrainWeb phantom dataset with different
multiplicative Gaussian intensity inhomogeneity added (refer to Section 3.2.1). The mean
error was computed as the MAD value over the entire image while the standard deviation of
errors was computed as the standard deviation of MADi values from individual slices. MADi
represents the average interpolation errors on the i-th slice for three different inhomogeneity
maps at a fixed percentage of inhomogeneity.
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Figure 15.
Results of applications of different interpolation methods on the ankle CT data Ankle1. (a–
c) Three consecutive image slices from the original data. (d–f) Interpolated results for the
central image slice (b) from the two adjacent slices (a,c) using B-spline (d) and Demons (e)
based registration methods and the t-scale based method (f). (g–i) Absolute errors by
corresponding interpolation method as computed by comparing with the original image
slice. Interpolation error is reduced using the t-scale method (p < 0.001).
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Figure 16.
Same as Figure 15 but for three consecutive image slices from the pulmonary CT image
Lung1 at 0.5 mm slice thickness.
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Figure 17.
Same as Figure 15 but for three consecutive image slices from the lower abdominal CT
image Abdomen1 at 1mm slice thickness.
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Figure 18.
Performance of three interpolation methods on sixteen different medical images selected
from different clinical applications. The mean error was computed as the MAD value over
the entire image while the standard deviation of errors was computed as the standard
deviation of MADi values from individual slices. For all examples, the t-scale based method
has outperformed the two registration based methods (p < 0.001).
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