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Abstract
Follicular Lymphoma (FL) is one of the most common types of non-Hodgkin's Lymphomas in the
world. Diagnosis of FLis based on morphological and immunohistochemical characteristics found
on tissue sections. Our project's aim is to develop computer-aided analysis tools on virtual slide
images (VSI) of lymphoid tissues with the purpose of improving the FL grading performed in
malignant follicles. In this paper, we focus on the first step of our work, an automated system for
detecting follicles in VSI of lymphoid tissues. To mimic the human expert process, the system
works on low-resolution CD20 images and maps the follicle boundaries on high-resolution H&E
images.
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1. Introduction
Follicular lymphoma (FL) is a group of malignancies of lymphocyte origin that typically
arise from the lymph nodes, spleen and bone marrow in the lymphatic system. FL images
are characterized by follicular or nodular patterns of growth presented by follicle center B
cells consisting of centrocytes and centroblasts. FL represents 22% of non-Hodgkins
lymphomas in the world and accounts for 35% of all adult B-cell lymphomas and 70% of
low-grade lymphomas in U.S. clinical trials. The grading system of the World Health
Organization (WHO) divides FL into three histological grades based on the average number
of centroblasts (CB) in ten random standard microscopic high power fields (HPF) [1]
representing malignant follicles in H&E stained tissue. Grade 1 has up to 5 CBs/HPF, grade
2 has 6-15 CBs/HPF and grade 3 has more than 15 CBs/HPF. While grades I and II are
considered indolent, with long average survival rates and no needs of chemotherapy, grade
III is an aggressive disease; it is rapidly fatal if not immediately treated with aggressive
chemotherapy. These differences underline the importance for precisely measuring an
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accurate histological FL grading to guide crucial clinical decisions of timing and type of
chemotherapy. However, in a multi-site study, the inter- and intra-rater variability in FL
grading by experts has been shown to lie between 61% and 73% [2]. Such a large disparity
underscores the need for additional diagnostic tools and computer-based image analysis
systems may be such tools.

In conjunction with the aims of the global MIRACLE project (Microscopic Image
Processing, Analysis, Classification and Modelling Environment, FP7-PEOPLE-2009-
IRSESMarie Curie PIRSES-GA-2009-247091: http://miracle.ee.bilkent.edu.tr/), the BMI
Department at the Ohio State University and four European laboratories are currently
developing a complete series of linked tools dedicated to FL grading. Aiding this work is the
acceptance and application of Computer-aided diagnosis systems (CADs) in medical labs
due to recent advancements in imaging technologies. We have been developing tools for
computer-aided prognosis of neuroblastoma [3], [4] and grading of follicular lymphoma [5],
[6] with promising results. The work described in [6] elaborates some tools for detecting
follicles using H&E and IHC stained tissues. Based on these results, we have developed
models to describe tissue histology for classification of FL grades [5]. The previous research
in this area focused on morphometric analysis of FL images [7] by comparing diagnosis
based on three different stains while [8] developed classifiers for sub typing FL. Recently,
Neuman et al [9] developed image analysis tools for counting nuclei in IHC stained FL
tissue images using color features and watershed segmentation.

Both pathologists’ and computerized analysis of an FL case starts with identification of
follicle regions from H&E-stained images. For the human analysis, ten representative HPFs
need to be selected. These HPFs are generally selected to coincide with follicles, as the
intra-follicular regions do not contain CB cells. Similarly, the computer analysis, although
not limited to 10 HPFs, needs to identify all follicular regions because further analysis will
be carried out only in those areas. However, in many cases, the identification of follicles on
an H&E slide is challenging because the boundaries of the follicles are not immediately
visible. Pathologists often select areas of the slide where these boundaries are more visible
or review IHC-stained adjacent slides, where the follicles are better visible. Our computer-
aided approach mimics pathologists’ use of IHC information in a systematic way. We first
detect the follicles in IHC slides and then use this information to detect the corresponding
follicles in adjacent H&E slides. This process involves both segmentation of follicles as well
as the registration of adjacent slides.

In this paper, we describe a new method for automatically detecting follicle areas in IHC
slides based on our previous work [6], in which we followed a feature based clustering
approach. Each pixel is represented by a feature vector of color and texture information. In
order to capture the color information, the RGB images are converted to the HSV (hue-
saturation-value) color space. The S (saturation) channel, which describes how pure the hue
is with respect to the white reference, is used as the color information. The texture
information is quantified by the homogeneity of the 9x9 neighborhood of each pixel using
the co-occurrence matrix approach. The resulting feature vectors are classified using a k-
means classifier with k=4 classes: 1) follicles (B-cells), 2) intra-follicular area (T-cells), 3)
mixture (T- and B-cells) and 4) background. The resulting follicle candidate images are
post-processed morphologically and then ellipses are fitted to the binary follicle candidates.
However, fitting an ellipse onto a follicle is not always optimal since their shapes can
significantly vary depending on tissue sections. We attempt here to improve the
segmentation quality of follicular areas by providing reliable and accurate follicle
boundaries while removing the objects that are suspected to be of poor quality. We use serial
sections respectively stained according to the IHC (CD20) and H&E protocols. IHC images
are highly contrasted, which is well suited for pre-segmenting follicle areas. The resulting
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binary masks are then mapped on H&E images after a registration procedure, conducted
according to the thin plate spline algorithm as explained in [10] and [11]. We utilized a
novel approach to reduce the complications involved in the manual preparation of slides,
namely tearing and folds that will appear on both IHC and H&E images. Our approach,
based on inpainting [12], reduced the influence of the manual preparation during the
segmentation process. Inpainting is a technique for reconstructing lost or deteriorated parts
of images and videos either by filling in small image gaps, or generating large image regions
by synthesizing texture. In our case, the small image gaps produced by the tears and folds
are reduced by this technique.

The paper is organized as follows. In section 2, we present images and software used to
illustrate our strategy and is focused on the segmentation process yielding to binary masks
of follicular areas. Section 3 presents a visual display of various results and details the
proposed method according to an expert's ground truth. Section 4 discusses is the place
where points to be improved are discussed before finally concluding in section 5. The
general flowchart of our method is presented in Figure 1. The red boxes correspond to the
current work; the blue final box is another process out of the scope of this paper.

2. Materials and Methods
2.1. Virtual Slides

In order to achieve the overall follicle segmentation, tissues are stained according to two
protocols. The first one is an immunohistochemical staining (IHC) revealing the surface of
all mature B-cells (CD20). The second one is the classical Hematoxylin and Eosin staining
(H&E) where Hematoxylin (blue) is linked to nuclear areas whereas Eosin (red) is linked to
stroma and cytoplasm parts. CD20 images show a real good contrast and are then well suited
for pre-segmenting follicles, even at low resolution. But since the FL grading is only
conducted in H&E images, an intermediate registration step is necessary to be able to map
the pre-defined follicle boundaries found in CD20 images onto H&E images.

Both CD20 and H&E images were digitized with an Aperio ScanScope XT (Aperio, San
Diego, CA) at 40x magnification, before being sub-sampled by a factor of 64 (corresponding
to 0.625X). Choosing such a large factor is justified in two ways. At first, hematologists are
able to mark follicle boundaries on CD20 images. Secondly, this allows us to load the whole
image in the RAM of a classical personal computer, thus avoiding the border effects
encountered with tiled images. Later, the object boundaries will be over-sampled to fit in the
original high-resolution images. At 40X, the resolution is 0.25 μm/pixel and a High Power
Field (HPF) represents 0.18 mm2 (analogous to a rectangle of size 2168×1353 px2). At
0.625X resolution is 16 μm/pixel, so a HPF may be represented by a rectangle of size 34×21
px2. To illustrate the proof of concept of our approach, six pairs of CD20-H&E images have
been acquired, some of them revealing a non-uniform staining of the slides. Figure 2 shows
an example of such a pair. It can be seen that at low resolution, the follicle regions are
clearly more visible on CD20 images (Figure 2 (a)) than on H&E images (Figure 2 (b)). The
average size of 40X images is 64300×68300 (12.3 GB if uncompressed) and 1005×1067 at
0.625X (3 MB).

2.2. Software and implementation details
Each step in the flowchart shown in Figure 1 corresponds to a script implemented in
MATLAB© (The MathWorks Inc., Natick, MA) and makes use of its ‘Image Processing
Toolbox.’ The algorithms, developed on a classical PC under Windows, are not optimized
for speed. The execution times (around 40 minutes per image) are reduced substantially
when the algorithms are implemented as parallelized C++ code, which is the subject of
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another study. For the registration step, an extra-package also written in MATLAB is used
[10]. The primary sub-sampling step is achieved by calling the DALTON tool, which is an
executable code written in pure C++ language [13]. When slides are initially prepared and
stained, and due to the manual operations involved, some tears and folds usually appear both
on IHC and H&E images. The sizes of the tears/folds is quite large compared to follicles and
a “line” crosses many of them. Instead of avoiding processing these follicles, especially in
CD20 images, we have chosen to reduce their influence by applying an image restoration
process based on inpainting [12].

2.3. Sub sampling and background segmentation
FL images are characterized by follicular or nodular patterns of growth presented by follicle
center B-cells consisting of centrocytes and centroblasts. In IHC images, especially for the
CD10 and CD20 staining, these follicles appear as separated ‘convex’ regions in which
cellular density is higher than in the inter-follicular area.

The proposed algorithm uses low-resolution CD20 images to first pre-determine the follicle
boundaries before mapping them on H&E images. For sub sampling CD20 and H&E
images, the DALTON tool developed by the French partner in the MIRACLE project has
been used [13]. This tool makes use of wavelet transforms for interpolating pixels and is
fully parallelized (number of processing cores equal to the number of available cores minus
one for the manager).

For each pair of CD20/H&E, the background segmentation is classically achieved thanks to
a logical AND on their thresholded RGB components followed by hole filling and an area
opening [14] of size 5000 (allowing to remove tissue smaller than 1.28 mm2, that is about 7
HPF). The two binary masks obtained will then be used in the registration step.

2.4. Fold and tear removal
Folds and/or tears (F/T) are visible on all the 12 images we used for this study; they are
inherent artifacts of slide preparation. Folds appear as quite large strong black lines more or
less regular whereas tears correspond to thinner white lines, with a structure sometimes
similar to branches. In some cases, both CD20 and H&E images in a pair have a F/T at the
same location (as the serially sections are cut). In other cases, only one image in a pair has a
F/T (as the tissue is laid on the slide). Even though the hematologist will not detect any
centroblasts in such artifacts on H&E images, the actual presence of a F/T in CD20 images
should not be an obstacle for detecting follicle boundaries. But their influence has to be
reduced since algorithms based on object borders could be disrupted by the high contrast
they involve.

In order to compute a binary mask of folds and tears, the same algorithm is finally
conducted on complementary values. The darker pixels for folds (respectively the lighter for
tears) are selected by thresholding the RGB components. A skeletonization by
morphological thinning [15] is applied and for each skeleton, the number of multiple points
is computed. All skeletons without multiple points are retained; they correspond to straight
lines, which is the general shape of a F/T. All parts of skeletons for which the length
between two multiple points is lower than 64 μm are removed. And finally, all skeletons
having more than three multiple points are also removed; as they may correspond to inherent
structures of the tissue. Figure 3(a) shows a sub part of a CD20 image with both folds and
tears. The lighter areas in the right corner correspond to interfollicular tissue and are not
considered as tears. Figure 3(b) shows the binary mask obtained from our algorithm. The
“missing” tissue is finally reconstructed by image inpainting according to the MATLAB
algorithm of [12] based on a neighborhood texture analysis (Figure 3(c)).
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2.5. Registration
To provide the histological grading of a follicular lymphoma (FL), the pathologist has to
manually count the average number of centroblasts (CB) in ten random standard
microscopic high power fields (HPF) observed in an H&E image at 40X magnification.
With a classical optical microscope, each HPF is a circle; its standardized size is 0.18 mm2.
For automated measurements, several parts of follicular areas can be assembled to obtain a
‘virtual’ HPF, provided that their cumulated area is equal to the HPF size. Even more, the
virtual HPF may have an unusual shape such as a triangle, an ellipse, etc. But H&E images
are not sufficiently contrasted for delimiting follicle boundaries, so that is why the most
common way to solve this problem is to use IHC images such as CD20 staining. Of course,
H&E and CD20 images have to come from a pair of serially cut sections so that the
morphology between these sections remains pretty similar. Therefore, a registration step is
required to be able to map the follicle boundaries found in CD20 images onto corresponding
H&E images.

Once the serial tissue sections have been laid on slides before being stained, each slide will
not match identically in terms of position and orientation. Moreover, the staining protocols
may involve the slides to be placed a few seconds in a microwave, thus yielding to some
shrinkage of tissue. The registration procedure has to take into consideration these
constraints. Owing to the strong color difference between H&E and CD20 images, the
registration algorithms based on intensity patterns via correlation metrics are not well suited.
It is preferable to use feature-based methods finding correspondence between lines and
contours [10], [11] and it is much faster; borders of the binary masks obtained in the first
background segmentation will provide us these contours.

Several areas of tissue can be obtained while extracting one section in the paraffin
embedded block and those who are greater than 1.28 mm2 are retained after background
segmentation. In our approach, each area is processed separately; the centroid and major
axis orientation is computed in both the H&E (reference) and CD20 (target) images and
areas are first translated and rotated according to these values. It can be observed that the
H&E could be used for the target and the CD20 for the reference, however, the objective is
to perform measurements in the H&E images and as a result, the preservation of both
images is required. Lastly, the registration algorithm provides a distortion map for each
tissue area. A new CD20 image is then computed on which the following follicle
segmentation step will be applied. Figure 4 illustrates the registration procedure with (Figure
4(a) and (b)) the control points of an H&E/CD20 pair before and after shape matching and,
(Figure 4(c)), the new registered CD20 image.

2.6. Follicle Segmentation
In this work, segmentation of follicles is performed on CD20 images, where we are able to
determine the follicle boundaries. The boundaries are transferred, in a second step, to
segment the follicles on H&E images at a higher resolution.

2.6.1. Pre-segmentation in CD20 images—In CD20 stained tissues, follicle areas
appear as brown objects (that means essentially red, with green in a smaller quantity)
whereas the inter-follicular space appears as a lighter blue area. As a result, we based the
color components for detecting follicles on blue and red channels. However, the RGB color
space is known to be highly correlated; we thus apply decorrelation stretching [16]. First, the
eigenvectors and eigenvalues of Σx (the covariance matrix of the initial data in the original
RGB space) are calculated and the stretching vector S is computed as:
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(1)

Here, S is a diagonal matrix, σ is the desired standard deviation of the RGB channels in the
output image and λi,i are the eigenvalues of Σx. With D being the eigenvectors matrix of Σx,
each pixel x in the original image is then transformed to y using:

(2)

The three components in y are smoothed using median filtering (kernel size 3×3) and an
adaptive equalization of histograms is applied. For clarification purposes, this new
decorrelated color space is called RdGdBd. We have chosen an adaptive equalization rather
than a global one since the tissue preparation protocol often yields to staining gradients.
Figure 5 shows the initial RGB components and the final Rd,Gd,Bd components for a CD20
image. As shown in Figure 5, the follicles appear more contrasted and homogeneous,
especially in the red and blue channels.

Once the RdGdBd components are computed, Rd and Bd are thresholded according to the
Otsu algorithm to generate two binary masks BMR and BMB [17]. From the binary masks,
A1 in (3) provides the most likely areas of follicles; A4 in (6) is the union of most likely
background and inter-follicular areas whereas A2 and A3 in (4) and (5) provide the pixels for
which there exists an uncertainty. They can belong to follicles, background or inter-
follicular areas and require further processing.

(3)

(4)

(5)

(6)

First, pixels in A2 and A3 that are close to pixels in A1 (that is belonging to the
morphological external gradient of A1) are merged to the FL class if and only if their
RdGdBd value is close to the mean RdGdBd value of the adjacent FL. The set S of
aggregated points is defined in (7).

(7)

In (7), the grid G used is the 8-connexity and B is the square structuring element of size 1. In
our application, ε is fixed to 5 for each of the three RdGdBd components. Then S is used to
reconstruct [18][19], the connected elements of A2 ,followed by those of A3. The
morphological reconstruction of g from f is based on the dilation operator conducted until
stability or idempotence according to (8). The follicular area, {FL}, is given by (9). {FL} at
this point, still requires refinement.
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(8)

(9)

Finally, the concave elements of {FL} are separated using the watershed algorithm [20], the
initial markers being provided by a distance function computed on the {FL} binary mask. In
order to limit the over-segmentation, all follicle areas, which are joined by a watershed line
whose color intensity is close to the two neighbors, are merged. The objects smaller than
0.0256 mm2 (approximately 15% of a HPF) are also removed. Figure 6 shows an enlarged
part of the resulting mask. The ‘ground truth’ as delineated by an expert is shown in blue.
The green lines correspond to the automated algorithm. Some differences appear for small
parts of follicles that have not been retained by the expert but nevertheless are detected by
the proposed algorithm.

2.6.2. Transfer in H&E images—Due to slide preparation protocols used for both CD20
and H&E images, their binary masks “tissue vs. background” may not be exactly stackable.
In a same tissue area, some parts may have been shifted and/or rotated while the others are
not. The final consequence usually results in a tear or a fold at this location. It is the main
reason why we propose the inpainting process followed by a registration step to address
shape matching [10]. The boundaries obtained by the process on CD20 are transferred on
H&E images, where they can be refined.

2.7. Quality control of segmentation
In the proposed algorithm, many choices have to be made for tuning some of its inner
parameters, such as the color components to use, some values for thresholding, sizes of
structuring elements for morphological operators, minimal area of objects to be kept and so
on. To validate the choices made, we compare the automated results with a ground truth
provided by an expert. Of course this ground truth may be discussed since there is always an
important inter-rater variability between experts and also an intra-rater variability. But in the
context of a proof of concept, we only dispose of six binary masks of follicle areas,
manually delineated from the CD20 images. By comparing these six binary masks with
those provided by the automated system, four scalar values p, q, r, s as explained in Figure 7
can be computed.

Also known as the Jaccard index, the Jaccard similarity coefficient is a statistical measure of
similarity between sample sets. For two sets, it is defined as the cardinality of their
intersection divided by the cardinality of their union as in (10). Even though the Jaccard
similarity is largely used in many applications, its value may not reflect the quality of a
segmentation, as shown in Figure 8, where J(A,B) = 0.5 in both cases, A being the ground
truth of the expert and B being the automated segmentation. Some other measures are
available and are compared in [21].

(10)

In order to evaluate the quality of the final segmentation proposed in this paper, the
sensitivity, specificity and conformity are computed from True Positive (TP), False Positive
(FP), False Negative (FN) and True Negative (TN) as represented by p, q, r, s. Figure 9
visually explains the definitions of p, q, r, s. For our medical application, TP are the well
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detected pixels in follicles, FP and FN are the over-segmented and non-segmented follicle
pixels, respectively, while TN are pixels in the background and/or in inter-follicular areas.
Given these definitions, sensitivity, specificity and conformity (SSSC) are respectively
defined by (11), (12), and (13).

(11)

(12)

(13)

The sensitivity coefficient is a positive value reflecting how many pixels from the ground
truth are correctly segmented, while the specificity coefficient, also positive, measures how
many pixels outside the ground truth are correctly excluded. In the context of classification,
sensitivity would be the recall for the class ‘follicle’ (also called True Positive Rate)
whereas specificity would be the recall for the class ‘non-follicle’ (also called True Negative
Rate). Finally, the conformity coefficient measures the ratio of mis-segmented pixels to the
number of correctly segmented pixels; it may be also negative.

It is important to note that the specificity involves the computation of true negative pixels
TN, mainly the background area, which is strongly related to the dimension of images and
above all to the relative area fraction of the tissue. If TN >> TP, specificity → 1; the best
way to avoid this trap is to compute TN inside the bounding box of the tissue or inside its
convex hull.

With a perfect segmentation, these four coefficients are set to 1. In the extraordinary case
where the automated segmentation would provide the complementary mask of the ground
truth, sensitivity and specificity would be set to 0 whereas conformity would generate a
division by 0. With the examples shown in Figure 8, SSSC are {1/2; 1; 1; 0} for the left and
{1; (N-GA)/N; 0; 0} for the right, N being the number of True Negatives and GA being the
area of the ground truth. The higher value obtained when SSSC are multiplied should
theoretically correspond to the best segmentation algorithm.

3. Results
For the six CD20 images, we dispose of a ground truth delineated by an expert. They have
been used to tune the inner parameters of our algorithm by computing the SSSC coefficients.
At the end of the boundaries pre-determination, the last question is to evaluate if splitting
concave objects may be useful or not. This splitting is obtained by the watershed operator
and followed by the suppression of watershed lines having a similar average intensity as
compared with its two neighbors. Table 1 shows the results of SSSC coefficients without
splitting. Table 2 shows the results of SSSC coefficients with splitting and merging.

As shown, the sensitivity and specificity values are practically homogeneous and relatively
close to 1 in most cases (except perhaps for images 4 and 5). But conformity coefficients are
very far from 1, except for images 1 and 3 and, in a relative measure, image 4. The main
reason is that the automated algorithm has the ability to identify areas as a ‘follicle’ that the
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expert has not even identified. Moreover, the delineated contours are regular, mainly
convex, whereas the automated boundaries appear sometimes as fractal curves.

Taking into consideration the differences described, S1S2 product is computed in both
Tables 1 and 2. The two last rows compute the product of data in the same column. In this
trial, a perfect segmentation would have produced the set {6; 6; 6; 6; 36; 1296}. The
influence of a reliable ground truth is obvious. Even though the difference is very low
(+0.35% for S1S2 product and +2.4% for S1S2S3C product), the final splitting-merging step
provides the best results and has been retained by the expert.

Table 3 presents the Jaccard coefficients computed for the six CD20 images with and
without the final splitting-merging step. A perfect segmentation would also provide a sum of
6 in our trial but the intrinsic definition of J(A,B) confirms that it is not well suited for this
kind of application; the two sums are lower than 3.5. In Figure 10, curves of sensitivity,
specificity, SS-product and the Jaccard coefficient are displayed for the retained algorithm.
As depicted in Table 3, the Jaccard coeffient does not reflect the segmentation quality as its
value for image is 2 is one of the lowest values and decreases consistently with images 4-6.
The Jaccard coefficient is instead, strongly correlated with the conformity coefficients, as is
the ground truth provided by the expert.

The pre-determined boundaries obtained at the end of CD20 processing become the binary
mask of the follicles on H&E images. Figure 11 shows the binary mask presenting the most
likely areas of follicles in Figure 2(b) which we propose as an input to the ‘centroblast
detection’ stage, out of the scope of this paper. Without the use of the CD20 twin image, this
result would not have been reachable due tothe poor contrast encountered. The binary mask
is, of course, enlarged to return back to the original 40X resolution. In this final stage, no
ground truth is available so the refinement must be conducted without reference.

4. Discussion
This paper presents a methodology for achieving segmentation of follicle areas in virtual
slides of follicular lymphomas, before applying a further step dedicated to full grading. It is
a proof of concept, which should not be seen as the ultimate solution but as a general
framework showing the feasibility to use both IHC and H&E images for accurate follicle
segmentation. Many points have to be discussed and this paper tries to point out the main
challenging issues to take into account in future work.

4.1. Virtual slide preparation
For this trial, the twelve images used come from the same laboratory, i.e. they have been
prepared according to the same protocol and digitized on the same device. In a future
context of a computer-aided diagnosis system (CADS), it is mandatory to become
independent from the origin of the VS. Since it is impossible to control or systematize the
preparation of slides in a laboratory, one can just hope that the standardized staining
protocols are respected and fully automated to guarantee the constancy of quality. With
respect to digitizers, they now embed an automatic color correction to standard using an ICC
profile [22], which may be applied or ignored. Combined with a decorrelation of RGB color
components, one can assume that input images are correctly presented. Indeed, a good
CADS should also be able raising an alert when staining of input images seems to be far
from the expected one.

4.2. Tuning of inner parameters
As in all applications dealing with object segmentation, many inner parameters exist. They
are linked to image processing operators used all along the algorithm: threshold level for
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background segmentation, size of a median filtering for smoothing, size of structuring
elements with morphological operators used to clean binary masks and so forth. Even the
sequence of operators themselves may be considered as an inner parameter; the number of
possibilities is exponential. In the past, we employed some statistical parameter optimization
techniques to select the set of parameters to be used in a CAD system [23] and in our future
work, we will employ similar approaches for optimization. In this paper, one of the points
we focus on is the way to correctly estimate a segmentation quality. Rather than the Jaccard
index, we recommend computation of the sensitivity, specificity and conformity indexes and
then refinement of the sequence of operators and/or inner parameter settings with the goal to
improve their values. This method is also useful for the comparison of algorithms designed
and developed to perform the same task.

4.3. Registration step
The registration step is an intrinsic part of our framework since we have to manage serial
sections of tissue. For this trial, we used six pairs of IHC/H&E images for which the relative
shape was preserved from one section to its twin neighbor. Due to the limited but non-
homogeneous variations of orientation in our application, registration acts mainly as a non-
uniform smoothing. In daily practice, however, our algorithm should be applied to image
pairs where one image sharply contrasts its corresponding image, especially in cases where a
large part is missing from one or both of the pairs and this piece is in a different location on
each image. The algorithm used in this trial, based on shape matching, would thus act as a
“morphing” process and results would drastically decrease.

Therefore, in a future work, we will have to avoid this trap by using another registration
algorithm which can take into account both tissue boundaries and other local features by
locally warping some areas of the target image. These algorithms belong to non-rigid
transformations. The main challenges will then be to find corresponding points between IHC
and H&E images; one solution should be to consider white areas such as blood vessels.

4.4. Boundary transfer on H&E images
After CD20 processing and registration, we may encounter the following obstacles with the
boundaries obtained: differences in boundary matching of follicles in H&E images and
others where the boundaries will be shifted. Furthermore, folds and tears may appear on
H&E images whereas a follicle has been detected at the same location in its twin CD20
image. Future work will consist of refinement of the pre-segmented boundaries using, for
example, Active Contours (AC) [25] in H&E images. The initial active contours would be
the boundaries obtained at the end of CD20 processing. The AC could avoid the problems of
missing parts and overlap, such as folds and tears. This process also has the potential to
merge follicular areas that were over-segmented on CD20 images, allowing us to remove
areas of poor quality, small size or obscured by a hemorrhagic invasion, resulting in an
accurate representation of the follicular areas.

4.5. Validation of results
With the new digital pathology environment, it is quite a challenging proposition to request
a pathologist to delineate regions of interest on images of size 100k × 100k. Even a
dedicated pathologist will take a very long time to accomplish this task. Additionally, as
many studies have shown that the inter- and intra-rater variability in FL grading by experts
ranges between 61% and 73% [2], thus making it very difficult, if not impossible, to
compare automated results with a gold standard. Coefficients such as sensitivity, specificity
and conformity, as opposed to utilizing the common Jaccard index, can help in refining sub-
parts of a general algorithm. In this discussion, we propose reducing the expert workload by
making use of stereology such as in [24] in order to ask the expert to only delineate regions
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of interest for which a point of the grid is present. If the grid spacing fits the size of objects
to be detected, the ground truth will be statistically reliable. By comparing only the
corresponding elements, thanks to a morphological reconstruction, the SSSC coefficients
will provide a good estimation of the global segmentation quality.

5. Conclusion
In this paper, we present a general framework for segmenting follicular areas before
performing histological grading. Following the current practice of the pathologist, we start
from a low resolution IHC image, in which the contrast is known to be correct, to generate a
mask of the follicular boundaries. We then map these boundaries onto a corresponding
registered H&E image. Our algorithm is built from modular elements that are easily
modifiable and allow us to make changes to increase performance This allows us to control
quality based on segmentation and to develop training sets correspondingly. Despite the
huge size of virtual slide images, our algorithm is able to process them in one pass on a
personal computer. Its outcome is a binary mask of likely follicular areas in which high
power fields will be defined. It thus allows for the following follicular lymphoma grading
system (i) to process the whole slide at high resolution, (ii) to obtain statistics on grading
distribution and (iii) to assess the tumor heterogeneity. We also propose a general
framework for the evaluation of segmentation results, which takes into account multiple
facets of segmentation errors.
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FIGURE 1.
Flowchart of the process.
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FIGURE 2.
(a) CD20 stained tissue. (b) H&E stained tissue.
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FIGURE 3.
(a) Folds and tears on a CD20 image. (b) Binary mask obtained by skeletonization. (c)
Reconstruction by image inpainting.
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FIGURE 4.
Registration using H&E (reference) and CD20 (target). (a) Control points from the
boundaries of the two initial binary masks. (b) Shape matching of control points. (c)
Reconstructed CD20 image and its segmented background (to be compared to Fig 2(a)).
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FIGURE 5.
CD20 image before and after decorrelation stretching. (a),(b),(c) Respectively R,G,B
original components. (d),(e),(f) Respectively Rd,Gd,Bd components after decorrelation,
median filtering and adaptive equalization of histograms.
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FIGURE 6.
Pre-segmentation on a CD20 image. Automated (green) vs. Expert ground truth (blue).
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FIGURE 7.
Comparing manual and automated segmentation. Four statistical values.
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FIGURE 8.
Limits of Jaccard index: Two very different segmentations yielding to the same value for
J(A,B).
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FIGURE 9.
Visual definition of p,q,r,s. A is the ground truth, B the automated segmentation.
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FIGURE 10.
Quality control of the final segmentation in CD20 images. Sensitivity, specificity and their
product are compared with the Jaccard coefficient.
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FIGURE 11.
Final segmentation as a binary mask of follicles.
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