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Abstract
Iterative Cross-Correlation (ICC) is the most popularly used schema for correcting eddy current
(EC)-induced distortion in diffusion-weighted imaging data, however, it cannot process data
acquired at high b-values. We analyzed the error sources and affecting factors in parameter
estimation, and propose an efficient algorithm by expanding the ICC framework with a number of
techniques: (1) Pattern recognition for excluding brain ventricles; (2) ICC with the extracted
ventricle for parameter initialization; (3) Gradient-based Entropy Correlation Coefficient (GECC)
for optimal and finer registration. Experiments demonstrated that our method is robust with high
accuracy and error tolerance, and outperforms other ICC-family algorithms and popular
approaches currently in use.
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1. Introduction
Diffusion Tensor Imaging (DTI) is a powerful imaging technique for the non-invasive
characterization of the microstructure of normal and pathological tissues. DTI data,
however, are vulnerable to geometric distortion caused by eddy current (EC). DTI data
typically are acquired using echo-planar imaging (EPI) pulse sequences. Consequently,
rapid switches between the strong gradients of diffusion-sensitizing magnetic fields
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inevitably create residual gradients that produce EC-induced distortion. Often the bandwidth
of the phase-encoding direction is routinely much narrower than the other two (readout-
encoding and frequency-encoding) directions, making the phase-encoding direction of the
diffusion-weighted (DW) image more sensitive to contamination of EC-induced distortions
caused by the DW gradient. Furthermore, because the amplitude and direction of the
diffusion gradients determine the magnitude of the EC-induced distortion, DW imaging
(DWI) data acquired along different directions of gradient contain different distortion.
Misregistration among DWI data along differing gradient directions will produce errors in
the reconstruction of the diffusion tensors in virtually every voxel of an image, and
subsequently in the derived measurements. These include the apparent diffusion coefficient
(ADC)[1], fractional anisotropy (FA)[2] or ellipsoidal area ratio (EAR)[3], and the
procedure of fiber tracking. Therefore, EC-induced distortions must be corrected in all DW
images before a diffusion tensor is reconstructed. Many algorithms have been developed for
correcting EC-induced distortions, and can be classified into three categories. The first
category are those algorithms that rely on improving MRI pulse sequences, including those
compensating ECs by changing the shape of the gradient amplitude envelope [4] and those
designing special pulse sequences [5–7]. For example, the bipolar gradient imaging schema
[6] minimized EC-induced distortion by using pairs of bipolar gradients, which requires a
prolonged diffusion-weighted time and thus results in an obvious signal attenuation due to
transverse relaxation. Most investigators, however, do not have easy access to the
proprietary computer codes required to program pulse sequences.

The second category of algorithms for correcting EC-induced distortions generally operates
on DWI data in k-space [8–10]. The processing and computations involved in the k-space
correction algorithms, however, are often complex. For example, one representative work
[10] proposed first measuring the phase evolution caused by EC fields along a set of
reference DW gradient directions that are parallel to the coordinate axes, using these
measurements to estimate the true phase evolution along particular spatial directions other
than those that are parallel to the coordinate axes, and then using those estimates to remove
EC-induced distortions from the k-space data. The third category refers to post-processing
methods that usually coregister the DW images to a reference image. In most cases, the
reference image is one set of the baseline images that is in theory acquired without the
application of a DW gradient and is therefore considered to be free of EC-induced
distortions by DW gradients. The methods in this third category are appealing because they
are generally flexible in permitting the correction of imaging data off-line.

Among these various post-processing methods, the Iterative Cross-Correlation (ICC)
algorithm [11], is one of the most popularly adopted. It estimates EC-induced distortion in
DW images by cross-correlating the DWI data with the reference images along the phase-
encoding direction. Unfortunately, ICC is known to correct accurately only DWI data that
are acquired at b-values lower than 300s/mm2 [12]. This is because DW signals deriving
from the regions of cerebrospinal fluid (CSF) within the images, when measured at higher b-
values, are much weaker than those measured in the reference images, thereby undermining
the accuracy of the cross-correlation of those DW images with the reference [11]. A number
of remedies have been proposed to address this limitation of the ICC algorithm [12–15],
such as using a fluid attenuated inversion recovery (FLAIR) sequence to suppress signals
from CSF [13] or acquiring an additional set of images using gradients of opposite polarity
to estimate the EC-induced distortion present in the original dataset [15]. These remedies,
however, generally require either the acquisition of additional imaging data or the
manipulation of specific pulse sequences, thereby significantly increasing the already
lengthy scan time. Moreover, the need to acquire additional imaging data means that these
revised ICC methods no longer involve only post-processing procedures that can be at the
convenience of the investigator off-line.
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Because the primary determinant of the errors in estimating distortion using the ICC
algorithm derives from the difference in image contrast between the reference and DW
images in the regions containing CSF, excluding the signal of the CSF when estimating
distortion should immediately and dramatically improve the performance of an ICC-based
algorithm for correcting EC-induced distortion in DWI data. Compared with the currently
available methods for suppressing signals from CSF [13], this purely postprocessing
approach would not require extra pulse sequence or imaging data.

We therefore propose to improve the ICC algorithm by excluding the CSF signal from the
distortion estimation. We first segment the brain and coarsely identify the regions of CSF
(including both cortical and ventricular CSF) in a binary mask that excludes the CSF
regions. This mask is then used within the conventional ICC algorithm to estimate the initial
parameters of distortion. As the segmentation step may not have accurately outlined the
regions of CSF, we then use Mutual Information (MI) instead of cross-correlation in the cost
function to refine the estimation of distortion for coregistering the reference with the DW
images. We use MI because it has been shown to be a robust and accurate measure of
similarity for registration of multimodal images in many studies [16–19]. With this measure,
we use a 3-paramter affine transformation and an algorithm called Limited memory Broyden
Fletcher Goldfarb Shanno with bound constraint (L-BFGS-B) to find the optimal parameters
for correcting distortion (see the Method section)[20]. L-BFGS-B algorithm can perform
optimization without computing the Hessian matrix, which is known to be difficult to obtain
in numerical calculation [20].

2. Preliminary
Iterative Cross-Correlation

The ICC model estimates distortion parameters by calculating the cross-correlation between
the DW and reference images along each corresponding column of their reconstructed
images at a higher resolution. The distortion is characterized by three parameters, M, T and
S within the plane of an image slice (for convenience we use the notation that the image lies
in the XY plane, with X, Y, and Z being the frequency-, phase-, and slice-encoding
directions, respectively). M represents the uniform scaling that the residual gradient
produces in the phase-encoding direction Y; T represents the uniform translation that the
residual gradient in the slice-encoding direction Z produces along Y; and S represents shear
deformation that the residual gradient in the frequency-encoding direction X produces
parallel to Y. As mentioned earlier, EC-induced distortion is routinely more severe along the
Y direction than in the other two directions, and the distortion along the other two directions
can be neglected. We therefore just consider correcting distortion along the Y direction. In
the process of evaluating the EC-induced distortions in a slice-wise manner, the displaced
locations Y′ of the voxels in each column X of the distorted image can thus be defined as
follows:

(1)

where ε is noise; and T′ (x) is the distance of translation along Y, which depends linearly on
X. The MTS (i.e., magnification, translation and shear) parameters, thus can be estimated by
maximizing the cross-correlation between corresponding columns of the reference and DW
images [11].

Mutual Information
MI is based on the concept of entropy, which describes dispersion in the distribution of gray
scale values in an image. Maes [21] proposed the use of the entropy correlation coefficient
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(ECC) (Equation (2)). The ECC is less sensitive to slight changes of overlap between the
images being coregistered:

(2)

where H(R) and H(D) are the Shannon marginal entropies of two images R and D,
respectively; I(R,D)=H(R)+H(D)−H(R,D); and H(R,D) is their Shannon joint entropy,
which indicates the dispersion of the joint probability distribution calculated by all the
overlapping portions of the images R and D. The original Shannon entropy calculation did
depend on image intensity, but did not depend on the pixel location in the images that
provides information of spatial characteristics, a feature that is always critical to the success
of image registration. Having realized this important fact, other investigators then proposed
to add into the MI calculation a measure that characterizes the intensity gradients at
corresponding points of the images [22]. Inspired by this approach, we propose in the
present work to combine gradients information with ECC and thus define the (GECC), as
follows:

(3)

where G (R, D) is gradient information computed for each point x in R and its corresponding
point x′ in D. ∇x(σ) and ∇x′ (σ) denote the gradient vectors of R and D at points x and x′
with a Gaussian kernel of scale σ respectively. |·| denotes the calculation of magnitude. αx,x′
(σ) is the angle between the two gradient vectors. w is a weighting function that emphasizes
both very small angles (around zero) and angles that are approximately equal to π[22]. Note
in Equation (3) that multiplying the weighting function and minimum of the gradient
magnitudes favors the strong gradient occurred in both images, where either the two
gradient vectors are parallel, or the two magnitudes are significant, or both are true.
Summation of these products for all points in R and D thus provides general information on
the interaction of gradient in the two images, which will be multiplied to the original ECC.

In general, MI works best when the histogram of two images shows highly clustered voxel
intensities. Voxel values in the CSF regions are dramatically different in the raw data
acquired at differing b-values, thereby containing large variations. This variation
consequently significantly disperses the voxel clusters in the joint histograms used in MI.
Therefore, identifying and then excluding CSF regions or assigning the CSF regions with a
unified intensity value will help to optimize the coregistration of DWI data to the reference
data using MI.

Because improper initialization will definitely cause excessive number of iterations in an
optimization procedure, which increases the opportunity of generating local extrema [23],
properly initializing the parameters to MI in our procedure is deemed crucial for accurately
and effectively estimating the EC-induced distortion. This is particularly important when MI
registration is applied to the low-resolution multimodal images. Moreover, such proper
initialization of the registration parameters is expected to effectively narrow down the
scopes for searching the true values in the registration at finer resolutions in the late stages,
so that it will help to further accelerate the optimization procedure [24]. Our method
contains such an initialization process (the next section).
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3. Materials and Methods
The Method

We first used BET (Brain Extraction Tool, FSL4.0, http://fsl.fmrib.ox.ac.uk/fsl/bet) to
extract the brain from extra-cerebral tissue. We then used FAST (FMRIB’s Automated
Segmentation Tool, FSL4.0, http://fsl.fmrib.ox.ac.uk/fsl/fast) to segment the brain. We then
use a pattern recognition tool developed in-house using active contour [25] to identify the
ventricles in the brain and thus formed a brain mask that excluded the background and CSF
signals.

We then applied the ICC algorithm to the masked images that excluded the CSF signals to
obtain an approximate estimation of the distortion parameters MTS. (We call the procedure
up to this step an ICC-mask algorithm.) Based on these masked images, we next conducted a
finer estimation of the distortion parameters using MI within a small range of the initial
values. (For future reference, we name the procedure of coregistration combining MI with
the CSF mask without taking advantage of the step of parameter initialization a MI-mask
algorithm.) The 3-paramter affine registration based on MI was thus optimal for the EC-
induced distortion. We calculated GECC between two corresponding images as a cost
function to estimate suitable values of MTS within the finer range. The values yielding the
highest GECC were selected to confirm the optimal MTS corresponding to the distorted
image D. The L-BFGS-B algorithm was used to identify the highest GECC within the search
space. For convenience, our approach, including all of the above-mentioned steps (i.e., ICC-
mask for initializing the searching of parameters and then MI starting from the initialized
parameters using the CSF mask), will be referred to as “our method” (in short, ICC-mask
plus MI-mask).

In addition, it is worth noticing that artifacts due to the interpolation of voxel intensity
during the procedure of imaging registration and warping may introduce additional bias that
may have a non-negligible impact on the accuracy of estimating the distortion parameters.
Such interpolation-induced artifacts occurring in the MI function may thus seriously impair
the accuracy of registration [26]. We therefore used an approximate Hanning-windowed
Sine function to correct the artifacts caused by interpolation of image intensities [27], and to
moderate the sharp changes that MI can introduce into the dispersion of the joint histogram
distribution. The joint dynamic profiles of entropies were consequently smoothed and local
extrema in the procedure of iterative searching tended to disappear.

In summary, our method consists of following steps (Fig. 1):

1. Generation of two binary masks Mr and Md for the reference image R and the
distorted image D respectively, in which value 0 masks the CSF in the brain region
and background outside of the brain;

2. Generation of the masked images R and D for the subsequent estimation;

3. Application of the ICC algorithm to the masked images R and D for an initial
estimation of the parameters MTS. The ICC algorithm searches the scaling factor
M0 within the range of 0.85–1.15 (uniform scale, as suggested elsewhere [11]) at
an incremental step of 0.005; the translation factor T0 and shear factor S0 are
estimated by linear regression fitting on the cross-correlation values that the ICC
algorithm has estimated for each column [11].

4. Application of the 3-parameter affine registration based on GECC to the masked
images R and D for more accurate estimations of the parameters MTS in the finer
searching space (M: M0±0.1; T:T0± 2; S0: S±0.2). Because MI is suitable for
registration of imaging data with different contrast, such as the reference baseline
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data and the DWI data in our case, we use ICC to estimate the initializing values
for finer registration to be conducted using MI.

Simulations and Experiments
To examine the effectiveness of our proposed method for distortion correction, we
conducted four experiments using three types of data: simulated, real human data and hybrid
human data. The first two were simulations that used simulated data and the other two used
human data.

In the first simulation experiment, we demonstrate the performance of our method using
simulated datasets. We simulated a reference image A and one set of images B containing
EC-induced distortions. Both images were created in Matlab 2008a (The Mathworks, Inc.,
MA, USA) and were of dimension 256×256. We first generated an image A0 that mimicked
the contrast of a typical T2-weighted image containing an annulus-like structure. For
simplicity, we used only the inner circular region to simulate, in combination, both the
cortical and ventricular CSF. The intensities within the inner ring were higher than those
within the body of the annulus. We superimposed onto this image a small amount of Rician
noise (standard deviation σ =10) to obtain image A. We then generated an image similar to
A0 that had a reversed contrast in the inner circle and in the body of the annulus. We
superimposed onto the image more severe Rician noise (standard deviation σ = 40) to
simulate the situation in the real world that the DW image always suffers heavier noise than
do the reference ones; and we then distorted the image with parameters MTS within the
range {M (0.85,1.15), T (−2, 2), S (−0.2, 0.2)}, to obtain the set of distorted images B (Fig.
2) (Note: the parameters MTS denote transformations in the direction from the distorted to
the reference image space). We simulated a total of 200 sets of images A and B with MTS
values evenly distributed within the above-mentioned scopes.

We then qualitatively evaluated the performance of our algorithm by extracting the
boundary of the reference image A and superimposing it onto both the uncorrected and
corrected images B. To assess functions of two components, the CSF mask and the MI
calculation, we also directly compared the performance of our method (MI-mask after
parameter initialization using ICC-mask) with those of the following methods: ICC, ICC-
mask, ICC-MI (ICC algorithm for initialized parameters and MI algorithm without using the
CSF mask), ICC-mask-MI (ICC-mask algorithm and MI algorithm, using parameters
initialized by ICC-mask but without using the CSF mask in the MI step). Methods were
compared by checking the estimated MTS parameters against the parameters that we used in
preparing the simulated data. We also tested both the MI and MI-mask algorithms that did
not take advantage of initial parameters, and found that the results contained large errors and
are not included here. The estimation accuracy of each of the parameters was indexed by the
mean error ε̄ and corresponding standard variance σε as follows:

(4)

where Pi is the estimated parameter in each simulation; P0 is the actual parameter that we
used in each simulation; and N is the number of repeated simulations.

In addition, we calculated the voxel-wise mean Euclidian distance (MED) of image intensity
between the undistorted DW data (reference) and the corrected DW images to highlight the
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difference between each correction and the ground truth. We repeated this process for all
200 simulated datasets.

The second simulation assessed the robustness of our algorithm, examining how the
accuracy of segmenting the CSF affected the performance of our method. We assumed that
removal of any portion of the CSF would improve the accuracy of the ICC algorithm. Due to
inherent imperfections in segmentation algorithms, we sought to assess whether our method
could tolerate error in excluding signal from the complete region of CSF. We thus randomly
deformed the true CSF mask of the simulated distorted image within a range that led to
20%–100% overlap between the deformed masks and the true mask (mismatch percentage ≤
80%). The overlap percentage is defined as:

(5)

where the vori and vd and are the CSF parts in the original mask and deformed mask,
respectively. We then compared the corrected results using ICC-mask, ICC-mask-MI and
our algorithm quantitatively by checking the MEDs of the image intensity. This experiment
was also repeated 200 times. The correlation between MED and degree of overlap generally
reflects the impact of the accuracy of CSF masks on the accuracy of estimating the
parameters for distortion correction.

In the third experiment, we used 10 datasets from healthy human participants to assess the
effectiveness of our method in practice. We evaluated the performance of our method
qualitatively by superimposing the extracted contour of the reference baseline data onto the
corrected DWI and FA data for visually checking the morphological agreement, and
quantitatively by checking the percentage of ill-conditioned tensors in the reconstructed DTI
data. Because tensors are by definition to be positive definite and artifacts due to various
reasons including EC-induced distortion will damage the feature, this percentage is a
terminal index for evaluating the quality of the DWI. These comparisons were conducted for
results generated using the conventional ICC algorithm, the FDT (FMRIB Diffusion Tool,
http://www.fmrib.ox.ac.uk/fsl/fdt/), and our method for EC distortion correction. The EC
distortion correction in FDT, short for FDT algorithm, is a popular image-based multimodal
registration method that can correct both EC-induced distortion and bulk subject motion in
DWI data using MI-based affine registration. Because the comparison was purely for
checking the performance of EC-induced distortion, we used data that were acquired with no
or negligible motion for comparability of the results across these methods.

In the fourth experiment, we further accessed the effectiveness of our algorithm using
synthesized hybrid human datasets, which were artificially imposed more severe distortion
to real-world adult human data by randomly altering M, T, and S parameters in a
prespecified range {M (0.85,1.15), T (−2,2), S (−0.2, 0.2)}. We did so because the DWI data
acquired from the scanners commercially available today have already been corrected for
EC-induced distortion, leaving limited space for testing our method and comparing it with
other tools (also see Discussion section). That is, although we would have liked to compare
the performance of methods on real-world data we instead had to impose simulated
distortion. We compared corrected results using our method with the conventional ICC and
the FDT algorithms qualitatively. The contours of the brains extracted from the FA maps of
the DWI images corrected by these methods were compared visually against the reference
data. In addition, a quantitative comparison based on the ill-conditioned tensors in the
reconstructed DTI data was also performed for the DWI data produced by the different
correction algorithms.
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Imaging Protocol
The DWI images of each of the 10 participant were acquired with their written consent on a
GE 3.0 Tesla MR scanner (General Electric, Milwaukee, Wisconsin) using a single-shot
spin-echo echo planar imaging (SE-EPI) pulse sequence with diffusion gradients at b=1000
s/mm2 applied along 15 non-collinear spatial directions in addition to 3 baseline images
acquired without applying a diffusion gradient. (This DTI sequence employed bipolar
gradients for diffusion.) Slice thickness was 2.5 mm with no gap, and about 60 axial slices
were acquired to cover the entire brain, at an in-plane interpolated resolution of 0.9375 mm.
Echo time (TE) was minimal at about 80 ms; repetition time (TR) = 15700 ms; field of view
(FOV) =240mm × 240mm, matrix =132×128, number of excitation (NEX) = 2. The final
images were machine-interpolated to an in-plane resolution of 256×256. Total DWI
scanning time was 9 minutes 57 seconds. Slices were orientated parallel to the anterior
commissure-posterior commissure (AC-PC) plane.

4. Results
In the first simulation experiment, our method demonstrated a significant improvement over
the ICC, the ICC-mask, ICC-MI, and ICC-mask-MI algorithms in estimating the distortion
parameters (Fig. 3). The contour of the reference image perfectly matched the contour of the
distortion corrected image generated from our method whereas there were clear
disagreements with the distortion corrected image using the other methods. This was most
pronounced with the ICC method. The individual MTS values also support this impression
(Table 1), which shows that the values of MTS calculated by the other algorithms
(especially the ICC algorithm) deviated significantly from the known values. The MTS
estimation which resulted from the ICC algorithm had a large divergence from the ground
truth and was also inconsistent with large variations. Results using the ICC-mask, ICC-MI,
and ICC-mask-MI algorithms were not stable in estimating T and S, whereas our method
demonstrated consistently small errors and deviations (Table 1). The MED values between
the reference and the corrected DW images generated using our method were between 0 and
15. This contrasted with the MED values of 15–37 between the reference and the ICC
corrected images, 5–21 between the reference and the ICC-mask corrected images, 11–35
between the reference and the ICC-MI corrected images, and 9–21 between the reference
and the ICC-mask-MI corrected images. These performance comparisons (Fig. 3, and Table
1) demonstrate that removal of the CSF signal can significantly improve the accuracy of the
estimation of M and that combining the use of a CSF mask and MI can make the evaluation
of T and S more accurate.

In the second simulation experiment, the accuracy of ICC was dramatically improved when
the CSF mask was incorporated: the MED of the ICC-mask approach decreased from 35
when no CSF was used to approximately 16 (the MED of using the ICC algorithm alone was
not shown because it was a straight line and far from the others), indicating the great benefit
that the CSF mask offers (Fig. 4). This confirmed our hypothesis that any exclusion of CSF
would help improve the performance of ICC. The experiment also demonstrated the benefit
of the combined ICC-mask and MI approach, as its MED ranged around 16 in comparison to
the MED of ICC-mask, which was 16–26 (Fig. 4). Our method performed the best (MED
ranged narrowly from 13–16) using MI-mask with parameters initialized by the ICC-mask
algorithm. Moreover, in contrast to the ICC-mask algorithm, our method was much less
sensitive to the error contained in the binary CSF mask. However, increased accuracy in the
CSF mask did lead to a decrease in estimation errors of the parameters. Although the
performance of ICC-mask-MI was relatively consistent when the mask mismatch varied, our
method overall outperformed the ICC-mask-MI method because the MED of our method
was consistently lower (Fig. 4). This is especially true for overlap >50%.
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In the third experiment, which used human data, the superimposed contour of the baseline
image again demonstrated that using our algorithm was much better than using the ICC
algorithm and also better than the FDT algorithms, especially in lower boundaries of the
brain. Comparing the FA maps generated from DWI data with and without correction (Fig.
5), we can see that using our method provided much clearer details and structures, largely
because it more accurately coregistered DWI data acquired along differing directions of the
DW gradients, thereby improving the accuracy of tensor estimation. The fuzzy boundary
surrounding the brain in the FA map generated using DWI data corrected with our method
was much thinner than the boundaries in the uncorrected data and those corrected using the
ICC or FDT algorithm (Fig. 5). Note the human data were acquired using bipolar gradients,
and thus the major portion of EC-induced distortion was already removed in the obtained
imaging data. This indicates that distortion correction of the data using our algorithm was
more accurate than it was using the competitors’.

Quantitative evaluation of the percentage of ill-conditioned tensors (Table 2) showed that all
three methods reduced the number of non-positive definite tensors, indicating that all three
approaches did improve the distorted DWI data to some extent. This improvement varied
according to method: 5.56% for ICC, 13.58% for FDT, and 39.51% for our method, once
again, showing that the performance of our method was superior to the other two methods.
Finally, a comparison of the overlapped areas based on the extracted contour of the
reference data that was superimposed onto the corrected images revealed that our algorithm
generated the best morphological match between the corrected images and the reference
image (ICC: 95.49%, FDT: 96.83%, and our algorithm: 97.72%), suggesting that our
method not only effectively corrected DWI data volumetrically, but also morphologically
with high accuracy. The MED analysis, the comparisons of ill-tensor percentages and
overlap areas based on the 10 real datasets thus unanimously suggested that our method
outperformed its competitors.

The fourth experiment, using the hybrid human datasets, corroborated the first and third
experiments and buttressed the case that our method is superior to the ICC and FDT. Our
method improved on the competitors both morphometrically, with nearly perfect registration
(Fig. 6), and volumetrically, with the greatest improvement in achieving the smallest
percentage of ill-conditioned tensors that was calculated based on all the brain voxels in the
image (Table 3).

5. Discussion
We have presented a novel algorithm for effectively correcting EC-induced distortions in
DWI data acquired using SE-EPI sequences. This model employs a number of techniques as
detailed in the text from different fields to improve the performance of the ICC-family of
algorithms for correcting distortions. The experiments with DWI data acquired at high b-
values (1000 s/mm2 in our case) have shown that this method not only has overcome the
major limitation of the ICC-family algorithms, i.e. the inability to treat distortions in DWI
data acquired at b-values larger than 300 s/mm2 [12], but it also has vastly outperformed the
ICC and FDT methods that are popularly used in practice today for correcting EC-induced
distortions.

Compared with other MI-based correction methods [17, 19], our MI-based registration
algorithm for EC-induced distortions in DWI data has two distinct features: First, our
algorithm identifies the regions of the CSF and then excludes the signals from CSF to
initialize the estimation procedure for improve the accuracy of MI registration. Second, this
algorithm uses the CSF mask to help further improve the accuracy of MI registration. In
addition, our MI registration algorithm also adopts L-BFGS-B for searching optimized
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solution and a Hanning-windowed Sine function for correcting the artifacts caused by
interpolation of image intensities. Last but not least, our method is purely a postprocssing
approach, which is independent from manipulating pulse sequences or the k-space and
therefore is relatively easier for average users.

Segmentation of the CSF is a key to the success of the accurate estimation of parameters for
distortion correction. As shown by the tests using simulations and real human data which
adopts the ICC algorithm to correct distortion, with or without the CSF mask, using the
mask can significantly improve the accuracy in estimating the distortion. Using the CSF
mask also helps improve the accuracy of MI registration, because the CSF mask merges the
small clusters of varying intensities in the CSF regions to the cluster of background, thereby
enhancing this uniformly valued cluster which is large and consequently benefits MI
registration [24]. Moreover, we have shown that the identification of the CSF regions does
not have to be ideal. That is, our method is robust, regardless of whether the CSF portion is
relatively under or over identified. Although the performance of ICC-mask-MI is relatively
consistent when the mask mismatch varied, our method has demonstrated a consistently
lower MED compared with the ICC-mask-MI method (Fig. 4). Because of this high fault
tolerance, our method does not require the segmentation of CSF to be performed separately
and repeatedly for the baseline reference and the DWI data, even though they usually are
originally mismatched slightly. Using our method therefore will not impose an overhead of
manual work for carefully segmenting and excluding the CSF regions. Instead, it will be
widely applicable and robust when using any available segmentation technique.

MI is a good approach for coregistering imaging data with differing contrast. However, good
initialization of the parameters is necessary for accurate MI registration. In the first
simulation experiment, we also tested estimation of the parameters for correcting distortions
by registration procedures using purely the MI methods without first initializing the
parameters with good confidence (i.e. using the MI and MI-mask algorithms). The results
demonstrated that an appropriate initialization of the distortion parameters is critically
important to the final success of correcting the EC-induced distortion. This is because DWI
data are usually noisy with low resolution but contain only mild distortion, which can be
diminished only by specially crafted approaches designed with extra care. In our method, we
used ICC-mask algorithm as a good method for parameter initialization before performing
MI registration. This initialization method is easy to implemented and time-efficient. We
found from our experiments that the ICC-mask algorithm is an appropriate way for
initializing the parameters from the outset.

We showed that our algorithm yielded marked improvements in the correction of EC-
induced distortion using simulated data. The improvement for human data directly acquired
from the MR scanner was less significant because commercially acquired scanners correct
most of the distortion, leaving comparatively less room for our algorithm or any other
algorithm to improve it. For example, the DTI pulse sequence on our scanner uses bipolar
gradients, resulting in DWI data with only slight residual of EC-induced distortion.
Nevertheless, residual distortion was detected and corrected by our algorithm better than by
the competing algorithms. Whereas the simulations were designed for the purpose of
quantitatively showing that our algorithm performs effectively for DWI data, the fourth
experiment, parallel to the simulation tests, was designed to show this for human data. We
synthesized hybrid human datasets by artificially imposing more severe distortion on human
data with randomly adopting M, T, and S parameters in a prespecified range. Again, in this
case, our algorithm outperformed the others (Fig. 6 & Table 3).

EC-induced distortion is not simply a geometrical distortion. Instead, it is a consequence of
the narrow bandwidths used in EPI and residues of the strong diffusion-sensitizing gradients
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required for DTI. It affects every voxel of the image but not merely those at the edge of the
brain. Thus commonly-used morphological methods for recovering the shape of the brain
using only its morphological boundary are not suitable for correcting EC-induced
distortions, because boundary-based techniques consider only the geometry information of
the boundary voxels and interpolate this information across the entire imaging volume. Such
correction has little to do with the intrinsic physical process that generated the distortion. In
addition, interpolation of the DWI measurements during correction also needs to be
carefully considered [26]. A valid algorithm for correcting DWI distortion must consider the
intensity information from every voxel in the image as part of a volumetric texture for
calculation. This requires a complicated model for voxel transformation to correct EC-
induced distortion. Our method corrects in this way, and we have shown that our method is
able to volumetrically and morphologically correct the data with high accuracy (Figs. 5 & 6,
Table 2 & 3).

Because the acquisition of a DWI dataset is usually lengthy, the data thus acquired may
sometimes inevitably contain motion artifacts. Several available approaches therefore have
considered correcting motion together with EC-induced distortions [18, 28, 29]. However,
we would prefer to separate the two issues, because the essential physics models for subject
motion and EC-induced distortion are completely different, and the impact of subject motion
on the change of DWI measurement is unknown. Arbitrarily modifying the value of voxels
to compensate for motion artifacts may introduce unpredictable bias to the correction of EC-
induced distortion. Moreover, EC-induced correction is usually performed within the plane
of image slices, whereas motion can occur along any spatial dimension. Even if the motion
in 3D could be perfectly recovered, compensating the DWI measurements thereafter in the
recovered voxels would be an independent problem, because DWI measurements are
associated with gradients that are specific to particular spatial orientations. Considering
these difficulties, previous work [18, 28, 29] trying to combine motion correction and
distortion correction has made the simplified assumption that motion occurs only between
the acquisitions of consecutive DWI volumes. Unfortunately, such an assumption is too
strong and not generally true in practice. Even worse, in such models motion artifacts
occurring in limited slices could be spatially propagated and transferred to neighboring
image slices due to motion correction in 3D prior to or along with distortion correction,
thereby severely compromising the dataset. In certain extreme cases of using such models,
motion correction occurs when we test a dataset that contains absolutely no motion but has
relatively significant distortions. We believe the ignorance and improper modeling of the
interaction between the motion and distortion is the main reason in such cases. We therefore
chose to tackle only the issue of distortion correction in this paper.

Finally, because EC-induced distortion intrinsically relates to the spatial orientation and
strength of the diffusion gradients, our future efforts will aim to characterize this
relationship and develop a systematic correction for it to further improve the accuracy and
validity of our correction algorithms. Also, developing a more realistic model that accounts
for the motion in EC-induced correction is crucial and this requires a strategy for properly
adjusting the associated gradient to each voxel that is to be corrected for motion and then for
distortion.
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Abbreviations

ADC Apparent Diffusion Coefficient

BET Brain Extraction Tool

CSF Cerebral Spinal Fluid

DTI Diffusion Tensor Image

DW Diffusion Weighted

DWI Diffusion Weighted Imaging

EAR Ellipsoidal Area Ratio

EC Eddy Current

ECC Entropy Correlation Coefficient

MTS Magnification, Translation and Shear (distortion parameters)

FA Fractional Anisotropy

FAST FMRIB’s Automated Segmentation Tool

FDT FMRIB Diffusion Toolbox

FLAIR Fluid Attenuated Inversion Recovery

GECC Gradient-based Entropy Correlation Coefficient

ICC Iterative Cross-Correlation

L-BFGS-B Limited memory Broyden Fletcher Goldfarb Shanno with bound constraint

MI Mutual Information

SE-EPI Spin Echo Echo-Planar Imaging
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Figure 1.
The flow chart of our proposed method for correction of eddy-current induced distortion.
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Figure 2.
A typical example of the simulated datasets for the first Experiment. (a) Reference image A,
which is the simulated baseline image; (b) A typical instance of image B, which is distorted
with noise added, simulating the conventional diffusion-weighted image that contains eddy-
current induced distortion.

Liu et al. Page 16

Comput Med Imaging Graph. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
A comparison of the performance of distortion correction using various methods based on
the simulated data. The boundary of the reference image was extracted and superimposed
onto the corrected images. (a) The distorted image B as shown in Fig.2b; (b) The corrected
result by the standard ICC; (c) The result by ICC-mask; (d) The result by ICC-MI; (e) The
result by ICC-mask-MI; and (f) The corrected result by our method. The result using our
method achieved the best agreement between the extracted contour of the reference image
and the corrected DWI data.
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Figure 4.
Quantitative comparisons of the performance of the ICC-mask, ICC-mask-MI and our
algorithm with varying degrees of inaccuracy in segmentation of the CSF. MED is the mean
Euclidian distance of image intensity with arbitrary unit (a.u.), which is calculated based on
200 images simulated with distortion parameters MTS = (1.1, 1.5, 0.15). The dark lines
illustrate the linear trend of the performance of ICC-mask, ICC-mask-MI, and our method
respectively. Obviously, the accuracy of the CSF mask has a great impact on the
performance of the ICC-mask algorithm (the dark green curve). Combining ICC-mask with
MI (the light green curve) greatly improves the overall performance, whereas our method
(the red curve) can further improve the performance in estimating the parameters for
correcting the EC-induced distortion. This results in errors consistently lower than the ICC-
mask-MI approach (the light green line). This experiment demonstrates that identifying and
then excluding CSF is important, both in the ICC and MI algorithms, and properly
initializing the parameters is helpful to achieve higher accuracy in performing distortion
correction.
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Figure 5.
A comparison of Fraction Anisotropy (FA) maps generated from the DW images corrected
using the ICC, FDT, and our method. (a) Uncorrected image; (b) Image corrected by ICC;
(c) Image corrected by FDT; (d) Image corrected by our method. Note particularly the
regions indicated by the ellipses where our method generated the clearest structures,
implying that our method best corrected the distortion so that all DWI were well
coregistered. Moreover, the fuzzy boundary around the brain is thinner in (d) than in (a), (b)
and (c), indicating once again that our method more accurately coregistered the DWI data.

Liu et al. Page 19

Comput Med Imaging Graph. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
A comparison between different approaches using the hybrid human datasets based on the
corrected DWI data and their corresponding Fractional Anisotropy (FA) maps. The
boundary of the reference image was extracted and superimposed onto the corrected images.
(a) The reference baseline image; (b) The original raw DW image directly downloaded from
our MR scanner; (c) An artificially distorted DW image to be corrected; (d) Image corrected
using ICC; (e) Image corrected using FDT; (f) Image corrected using our method; (g) The
FA map corresponding to the distorted data in (c); (h) The FA map corresponding to the
ICC-corrected data in (d); (i) The FA map corresponding to the FDT-corrected data in (e);
(j) The FA map corresponding to the data corrected by our method in (f); (k) The FA map
corresponding to the original reference (undistorted) dataset in (b). Note particularly the
regions at the tip of the arrows, where mismatches between the image and the contour were
apparent in the images corrected by ICC (gaps at the tip of the white arrows) and FDT
(image went beyond the contour at the tip of the black arrow). Such mismatches are not
present in the image corrected by our method. Comparing the circled regions illustrates the
clarity difference between the corrected results using different approaches. In this
comparison, our method appears to perform the best.
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Table 1

Quantitative comparisons of the performance of the standard ICC, the ICC-mask, the ICC-MI, the ICC-mask-
MI, and our algorithm. The mean error and corresponding standard variance error of the estimated MTS
parameters were calculated, respectively. The mean Euclidian distance (MED) values of image intensity based
on the 200 images simulated with varying values of MTS are also shown in the table. The standard ICC
performed the worst and the most unstable, whereas the algorithms combining with the CSF mask or MI
obviously improved performance. The mean error and standard variance error of the estimated parameters in
our algorithm were the smallest, indicating that our method performed the best. The errors of MTS were
calculated separately using Equation (4), with arbitrary unit (a.u.).

M error T error S error MED

ICC 0.0394±0.1224 1.6717±3.8361 0.3185±0.9641 31.14±4.2628

ICC-mask 0.0021±0.0008 0.1523±0.1765 0.0453±0.1695 13.97±1.9945

ICC-MI 0.0044±0.0022 0.2746±0.6153 0.0511±0.1197 15.34±1.9554

ICC-mask-MI 0.0026±0.0015 0.1520±0.3324 0.0377±0.1156 15.00±1.3831

Our Method 0.0016±0.0004 0.0843±0.1177 0.0115±0.0221 12.29±1.0716
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Table 2

A comparison of the percentages of ill-conditioned tensors reconstructed from DWI data corrected for EC-
induced distortions using the different algorithms in the third experiment. “Improvement” is the reduction
compared with the number of ill-tensors in the uncorrected DWI data. Our algorithm yielded the fewest ill-
conditioned tensors and greatest improvement.

Not Corrected ICC FDT Our Method

Ill-conditioned 1.62% 1.53% 1.40% 0.98%

Improvement - 5.56% 13.58% 39.51%
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