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Three dimensional coronary modeling and reconstruction can assist in the quantitative analysis ofcoro-
nary flow velocity from 2-d coronary images,In lhis papera novelmethod to assess coronary flowvelocity
is proposed. First, 3-d models of the coronary arteries are estimated from bi-plane X-ray jmages using
epipolar constraint energy minimization for the selected nducial points like bilurcations, and subse
quently 3-d B-spline energy minimjzation for the afterjal segments. A 4 d model is assembled from a

set of 3-d models representing different phases of the cardiac cycle. The 4-d model is fitted to the 2-d
image sequences containing basal or hyperemic blood flow information. Then, by counting the frames
in analogy with TIM|frame counting, an index of the mean coronary flow velocity can be estimated. Our
experimental results showthat the algorithm correlates with r= 0.98 (P<0.0001.95% cI0.92 0.99)tothe
clinical measurements of the TFC,

@ 2012 Elsevier Ltd. All rishts reserved.

1. Introduction

Coronary artery disease, or more specific a stenosis, may Iead to
a reduction in coronary blood flow. This is manifested in a reduced
flow velocity of blood through the coronary artedes. TIMI frame
counting I10l is a practical method to index blood flow velocity
and quantize coronary flow velocity reserve using measurements
in basal and hyperemic conditions. Coronary flow velocity reserve
is an impoftant measure for heart assessment I19,20,71. In clini
cal practice the method ofTIMI frame counting can be considered
as a qualitative flow velocity assessment using 2-d monoplane X-
ray images I22]. This method, however. is manually performed
by a cardiologist and requires catheter measurements to provide
information about vessel length. The standard minimally invasive
modality to assess coronary arteries is mono-plane X-ray angiog-
raphy, which is a two dimensional method. Three dimensional and
also non-invasive methods are computed tomography (CT) and
magnetic resonance imaging (MRI). Several 3-d semi-automatic
modeling methods have been proposed using mono-plane [91
and bi-plane X-ray [6].4-d models with motion analysis are
shown by Chen et al. [5] and [2]. Tomographic reconstruction
techniques require multiple projection angles which are obtained
in CT or rotational angiography. This requires measuring of the

e lectrocard iogra m to perform ECC -ga ted reco rdi ng or re tros p ective
ECC gated reconstruction. Tomographic reconstruction requires a

calibrated system in which the projection geometry is well defined
and at least three projections are required to get reasonable results

[11]. Several improvements of this algorithm are proposed by
[18,17,121. Coronary models can be used, for example, in inter-
vention planning I23l or fusion with other modaliries like IVUS

[15 ].
In this paper we propose a method using two standard, uncali-

brated, mono-plane X-ray image sequences to create a 3-d model
of the coronary arteries. Our main research goal is to automate
the measurement ofmean coronary flow velocity. In our previous
research [3]. we have aimed at using the 2-d X-ray angiography
data directly, but quantization offlow velocity requires the length
of the vessel which can only be obtained using 3 d information.
Furthermore our 2-d analysis required coronary model fitting in
which the model ideally should be 3-d. A set of3-d models is cre-
ated resulting in a 4-d model ofthe coronary arteries covering the
complete cardiac cycle. This is accomplished bycreating a temporal
3-d model using the basic 2-d X-ray information acquired by stan-
dard assessment procedures. A mjnimum of two projection angles
is required to estimate a 3-d model from the 2-d data, as shown in
ftg. l_

The estimated 4-d model Tis used as a template to find the
coronary arteries in the 2-d X-ray images Z A 3-d model is selected
ftom Tcorresponding to the normalized cardiac phase of the 2-d
image. Then, a 2-d projection of the 3-d model ,t1 is fitted onto
the 2-d image by slightly adapting the 3-d model. This adaptation
is controlled by deforming the 3-d model until the mean squared

* Corresっ ond,ng author Tell+31534892780:ぬ x:+31534891060
ιmar αd″essi8 8 tenbi nkeCatumnus uovente nl(C A ten Brinke)
l Te〕 〕+31534892780;ね x:+31S34891060
2 Tel:+31 534872110

089561117S― See lront natter 0 2012 E“ evier Ltd Au rights reseⅣ ed
http″ ldX d01 0「 g′ ll110161jcompmedinag201207001



CA ten Binke et aL / Compu@nzed Medi.al Imaging and Cruphics 36 (2012) 580 588

Fig.l. 4-d model Tcr€ation using mono-plane X ray sequen.es at two different prqection angles.Ihe fram€s are selected using retrospecnve ECG gatiDg.The 4-d cardiac
cycle is covered by a set ofl-d models Z= l,^'1o. .. .. ,Vl lestimated from the 2-d images t

distance between the projection ofthe model wire-frame and the
vessel centerlines in the 2-d image is minimized. This process is
repeated for every image in the sequence.

After a satisfactory fit of the 3-d model the contrast agent den-
sityat the location ofthe vessel centerline is measured. Combining
the 4-d model with these measurements results in a 4-d model
including information about coronary blood flow from which we
can estimate coronary blood flow velocity.

2. Methods

TIMI frame counting (TFC) is a manual method to give a flow
velocity index by counting the number of frames between the
appearance of the contrast agent at the main trunk and at the
apical bifuraction of a vessel [101. When the blood flow velocity
is artificially increased by inducing hyperemic conditions using
an injection of dipyradimole. papaverine or adenosine, the frame
count is in general significantly decreased. The ratio between basal
and hyperemic state frame counting can be defined as the frame
count reserve. Flow limiting factors, such as the presence of a

stenosis, will show a limited decrease of flow velocity during the
hyperemic condition compared to basal conditions. Our approach
to find TFC values automatically is to extract time density curves
from the all images. These time density curves are represented as
an image, called a contrast flow map, which is subsequently ana-
lyzed by standard image processing algorithms. In this paper we
want to locate the vessels and measure. using densitometry, the
contrast density at the vessel centerlines. Coronary vasculature is
difficult to obtain from the low contrast images from only one 2-
d view. It limits the temporal analysis of a single 2-d X-ray image
sequence, because the information is not sufficient to resolve the
ambiguities like vessel overlap and foreshortening. Therefore, we
will reconstruct a 3-d model ofthe coronary arteries.

Fig.2 clarifies the procedure. On top are the angiographic
sequences used as input to the algorithm, we firstly use two
sequences, the primary and secondary angular view, to estimate
a 3-d coronary model. From the primary and secondary input
sequence one cardiac cycle is selected which contains maximum
opacifaction ofthe coronary arteries. In these images the start and
end points ofthemain arteries and the most important bifurcations
are manually annotated in one image resulting in a set of points.
Then this annotation is propagated through the remaining images
using template matching, the user is able to correct the automatic
annotation. The annotated sequence covering one cardiac cycle
from two viewpoints is used to create a 3-d model. This model

is used to find the location ofthe vessels in the X-ray sequences of
the basal and hypereamicacquisitions. The next section willexplain
this process in more detail.

2.1 . lmaging geometry

The 3-d coronarary reconstruction method using planar X-ray
images follows the computer vision methods described by Hartley
and Zisserman 1131. After the creation ofthe model, the model is
fitted to the two dimensional image sequence using 3-d deforma-
tion and projection. Finally, a densitometric measurement results
in flow maps from which we can estimate TFC.

The center of the heart coincides with the center of rotation of
the C-arm, this is because the images in this research are acquired
with a full-view of the coronary arteries centered in the image-
plane. A small center offset can sufficiently be corrected by a table
motion correction algorithm, which is discussed in Section 2.4.
From this point of view. we can use the uncalibrated information
in the DICOM file to construct the geometry of the C-arm. In our
case the known vadables are the size ofthe image plane Nin Ipix-
elsl and the width ofthe intensifier D in Imm]. We assume that the
focaldistance/in lmm] is equalto the distance source to detector.
Based on this assumption we can calculate the detector element
(pixel)size p =D/N. we also introduce a displacement vector in the
image plane d = Idx, dyl. Variablesi N and D can be extracted from
the DICOM info structure from fields Disfonce Source to Detector.
R0ws and lnfensi]ier Size, respectively. These variables define the
camera calibration matrix K
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The rotation matrix R can be formed using the primary (RAO/LAO)
and secondary angle (CAUD/CMN) information from the DICOM
info structure:

町(α)=
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Fis.2. Overvjew ofth€ creation offlow maps from X-ray angiography imag€ sequences.

R(a, f) = Rr(d)Ry(a) (4)

The primary angle corresponds to RAO ((1:0) and LAO (d > 0)
projection and the secondary angle to the CAUD (p:0) and CRAN
(lr> 0)projection, see Fig.3. The translation vectort is the position
of the camera relative to the center of rotation. The z-axis points
towards the ceiling, so the camera isf/2 out ofthe center ofrotation
in z direction:

lo Itl,= l0 | (s)

Lt/2 )

The camera matrix is now:

e=xlntl

2.2. 3-d modeling

Fallavollita and Cheriet [9] have proposed a method to estimate
coronaryarteries usingsnakes. Ourmethod uses this approach with
the main difference thata FMM speed-map is used as force function.
The force function is important because itcontrols the deformation
ofthe 3-d snake. The snake is described bv a 3-d-curve or B-sDline

u(s). The deformation is controlled by an energy minimization func-
tion:

E(u)= / (E,ir(u) + E",t(r))ds (7)
JD

where Eindy) is the internal energy, preserving smoothness. and
Eai(lr)istheexternalenergy,attractingthesnaketoimagefeatures.
Emr can be described by:

t^2 'r,",to-y# r,lil (B)os I os"

where / and )" are constants controlling the tension and rigidity of
the snake respectively.

The externalenergy Eext can be described by:

EqtQ):O r 
1x1,x2. P1.P2;-x (9)

where d I is the retro-projection operator. This operator recon-
structs a 3-d point from two given 2-d points xn in two projection
planes n= 1, 2 described by camera matrix Pn:

X=φ l(Xl,X2,Pl、 P2)

xl are the original Points qη

force maps Fn:

為,=q._▽ F“ (q.)

( 101

with a movement depending on the

(11)
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(b)

Cranial Caudal

Fig,3. The c-arm can rotate about two angles, th€ pnmary angle d (RAO/LAO), see Fig. l(a), and rhe ,econdary angle }1 (caudali Cranial), see Fig- 3(b). The origin of the
coordinate system rs placed rt the center olrotanon ofthe C-arm. The C-aIm is atanterioFposrerior (PA)position when la,ll= 10, Ol. (a) Pnmrryangl€ (d)and (b)secondary
ansle (li).

where qi are the projections of v on projection planes n= 1, 2 and
Fn are the used force maps, which will be discussed in the next
sectron.

The numerical implementation ofthe snake algorithm requires
approximation of the derivatives with finite differences. Conver-
sion to vector notation with ui= (xi, y,, zi) [l ] results in:

E;n,(r): ylul ,;12+,tlr,1 1 2vi + v1*.t12

^2t:jv, | 2
Y- : /lur lrrl

o5

= y (.1x; x; )2

+ (vi vr i2

+ (zi zi )2)

. A".' Q

" TFI 
i 

^v, I z,i+vr,rl

= ; ((ri r 2xi+ xia)2

+ (y r -2yi + yi+t)2

+ (21 1 2zi+ zia)2)

(12)

The distance between the points is kept equidistant (Euclidean
distance) by redistribution ofthe points alongthe snake using cubib
B-spline interpolation. Discretization ofthe integral in Eq. (7) gives:

E=Σ G厭・)+島瓢哺)
|´ 0

Fc r a snakc with rV nOdes

Иヽinimization ofFaHovvs us to rewrite Eq(15)to be S01Ved using

dynamic programming:

f(り 1り2-,1カ )ヽ=El(り 1、 り2)

ln case ol forexample N‐ 5 nodcs we can calculate the minimal

energy using sub― functions sk(り +々1):

Sl(1'2)=min El(り l ν2)

S2(り3)=min(Sl(ソ 2)+E2(ソ 2.ソ3))

S3(1● )=」in(s2(ソ 3)+E3(ソ 3,V4)〕      (17)
lllin E(ッ ト  ,P5)=lllin(s3(V4)+E4(24、 り5))
ツト ツ5             1`

The recurrence relation is no、 v stated as(Forclaritythesecondordcr

term is not presented):

Sk(ソk_1)=

(18)(13) 
T1n {.u ,(ro)+e*,{ra)+ lu1*1 -,1|'z}

(14)

Each stage consists of26 possibilities, the neighbors [3 ! 3 '3] 1,

to calculate. The internal energy is stored at each stage. The indices
of node position with the minimum energy cost are stored in
the position matrix. The minimum energy can now be found by
back-tracing in the position matrix using Dijkstra's shortest path
algoritm I8l.

2.3. Force map

The force map is specifically constructed for each vessel seg-
ment to prevent interference from other vessel segments during
the minimization process of the 3-d-snake. The begin and end-
point of each vessel segment is annotated. With this annotation
we can generate a force map from each vessel segment using the
fast marching method (FMM) [211. This force map is used to find
the vessel centerline using the minimal cost path algorithm. The 2-
dvesselcenterline is plotted in a 2-dgrid. From this grid aeuclidean
distance map is calculated. The gradient ofthe distance map is used
as force map in the snake energy minimization algorithm.

The vessel centerline is found using the 2-d multi-stencils fast
marching method (FMM) [14]. This FMM is used to build a map
containing the travel time between the start-point and all other
points using a force function, which can beconsidered as the speed.
The FMM solves the Eikonal equation:

(15)

vT(x.y)] F(x.y) = 1 (19)

+E2(ツ 2,ソ3)+―

+EN_1(ソ N_1、 l、 )

in which T(x, y) is the arrival time ofthe ftont and F(x, y) is the force
function. The contrast enhanced image l.(r, y) is used as input F(r,
y)fOrthe Fast marching method:

F(χ y)_(1-(Cσ ●そ))γ

(16)

(20)
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Fig.4. The nght image shows the annotation olthe vessel segments with a highlight (in white) ofthe vesselsegment currently being traced. The righr image shows the
euclidean distance map after vessel detection using the FMM m€thod and minimalcost path algorithm. The gradient ofthe distance map is used as force field in the snake
d€formation alcorithm.

Now the vessel centerline is the minimum cost path from the
starting point to the end point, the back-traci ng of the minimalcost
past is performed using a fourth order Runge-Kutta approximation.
The centerline, see Fig.4, is defined by u(i) = (x(s),y(s)) wherexandy
are the coordinate functions and s € I0, 1l is the parametric domain
which describes the vessel from start to endDoint.

2.4. Table motion compensation

Table motion is compensated using image plane shifting. The
only requirement for this algorithm is the annotation of the
catheter-tip throughout the image sequence. The correction is per-
formed in the x-y plane ofthe localcoordinate system, this results
in a converging solution. Eq. (6) is changed to include the table
translation in the x-y plane:

e: x ln [t + n-1t,] ]:
in which tr is the vector:

(22)

This vector has two parameters xr and yr. These parameters
represent table motion, which results in an x-y motion in the
image plane. The parameters can be solved by minimizing the re-
projection errorofthe catheter-tip in the second image plane using
Eq. (9). The method solves the triangulation problem using the
direct lineartransform. This method is described in detailin Hartlev
and zisserman [131.

2.5. Fitting

The 3-d model is nfted to each frame in the image sequence
from which we want to measure the TFC. The vessel centerline is
obtained using the FMM method. The start and end points of the
ves sel segme nt are determined by projection ofthe segments ofthe
3-d model. Most likely, the projection of the segment will not fit
the vessel centerline found by the FMM method. Therefore, the 3-d
model is iteratively deformed until the vessel centerline coincides
with the projection of the segment. We allow a maximum of l0
iterations ofthe model deformation to prevent over-fitting when a

vessel centerline is incorrectly found due to low or none contrast
density.

2.6. Annototion

Three dimensional reconstruction from a limited set of pro-
jections (ND=2) is a challenging task. Thereforc we have created
a ground truth dataset using semi automatic annotation of our
dataset. The process of annotating the dataset is based on our
flow estimation software as described in ten Brinke et al. I3l. We
have discarded image pre-filtering with coherence filters and ves-
sel segmentation algorithms to prevent error accumulation and
experimental thresholds.

The user selects an image from the dataset with maximum
opacified arteries. Next, the vessel structure is annotated by select-
ing bifurcations and endpoints. These points are denoted A(x.y).
Points are interconnected using segments which are stored in a
connection matrix Cij connecting point ? with point Pj. It is a
rcdundant matrix, so only the upper triangle is used. All points
can be labeled li, for example 'LAD', 'LCx', 'Cathetertip'. A dataset
contains the annotation set S - { r{n J. C. l} in which n = | | ... Nl,
with N the number of images in the datdset. So each image shares
the same labels, interconnections and amount of points, only the
locations ofthe points vary. This allows the creation ofa temporal
3-d model using accurate data points. The user can use fast march-
ing assistance for tracing the vessel centerline to make sure that
the annotation correctly follows the vessels. All other frames are
semi-automatically annotated using template matching.

2.7. Contrast low map analysis

From the DICOM file we obtain 8-bit grayscale images with a
size of I512 x 5121 pixels. The raw data will be used to construct
the contrast flow map, which results in a flow map with the same
resolution as the images. Each line in the flow map represtent the
contrast agent densityalong one vesselcenterline s= I0. .. 1], with
in the vertical direction the image index n= [1 ..N1, see Fig. 5. In
this research we will focus on the most clearly visible vessel, which
is the LAD. The contrast flow map is analyzed using the following
image proces sing steps: The mean value is removed from the single
frame measurements. This mean value fneon is the mean from all
single measurements in the temporal direction:

N]

f-"""1n. s) = f(n. s) - - \ F(n. s)

r=0
123)

for s=[0..1]. Next we calculate a threshold using a 256 bins his-
togram from fnedn. In general, the maximum peak in the histogram

(21)
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Fig. 5. Dens itometry is applied on eac h image. The resuk is th€ measurement of the contrdst density at the location ol the vessels. This information is shown in a flow map
foreachvessel. From this the co.onary flow velocity can be estimated.

belongs to the contrast agent (dark) values. In practice, we can
separate the opacified arteries from the transparent arteries using
a threshold consisting of the maximum peak position in the his-
togram plus the standard deviation ofthe peakwhich is empirically
set at 1/8 ofthe total number ofbins.

This threshold is then applied tothe contrast flow map. A Canny

[4] edge detector finds the lines in the contrast flow map. One line
(or curve) in the contrast flow map connects the arrival times and
vessel positions ofthe contrast agent. The assumption that the con-
trastagent propagateswith a co nstan t velocity through thearteries
allows us to use a line fit. The lines are detected using the Hough
transform [16]. The slope ofthe line is related to the contrast flow
velocity. All lines that do not have a negative slope are discarded as

well as lines with a starting point after 1/2 ofthe total acquisition
time (we assume that the coronary arteries will be fully opacified
by the injection ofthe contrast agent in the first halfofthe recorded
lmage sequence).

3- Experiments

Two experiments are conducted: using a static brass model, see

Fig. 6, imaged using a Phillips Xper X-ray scanner and with clinical
oata.

Our clinical dataset contains images of interventions with
specific TIMI frame counting data and coronary artery length mea-
surements. The coronary artery Iength is clinically measured using
a ca theter s tarting from the leftmain artery to the apical bifurcation
ofthe LAD. It contains 32 patients (1 1 female, 21 male) from which
tvvo assessments are discarded because theydo notcontain atleast
two different projection angles of the left-coronary artery. From
the resulting 30 patients a total of 13,096 images have been semi-
automatically annotated. The two visually best series are selected
for annotation taking into accounta large angular distance between

the series, allowing to recreate a 3-d model. Note that, in constrast
to the catheter measurements, in the measurements of the recon-
structed coronary arteries we only measure from the start of the
LAD to the apical bifurcation.

4. Results

4.1. Phantom

we have tested the 3-d modeling algorithm on the brass phan
tom. Afully automatic reconstruction ofthe vesselsegments based
on epipolar line matching was not successful due to the unknown
camera calibration parameters. In the literature methods are pro-
posed by e.g. Blondel et al.l2l to address this problem. Since it is
not the focus of our research to create reconstruction algorithms
we have decided to manually annotate the vessel segments. With
the manual annotation and the B-spline algorithm proposed by
Fallavollita and Cheriet I9l we were able to create usable models
from the 2-d data. Fig. 7 shows the reconstruction ofthe phantom
and Table 1 shows the errors made in the reconstruction. Large
variations are visible at the vesselsegements which are not clearly
visible in both images.

4.2. Clinicol data

The quality of the coronary models is characterized by the re-
projection error. The length of the LAD is known from catheter
measurements, so we willcompare the LAD Iength measured from
the model with the ground truth ofthe catheter measurement. The
results are displayed in Fig.9.

Overall results are depicted in Fig. 10(a). The measured TFC cor-
relates with the clinical measurements with r= 0.80 (P<0.0001,95%

cr 0.63 0.89).
From 14 of 32 patients we have data of completely opacified

coronaryarteries during one cardiac cycle from tlvo viewing angles.
This data is used to create models covering the complete cardiac
cycle. In Fig. 8 an example of3-d models created from 5 phases of

Tabl€ 1

Reconstruction results ofthe phantom. See Fig. T lor the segment locations,

Segment d1 tpixehl/r1 tpixelt r,lpixehl .: Ip,xelsl

1

2

1

5

6
7

9
10
1l
12
r3

8
10
39
u
8

35
l
6
2

2
2
3

7

+32

7g
5

4
6
2

74
87
57

+58
+33

Fig. 6. The brasscoronary phantom
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Fig. 7. Reconsiruciio n of p hantom. See Table I for th€ reconstrucrion resu lts.

Fig.8. Modeling of the corona ry arte.ies. The nrstand second rowshowtbe two imag€sused jnthe modehrg, the third rowshows thegenerated model. A totalol20 modeh
arecredtedtocoverthecompletecardiaccycle'onIy5areshownjntbisngure'(ForinterpretJtlonof.eferencesrocolorinthetext'thereadeIreiefedtothewebve6ion
ofthis a.tic1e.)
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TFC values ofrhe remaining I patients.

the cardiac cycle are shown. Retrospective gatng is used to select
two images for the creation of one 3-d model, the figure shows
semi-automatically annotation of the vessels in blue and the 2-d
projection ofthe final model in red. The 2-d projection ofthe model
does not exactly fit the X-ray image, but that is not a main issue
because the 3-d model is deformed to fit the X-ray image in a latter
phase. From 9 of these 14 patients we were able to obtain a mea-
sured TFC within the intra-observer variability range of+5 frames.
The measured TFC correlates with the clinical measurements with
r = 0.98 (P<0.0001 , 95% CI 0.92-0.99 ). See Fig. l0( b).

5. Discussion

The accuracy of the algorithm depends on clinical and tech-
nological limitations. Acquisition of high quality images is limited
by the amount of X-ray exposure to the patient and the clinician.
Therefore, the clinician tries to minimize the X-ray dose by highly
effective usage of the field of view. This results in table motion
during the acquisition and a minimum amount of images. Also,
toxic effects of contrast agent limit the amount of image aquisition
runs. Dose limitation results in Iower quality images or incomplete
opacification of the coronary structure. Furthermore, the health
condition of the patient may limit the usage of the breath hold
technique. Moreover, patient arrhythmias during acquisitions may

15 20 25 30
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occur spontaneous of due to the injection of contrast agents or
vasodilators. Finally, patient dimensions influences the amount of
X-ray required and as a result changes the brightness ofthe images.
This may vary at different acquisition angles.

The clinical acquisition problems immediately have an effect
on the performance of the analysis software: for 3-d modeling,
a calibrated X-ray system is required. System calibration allows
epipolar matching and quantized models. Also, the creation of a

temporal model requires one completely opacified coronary ves-
sel structure during the whole cardiac cycle. For 3-d modeling it
also requires to have this from a minimum of two different angles.
Ambiguity still exists, but can be reduced using the B-spline mod-
els of the vessel segments. Patient motion like breathing and table
motion result in motion artifacts. The results ofthese motions are
inaccurate models. We have minimized these errors by annotat-
ing the catheter-tip and applying motion correction by aligning the
catheter-tips in both imaging planes.

During an X-ray acquisition, several image enhancements may
affect the analysis software. Automatic exposure control, for
example. results in an extra variable which should be included
in densitometric measurements. This variable, however. is not
updated duri ng th e a cqui s i tion. An a tomica I ba ckground s tructures,
like the spinal cord, influence vessel tracing algorithms. Theoreti-
cally we can use a background subtraction algorithm, in practice,
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motion artifacts prevent its application. In this research 3-d mod-
eling is used to compensate for that.

5.1. Limitations

The method discussed in this paper can only be used when at
Ieast two acquisitions are available with a complete opacification
of the coronary arteries during one complete cardiac cycle. The
time resolution of the measurements is limited by the frame-rate
of the X-ray equipment. In normal acquisitions this frame-rate is
12.5 or l5 frames per second (fps), resulting in respectively 80 ms
or 66.7 ms maximum temporal resolution (without interpolation)
depending on the acquisition device. Acquisitions with 50 fps are
technically no problem, however, clinically not desired because of
higher X-ray exposure to patient and clinician.

5.2. Conclusion

In this paper we have proposed a method towards the
automation of TIMI frame counting and. as a result of that, the
measutement of coronary flow velocity reserve using standard
angiographic X-ray acquisition. It requires a full cardiac cycle of
completely opacified coronary arteries from at least two different
angular positions recorded with ECC and an additional run for the
hyperemic measurement. From I patients we were able to obtain
a measured TFC within the intra-observer variability range of +5
frames. The measured TFC correlates with the clinical measure-
ments with r=0.98 (P<0.0001, 95% CI0.92-0.99).
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