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Abstract
We present a highly-automated approach to obtain detailed structural models of airway trees from
ex-vivo porcine lung tissue imaged with a high resolution micro-CT scanner. Such information is
an important prerequisite to systematically study models of lung disease that affect airway
morphology. The method initially identifies all tubular airway-like structures in the lung. In a
second processing step, these structures are grouped into a connected airway tree by utilizing prior
knowledge about the airway trees branching pattern. The method was evaluated on 12 micro-CT
scans from four tracheal lobes of piglets imaged at three different inflation levels. For this study,
two control piglets and two cystic fibrosis piglets were used. For systematic validation of our
approach, an airway nomenclature was developed for the pig airway tree. Out of more than 3500
airway tree segments assessed during evaluation, 88.45% were correctly identified by the method.
No false positive airway branches were found. A detailed performance analysis for different
airway tree hierarchy levels, lung inflation levels and piglets with/without cystic fibrosis is
presented in the paper.
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1. Introduction
A number of lung diseases affect airway morphology including asthma, chronic obstructive
pulmonary disease, and cystic fibrosis (CF). CF is a genetic disorder that occurs secondary
to mutations in the gene encoding the anion channel termed the cystic fibrosis
transmembrane conductance regulator (CFTR). CF affects the whole organism, but people
with CF suffer primarily from severe lung disease, limiting their life expectancy [1]. In order
to study CF and its pathogenesis, a porcine model of CF has been developed [2, 3, 4]. Over
time, the CF pig develops lung disease that recapitulates many of the characteristics
observed in humans with CF [5, 6]. At birth, the CF pig trachea and main bronchi are
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markedly reduced in caliber [7]. So far, the extent and patterning of the airway size
reduction in the newborn CF pig airway tree for branches distal from the trachea is
unknown. Identification of the anatomical patterning and quantification of a possible airway
size reduction in the newborn CF pig airway tree will improve understanding of this
congenital airway abnormality and its effect on disease pathogenesis.

As a prerequisite for such a study, methods are required to obtain highly detailed structural
models of the airway trees with accurate radius and wall thickness measurements for
individual airways. Based on this information, airways of animals with and without CF can
be compared. While traditional computer tomography (CT) scanners are not equipped with a
resolving capacity great enough to discern much beyond the largest airways of the newborn
pig lung, micro computed tomography (micro-CT), a miniaturized version of conventional
CT, allows imaging of the airways in much greater detail. An example of such a piglet lung
micro-CT scan is shown in Fig. 1(a).

Fig. 1(b) shows the result of a manual segmentation of some airway branches in this dataset.
A human user traced the airways in a few slices of the dataset and an algorithm produced
segmentations in slices in between using interpolation. It took about 3 hours of user
interaction to segment the shown set of airways. Thus, manual segmentation of the whole
airway tree would be too time consuming to be practically feasible and highly automated
methods are required instead.

Related work on (highly) automated airway tree segmentation in micro-CT scans of animals
is rare. In many cases, such methods are highly optimized for a specific application and/or
imaging protocol. For example, Artaechevarria et al. [8] and Shi et al. [9] presented methods
for segmentation of airways in in-vivo micro-CT scans of mice lungs. Yavarna [10]
presented a method for airway segmentation in ex-vivo mice lungs, which is based on a
classifier and requires a large set of segmented datasets for training.

In contrast, segmentation of airway trees in CT scans of humans is a well studied area with
existing commercial software packages available. Due to the lack of suitable methods for
airway segmentation of animals imaged with micro-CT, it is not surprising that researchers
in this field try to utilize and/or adapt segmentation methods developed for human airway
segmentation. However, because of the differences in imaging (e.g., noise, artifacts, etc.)
and anatomical differences, such attempts are not always successful.

In a recent study, Lo et al. [11] evaluated 15 automated and semi-automated airway
segmentation methods on human lung CT scans. Most airway tree segmentation methods are
based on region growing or front propagation methods, which make assumptions about the
radio-density of the airway lumen in CT scans. To avoid leakage, some of the methods
constantly monitor local segmentation results and adjust parameters accordingly. One
example for such an approach is the method presented by Tschirren et al. [12]. It showed a
good ability to extract a large number of airway branches without major leakages [11]. The
method, which is part of the commercial software system ”Pulmonary Workstation 2”
(PW2) by VIDA-Diagnostics Inc., Coralville, IA, is based on an automated region-growing
algorithm with leakage prevention and has a variety of interactive editing tools to correct
errors in the initial segmentation (i.e. to remove leakage areas or to identify missing
airways), if needed. In the same study by Lo et al. [11], two fully-automated methods
presented by Bauer et al. [13, 14] showed comparable performance.

A priori it is not clear which methods compared in the study by Lo et al. [11] are promising
for segmenting airways in ex-vivo piglet lung tissue imaged with micro-CT. For example, a
segmentation result of a micro-CT scan generated with PW2 is depicted in Fig. 1(c). In this
case, a lot of manual editing would be needed to generate a suitable segmentation result.

Bauer et al. Page 2

Comput Med Imaging Graph. Author manuscript; available in PMC 2013 December 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In this paper, we present a highly automated approach for extraction of structural models of
airway trees from ex-vivo lung tissue imaged with micro-CT scanners. The method builds
on a framework originally developed for the segmentation and separation of portal and
hepatic vein trees in contrast enhanced CT scans [15], which showed promising results in
segmenting human airways in CT scans in a preliminary study [14]. Specifically, we
propose adaptations to this framework to deal with the large size of micro-CT images by
means of a two-step tree reconstruction approach and investigate the applicability of this
framework by studying segmentation performance on scans of CF and non-CF piglets. The
centerline description generated with our approach can be used as input for algorithms that
perform inner and outer airway wall segmentation. Such methods have been published [16]
and are available in commercial lung image analysis software (e.g., PW2). In addition, the
presented method might also be suitable as a starting point for other studies of airway trees
imaged with micro-CT.

2. Image Data
Micro-CT scanners allow imaging of the porcine lung with high resolution. However, their
field of view (FOV) is too small to accommodate the whole newborn pig lung. Hence, we
have developed a micro-CT based protocol to image the newborn pig tracheal lobe, which is
the porcine equivalent of the human right upper lobe and of appropriate size for micro-CT.

All animal protocols were reviewed and approved by the University of Iowa Animal Care
and Use Committee. Non-CF (CFTR+/+) and CF (CFTR-/-) newborn pigs were provided by
Exemplar Genetics (Sioux Center, IA). The animals were euthanized (Euthasol; Vibrac, Fort
Worth, TX) for examination within 12 hours of birth, after which the tracheal lobes were
excised and cannulated. The cannula was attached to an air source with adjustable pressure
which allows to mimic different inflation levels (breathing states) of the lung. To mitigate
tissue dehydration, the tracheal lobe was surrounded by damp medical grade gauze. An
image of the setup and the cannulated piglet tracheal lobe is shown in Fig. 2.

After a lung recruitment maneuver, each tracheal lobe was scanned at different airway
pressures including 0, 5, and 20 cmH2O. A Siemens micro-CAT II scanner (Siemens, Pre-
Clinical Solutions; Knoxville, TN) was used for the micro-CT imaging. Scanner settings
were as follows: 80 kVp, 200 μA 1.5 s exposure, and 720 projections over 220 degrees of
rotation. Image were reconstructed with an isotropic voxel spacing of 0.028 mm resulting in
a typical dataset size in the range of 1070 × 660 × 960 voxels after cropping the scan to
contain only the lung lobe.

Examples of resulting scans of newborn pig tracheal lobes are shown in Fig. 3. The main
structures of interest are described in Fig. 3(a) and Figs. 3(b)-(d) show scans of the same
lobe at different inflation levels. Note the effect of the different inflation levels on the
airways as well as the lung parenchyma's appearance.

3. Airway Tree Structure Extraction Method
An overview of our approach to obtain the structure of an airway tree in micro-CT datasets
is shown in Fig. 4. First, large-scale airway-like structures are extracted from the dataset
after downsampling to half the size of the dataset in each dimension (Fig. 4(b)). From the
extracted large-scale airway-like structures and a manually specified root branch of the tree
an initial airway tree is obtained (Fig. 4(c)). Second, small-scale airways are identified (Fig.
4(e)) in the full-resolution micro-CT scan inside the lung parenchyma (Fig. 4(d)). Finally,
the combination of the initial airway tree and the small-scale airway-like structures results in
the final airway tree structure (Fig. 4(f)). Compared to the tree reconstruction proposed in
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[15], this two-step approach enables processing of large size micro-CT datasets by lowering
memory requirements and considerably reduces computing time.

In the micro-CT scans, the lung parenchyma is surrounded by damp gauze (Fig. 4(a)) which
may be locally misinterpreted as containing smallscale airway-like structures. To address
this issue, a rough lung parenchyma mask is utilized. This mask is generated as follows. The
micro-CT image I is thresholded using I(x) ≥ −970 HU and I(x) ≤ 0 HU followed by
morphological opening and closing [17] using a spherical structuring element with radius
0.5 mm. An example of a such obtained mask is shown in Fig. 4(d).

Basically, the outlined approach for extraction of the piglet airway tree structure is based on
two different methods:

a. a method for extracting airway-like structures from the dataset within a specified
scale (radius) range and

b. a method for grouping tubular structures into a complete airway tree based on
structural properties.

Both methods are utilized twice in our algorithm. Initially for the main branches of the
airway tree, and a second time to expand the airway tree with small scale airways. Details
for both methods are presented in Sections 3.1 and 3.2.

3.1. Extraction of Tubular Structures
In micro-CT images, airways appear as elongated tubular structures that are surrounded by
brighter (high density) tissue. Basically tubular structures can be identified by means of
multi-scale tube detection filters [18, 19]. For our application, we utilize the approach
presented in [15]. The output of the tube filter is converted to a centerline-based description
of individual tubular structures by using a height-ridge traversal procedure, similar as in [15,
20]. The details of the tube extraction approach are provided below.

For every given location × of the input image I a scale-dependent tube-likeliness measure
T(x, σ) is obtained at a scale σ by using the following approach. Let Gσ be the Gaussian
function at scale σ, and B(x) = σ∇(Gσ✩ I(x)) and H(x) = σ2∇2(Gσ✩I(x)) be the scale-space
normalized first order derivative (gradient) and second order derivative (Hessian matrix).
Based on the eigenvalues |e1|≥|e2|≥|e3| with associated eigenvectors v1, v2, and v3 of the
Hessian matrix, points inside of structures surrounded by brighter (higher density) tissue are
identified as candidate tube points by e1 > 0 and e2 > 0. For all candidate points, an offset
medialness function and a central medialness function, which both capture complementary
information, are calculated and combined into the final tube-likeliness value.

The offset medialness function samples points along a circle with radius r = σ in the tubes
cross-sectional plane spanned by v1 and v2, as illustrated in Fig. 5. At these locations, the
surface of the tubular structures shows high gradients pointing directly away from the center
of the tube. Boundariness samples bi = |B(x + rvαi)vαi| with vαi = cos(αi)v1 + sin(αi)v2 and
αi = (2πi)/N are obtained at N = 32 potential surface locations, resulting in {b1,b2,…,bN}
and their mean b̄(x, r) and variance s2(x,r). For tubular structures, the mean of these
boundariness samples is high and the variance is low. Thus, the offset medialness value is
obtained by: T0(x,σ) = b̄(x,σ)(1 − s2(x,σ)/b ̄(x,σ)2). At the centers of tubular structures the
gradient vanishes. Thus, the magnitude of the gradient |B(x)| can be utilized as an adaptive
threshold to suppress responses away from the centers of the tubular structures. The final
single-scale tube-likeliness measure T(x, σ) is obtained as T(x, σ) = max{T0(x,σ) – |B(x)|,0}.
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To obtain the multi-scale tube detection filter response T(x) = maxσ0≤σ≤σn {T(x, σ)}, the
responses at given scales {σ0,σ1, …σn} are computed and the maximum selected as the final
response; the scale of the final response also gives a radius estimate (r = σ) and a tangent-
direction estimate t = v3 of the tubular structure.

Based on the multi-scale tube detection filter response image T, centerlinebased
representations are extracted using a height-ridge traversal procedure with hysteresis
thresholding. Starting from all local maxima in the filter response image above a given
threshold T(x) > thigh, the height-ridge traversal procedure is started. Given a start point x0
with associated tangent direction t0, the height ridge is traversed in direction t0 and –t0.
Given a current point xi on the centerline the next point on the centerline xi+1 is selected as
the local neighbor with the highest tube-likeliness value T(x) under the constraint that

. The traversal direction ti+1 for point xi+1 is updated to

. The traversal is repeated until no further centerline
point above a threshold tlow is found or the next centerline point was already traversed
before. The thresholds were set to thigh =50 and tlow = 20 for the large and small scale
airways.

With the above described algorithm, centerline based representations are extracted, where

each centerline li consists of an ordered set of points  with a corresponding

radius estimate  and tangent direction estimate  for each centerline point . To remove
spurious noise responses, tubular structures shorter than 10 centerline points are discarded.
For all remaining tubular structures, the radius and tangent directions are re-estimated by
averaging over the ±5 neighbors along the centerline.

As outlined in the introduction, large-scale and small-scale airway-like structures are
extracted separately. For the large-scale airway-like structures the set of scales is {0.09,
0.12, 0.15, …,0.42} mm and for the small-scale airway-like structures {0.05,0.07,0.09} mm.
Figs. 4(b) and (e) show extracted large-scale and small-scale airway-like structures,
respectively. The airways are visualized using cylinder elements at every centerline point
with corresponding radius and tangent direction.

3.2. Tree Reconstruction
Airway trees have certain branching patterns. Thus, comparable rules can be utilized to
identify the tubular structures associated with an airway tree, and consequently to discard
other unrelated tubular structures. The tree reconstruction algorithm works as follows. Given
a currently known tree structure (initially the main root branch), all unconnected tubular
structures are considered as potential branches of the currently known tree. For each of these

candidate branches, a connection confidence  is calculated, representing the
likelihood that the tubular structure is connected to the currently known airway tree. The
tubular structure with the highest connection confidence is added to the tree structure, and
the procedure is repeated as long as new tubular structures are identified that show a

minimum connection confidence: . Unconnected branches are merged as
children of the current tree structure. Thus, the final tree structure is guaranteed to be free of
loops.

For calculation of the connection confidence , structural properties regarding
branching angle, tube radius, and connection distance are considered. Therefore, we define
for every centerline li the average radius ri and the proximal/distal direction di as +1, if the
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direction is from the first centerline point to the last one or –1 otherwise. Between every

endpoint  of every unconnected tubular structure and every centerline point  of the

currently known tree, we define a distance  and angle

. In order to be a plausible connection, the following properties have to
be fulfilled:

• The radius must not increase considerably; i.e. rj≤ γrrmin with rmin being the
smallest branch radius along the whole path from the root of the tree.

• The branching angle must not be too large, i.e.

• The connection distance must not be too large, i.e. d ≤ dmax.

Only connection candidates fulfilling these properties are considered and the connection

confidence  is calculated, which represents a trade-
off between distance and branching angle. Parameters were set to ρ = 0.5, αmax = π/2, dmax =
1.5 mm, γr = 1.3 and cmin = 0.0025 for the large and small scale airways.

In our application, the tree reconstruction method is applied twice. First, on large-scale
tubular structures and with a manually specified root branch to obtain an initial airway tree
reconstruction. Second, the initial airway tree is completed by including small-scale tubular
structures. The tube detection filter applied on small scales may produce reponses inside
large-scale tubular structures. To avoid that these branches are represented twice in the final
tree structure, centerline points of small-scale airways xs inside of the large-scale airway tree
are removed if ‖xs - xl‖ < rl for any centerline point xl of the large-scale airway tree. Results
of the initial and the final airway tree reconstruction step are shown in Figs. (c) and (f)4,
respectively.

4. Evaluation Methodology
Twelve different micro-CT scans of the tracheal lung lobes from 4 different piglets were
utilized for evaluation. None of these scans were utilized during algorithm development and
parameter adjustment. Two of the piglets were CF pigs and two of them were non-CF pigs.
For each piglet lung lobe, all three scans at pressure levels 0, 5, and 20 cmH2O were utilized
for analysis.

In our evaluation, we analyzed the structural correctness of the extracted airway tree on
different branching levels specified by an airway labeling scheme for the porcine airway
tree. An expert with experience in analyzing piglet micro-CT datasets identified false
positive and false negative side branches, based on which performance statistics were
derived.

4.1. Airway labeling nomenclature
An airway labeling nomenclature is imperative for quantitative assessment and comparison
of complex tree structures. For the human airway tree (bipodal) established labeling schemes
exist. Also, the larger airways of the porcine lung (monopodial [21, 22]) have known names
[23]. However, no porcine airway labeling scheme exists, which would cover the level of
detail (i.e., number of airway generations) depicted in our micro-CT scans. Thus, we
introduce our own nomenclature, which is illustrated in Fig. 6.
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The nomenclature is structured by two fundamental units: the airway tier and the airway
segment. The “airway tier” in the monopodial airway tree (i.e., in pigs) is analogous to the
“airway generation” in the bipodal airway tree (i.e. in humans). When there is a branch in
the tier based labeling scheme, the larger of the two child branches remains at the same tier
level as it was prior to the branching, and the smaller of the two child branches assumes a
tier level of the parent branch plus 1. One exception to this rule is the trachea, which is the
only airway having a tier level of 0. The airways that branch directly off the trachea have a
tier level of 1. This set of airways includes the tracheal bronchus, the left main bronchus,
and the right main bronchus. Another exception is the tracheal bronchus (tier 1) which gives
way to two tier 2 airways. The airways that bifurcate directly off the tier 1 airways constitute
the tier 2 airways. In the tracheal lobe there are two tier 2 airways: the cranial (Cr) and
caudal (Ca) branches (Fig. 6(b)). The airways that branch directly off the tier 2 airways
constitute tier 3 airways. The tier 3 branches do not have established names and they are
referred to generically in the nomenclature by the order in which they appear. The first
branch is named “B1”, and the second branch “B”, and the nth branch “Bn”.

An airway segment is defined as a portion of an airway branch that ranges from one
branchpoint to the next. Each segment in the airway tree has a unique label, consisting of a
series of letters, numbers and periods. The letters denote specific airway branches, the
periods separate airway tier levels, and the numbers denote branch numbers and the segment
of interest position along the branch in which it resides. As one reads a tracheal lobe airway
label from left to right, one begins at the trachea (abbreviated as “T” in the label) and
descends the airway tree, by way of the tracheal bronchus (abbreviated as “TB”) to the
airway segment of interest by the most direct route possible. The branches passed through en
route to that segment are noted sequentially in that segments label.

4.2. Performance Analysis
A human observer with experience in analyzing micro-CT scans of piglet lungs followed
systematically all branches in the datasets with a tier of 1 to 3 and identified all missing and
false positive child branches. Based on the so obtained information, performance statistics
were calculated.

To facilitate this evaluation procedure, voxel accurate segmentations of the airway branches
delineating the airway lumen were obtained using a graph-cut based segmentations that
utilizes the available centerline/radius information as a shape prior [15]. Branches with tier
2, tier 3 and higher tier numbers were segmented separately and the resulting binary
segmentations combined into one labeled volume dataset. These labeled volume datasets can
be utilized to visualize the different tier branches in different colors using a standard medical
imaging viewer (3D Slicer, www.slicer.org). Fig. 7 shows an example of such a
visualization in a single slice of the micro-CT dataset. These visualizations allowed the
human user to follow the individual branches at the different tiers systematically and mark
errors in the segmentation.

5. Results
Fig. 8 shows examples of the segmentation results. In these visualizations, the branch levels
are highlighted using different colors. Missing child branches identified by the human
observer are indicated as small red spheres. Note, that the micro-CT scanner is not capable
of imaging the whole piglet tracheal lobe due to its limited FOV and parts are truncated. For
the dataset shown in Fig. 8(a)-(c), only parts of the cranial and caudal branch were imaged.
For the dataset shown in Fig. 8(d)-(f) as much of the caudal branch was imaged as the
micro-CT scanner permitted. The example in Fig. 8(c) shows the segmentation result
obtained with our method on the dataset depicted in Fig. 1(a).
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Because the cranial branch was only imaged in 6 out of the 12 evaluation datasets, we
present statistical performance evaluation results focusing only on the caudal branch and its
child branches. In the following, we refer to the caudal branch as Ca instead of using its full
name T.TB.Ca.

In all datasets, the caudal branch was correctly identified. Fig. 9 shows how often individual
tier 3 caudal branches were found/visible in the datasets. Fig. 10 summarizes how many tier
4 branches of the individual tier 3 branches were found/visible. A more detailed analysis of
tier 4 branch detection and visibility rates can be found in Table 1. The plot shown in Fig.
11(a) compares the number of visible tier 4 branches between CF and non-CF piglets in
dependence of parent branches. Fig. 11(b) depicts a similar plot for the percentage of found
branches.

The human observer did not find any false positive child branches in the set of analyzed tier
3 and 4 branches. 98.04 % of all tier 3 branches were correctly found by the algorithm. On
average, 145.25 tier 4 branches were visible out of which 84.76 % were identified by the
algorithm. Specifically, at the different inflation levels of 0, 5, and 20 cmH2O, on average
98.25, 134.00 and 135.25 tier 4 branches were visible out of which 77.61 %, 83.88 % and
89.72 % were identified, respectively. Comparing datasets of piglets with and without cystic
fibrosis, on average 135.50 and 151.00 tier 4 branches were visible out of which 90.01 %
and 82.69 % were identified, respectively. Summarizing, out of the approximately 3500
airway segments that were investigated during the evaluation at the different tiers, 88.43 %
were correctly identified by the algorithm.

6. Discussion
As can be seen from the segmentations shown in Fig. 8, in the monopodial branching pattern
of the porcine airway tree, each branch continues at a bifurcation and tapers towards the end
of the branch. Also, side branches decrease in caliber the more distal they are. Because
airways become more difficult to detect in micro-CT scans the smaller they are–due to
partial voluming and noise–this branching pattern has implications on the visibility and
detection rate of side branches as analyzed in our evaluation. Towards the end of the
continuously tapering branch, side branches' become harder to identify by humans and by
automated algorithms. This pattern can be observed independent of the branch's tier number.
As can be seen in Fig. 10 and Table 1, for more proximal side branches of an airway, many
side branches were visible. On the other hand, for very distal side branches of the same
airway, only few side branches were visible in the scans. And for all airways– independent
of the number of visible side branches–towards the end of the branch some side branches
were not identified by the algorithm.

Besides the limited resolution of the micro-CT scanner, two other factors have to be
considered why certain branches might not be visible in the scans: (a) The branch does not
physically exist in the lung tissue, or (b) the branch was outside of the FOV of the micro-CT
scanner. The utilized micro-CT scanner had a limited FOV and was not able to
accommodate the whole tracheal lung lobe, which makes the evaluation and comparison
between CF and non-CF piglets more complicated. As can be seen in Fig. 8, only parts of
the tracheal lobe were imaged. This also explains the behavior observed in Fig. 9. For half of
the datasets, only the first part of the caudal branch was imaged in all 12 scans, while the
more distal part of the caudal branch was only in the FOV in 6 of the datasets. However,
even when the caudal branch was imaged completely, in none of the datasets more than 19
child branches of the caudal branch were observed in the scans.
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In our evaluation, we considered micro-CT scans at different inflation levels from piglets
with and without CF. With increasing inflation level, the lumen of the airways expands and
thinner airways also become better contrasted. As a result, more airways were depictable in
the scans with higher inflation level and our method was also able to identify a larger
percentage correctly. Comparing scans from piglets with CF to piglets without CF, on
average about 15 tier 4 branches fewer were visible, but the detection rate was about 7 %
higher. Figs. 11(a) and (b) provide more details. When considering the number of visible tier
4 branches in dependence of parent branches (Fig. 11(a)), the similar trend can be observed
for CF and non-CF piglets. Fewer tier 4 branches are visible for more distal tier 3 branches.
Similar to the plot depicted in Fig. 10, fluctuations around the main trend can be observed,
which can be explained by the different FOVs for the individual scans. Fig. 11(b) shows
detection rates of tier 4 branches in dependence of tier 3 branches; no major differences can
be observed between CF and non-CF piglet datasets.

Summarizing the overall performance of our method, 100 % of all tier 1 and 2 branches,
98.04 % of all caudal tier 3 and 84.76 % of tier 4 branches were identified by the algorithm.
Moreover, the human observer did not find any false positive child branches in the set of
evaluated branches down to a tier level of 3. As can be seen from Figs. 8(a)-(f) the method
allows extraction of branches with even higher tier numbers. However, their structural
correctness was not assessed.

The method is highly automated, and requires only the identification of a start branch. This
process is simple, takes only a few seconds, and can be performed during the initial
inspection of the micro-CT image data. Also, selecting a start branch allows the user to
selectively analyze sub-trees, if needed.

The computation time of the algorithm was approximately 1.5 h per dataset, and the average
size of micro-CT scans was 1070 × 660 × 960 voxels, after cropping datasets to the
bounding box of lung tissue.

The proposed method was optimized for and evaluated on excised lung tissue of piglets.
However, the method should also be applicable with adapted parameters (e.g. expected
range of airway sizes) to excised lung tissue of other animals such as mice and rats imaged
with micro-CT scanners.

The presented work facilitates research of lung disease. First, the substantially automated
nature of our airway tree segmentation algorithm makes airway structure information more
accessible. This is especially pertinent considering that alternate methods, notably manual
segmentation, are commonly too labor intensive to serve as long term, practical solutions.
Second, the method provides a relatively exhaustive description of the airway tree; it
successfully obtains structural information even for distal airways with high tier numbers.
This is particularly helpful for qualitatively studying airway pathologies. Third, extracting a
structural airway model for micro-CT airway scans is a prerequisite of quantitative
assessment of those airways.

Meyerholz et al. [7] used conventional CT imaging to study trachea and main bronchi size in
neonatal CF pigs. In piglets with CF, the authors were able to show that these airways have a
reduced caliber early in life, before the onset of inflammation and infection. However, with
the used imaging and available image analysis methods, the authors were not able to study
airway structure or size in more distal airways. Micro-CT imaging in combination with the
proposed airway extraction method, the airway labeling nomenclature introduced in Section
4.1, and available quantitative measurement tools, will allow us to study the impact of CF on
airways with an unprecedented level of detail. In addition, the presented work will facilitate
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similar studies in humans, where the use of micro-CT has become increasingly common
[24].

7. Conclusion
In this work, we presented a highly-automated approach to obtain detailed structural models
of airway trees from ex-vivo porcine lung tissue imaged with high resolution micro-CT
scanners. The method identifies all tubular airway-like structures in the lung tissue and
groups them into a connected airway tree by utilizing prior knowledge about the airway
trees branching pattern. In our evaluation on scans of piglets with and without CF imaged at
different inflation levels, the method was able to extract 100 % of all tier 1 and 2 branches of
the piglets, 98.04 % of all caudal side tier 3 and 84.76 % of tier 4 branches. No false positive
branches were found. We believe, these methods will open up new avenues to systematically
study lung disease in various research projects.
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Figure 1.
Micro-CT scan of an excised piglet lung lobe and airway tree segmentations. For
orientation, corresponding locations are marked by arrows. (a) Cross-sectional image of the
scan. (b) Typical complexity of a manual segmentation result, containing only a small subset
of all airway branches. (c) Automated segmentation result produced with a commercial
software system for airway segmentation in human lung CT scans (see text). Many airway
branches remained unsegmented.
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Figure 2.
Micro-CT scanner with excised and cannulated tracheal lobe.
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Figure 3.
Cross-sections of obtained tracheal lobe micro-CT scans. (a) Labeling of structures of
interest in the image data. (b)-(d) Micro-CT scans of the same piglet lobe at different
inflation levels of (b) 0, (c) 5 and (d) 20 cmH2O. All datasets are shown with a gray-value
windows of −930 to 70 HU. Note that with increasing inflation level, the diameters of the
airways change as well as the radio-density of parenchyma.
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Figure 4.
Method overview showing the processing steps.
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Figure 5.
Offset medialness function calculation. Based on the eigenvector of the Hessian matrix, the
tube's cross-sectional plane is estimated and boundariness samples are obtained at potential
surface locations indicated by the the red circle.
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Figure 6.
Pig airway tree nomenclature. (a) Larger branches. (b) Smaller branches in the tracheal lobe
with their labels. All labels would begin with T.TB but this was omitted to save space.
Branches with different tier numbers are shown in different colors: tier 1 (blue), tier 2 (red),
tier 3 (green) and tier 4 (purple).
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Figure 7.
Micro-CT image showing overlaid airway segmentation results with different colors for
different airway branch tiers. (brown) cranial/caudal tier 2 branches, (yellow) tier 3
branches, (green) tier 4+ branches.
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Figure 8.
Airway segmentation results of two piglet micro-CT datasets imaged at different inflation
levels of (a, d) 0, (b, e) 5 and (c, f) 20 cmH2O. (a)-(c) Dataset where parts of the cranial and
caudal branch were imaged. For the dataset depicted in (d)-(f) only the cranial branch was
imaged. Different airway branch hierarchy levels are shows in different colors: (yellow)
cranial and caudal tier 2 branches, (green) tier 3 branches, (gray) tier 4+ branches. Identified
missing child branches are indicated as small red spheres.
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Figure 9.
Statistics showing how often (in absolute numbers) individual tier 3 branches were visible/
found in the 12 evaluation datasets.
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Figure 10.
Average number of visible/found tier 4 branches depending on their tier 3 branch location,
averaged over the number of scans where the tier 3 branch was actually visible.
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Figure 11.
Comparison between tier 4 branches of non-CF and CF piglets. (a) Average number of
visible (manually identified) tier 4 banches in dependence of tier 3 branches. (b) Percentage
of correctly identified tier 4 branches in dependence of tier 3 branches. In both cases, only
visible branches were taken into account.
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