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Abstract

A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study

to elastically align two images. We define an affine transformation instead of the traditional

translation at each control point. Mathematically, BSAT is a generalized form of the affine

transformation and the traditional B-Spline transformation (BST). In order to improve the

performance of the iterative closest point (ICP) method in registering two homologous shapes but

with large deformation, a bi-directional instead of the traditional unidirectional objective / cost

function is proposed. In implementation, the objective function is formulated as a sparse linear

equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in

registration. The performance of the developed scheme was assessed using both two-dimensional

(2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data.

Our experiments showed that the proposed B-spline affine model could obtain reasonable

registration accuracy.
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I. INTRODUCTION

As a spatial normalization procedure for two images, which could be acquired at different

times or from different modalities, the objective of an image registration operation is to find

an optimal transformation to align two given images in the same coordinate system. The

motivation is typically to compare the morphological variations of two images. There have
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been numerous algorithms [1–3] developed for this purpose in the past, particularly in the

area of medical image analysis [4–7]. A relatively comprehensive review of the available

methods can be found in [8–10]. In methodology, a registration scheme usually consists of

three primary components:

1. A transformation model: A transformation model represents the spatial

relationship between a given fixed (reference) image and a given moving (source or

warped) image. There are two types of transformation models, namely rigid / affine

transformation and elastic transformation. A rigid model is typically characterized

by three translation (i.e., x, y, z) and three rotation (i.e., θ1, θ2, θ3) parameters; and

an affine model has additional three scaling and three shearing parameters.

Generally, a rigid / affine model aligns pre-identified landmark features globally

[11–13]. Although the rigid / affine registration is relatively robust against local

minima, it usually has a limited accuracy because the local geometric difference is

ignored. In contrast, the elastic approach aims to warp local geometric features of a

target image for alignment with a reference image. It could be based on either a

dense non-parametric model or a parameterized function model. Many of available

elastic registration methods [14–17] were a refinement of either the Demons

algorithm [14] or the B-spline method [18]. For example, Rueckert et al. [19]

proposed a hierarchical transformation model in which a global affine

transformation was first established and a B-spline based freeform deformation was

performed. Chui et al [20] combined the affine transformation and the thin plate

spline (TPS) transformation. Others include Arsigny et al.’s log-euclidean

polyaffine model (LEPT) [21–22] and an extension of LEPT proposed by Taquet et

al [23]. Compared with the rigid/affine approach, the elastic method represents a

more complex deformation but may be trapped in local minima [9].

2. An objective / cost function: In image registration, an objective function is

defined as the criterion for quantitatively assessing the similarity of two aligned

images. The criterion could be based on either intensity or features. The intensity-

based function aims to elastically align two images according to their underlying

intensity patterns. The widely used intensity-based criteria include sum of squared

difference (SSD) [24], cross correlation (CC) [25], ratio image uniformity [26], and

mutual information (MI) [27]. Specific constraints (e.g., volume or topology

preservation [28]) may be imposed on the intensity-based registration for better

alignment. For example, Christensen and Johnson [29–30] used inverse consistency

as a regularization constraint, while other investigators utilized the Jacobian of the

transformation [31] or deformable mapping [32] to preserve the topology. Unlike

the intensity-based method [33–35], the feature-based registration method [36–39]

aligns two images by identifying the corresponding structural landmark features,

which could be points, lines, contours, or their combination. The feature-based

objective function is widely defined as the Euclidean distance from the warped

features to the fixed features. The unidirectional characteristic doesn’t assure an

inverse consistency. Obviously, knowledge of the corresponding features between

the target image and the source image is critical for the feature-based registration.
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3. An optimization operation: In order to optimize the objective function in a global

or local manner, an optimization procedure is needed. For a feature-based objective

function, the iterative closest point (ICP) method [40] is widely used. An intensity-

based objective function could be optimized using choices such as a gradient

descent method [41] or quasi-Newton minimization method with bounds (L-BFGS-

B) [42] algorithm. In most applications, whereas the objective functions are not

convex, additional efforts [43–44] are needed to reduce the liability of an

optimization trapped in local minima. The ICP method only considers one

directional cost function and could not ensure one-to-one correspondence between

the fixed point set and the moving point set. Although it was developed initially for

rigid registration, its direct application to non-rigid registration problems might

lead to aberrant results. A couple of approaches [20][45][46][47] were developed

by other investigators to address this issue. For example, Chui et al [20] developed

a point matching algorithm (RPM). The basic idea was to relax the correspondence

variable to be in the interval of [0,1], rather than being binary valued. Myronenko

et al. [47] described a probabilistic model that treated the point registration as a

maximum likelihood (ML) estimation problem. Other approaches included the

Gaussian mixture models (GMM) [45][46], where the registration problem was

defined as aligning two Gaussian mixtures by minimizing the L2 distance between

two Gaussian mixtures. Recently, in order to reliably handle outliers in both point

sets, Sang et al. [48] used a bidirectional expectation–maximization (EM) process

to estimate the deformation parameters.

In this study, we proposed a bidirectional B-spline affine transformation (BSAT) model.

Unlike the traditional B-spline methods, each control point is defined as an affine

transformation. A bidirectional distance cost is used to formulate the objective function,

where both errors from moving image to fixed image and from fixed image to moving image

are considered. Finally, the objective function is reformulated as a sparse linear system.

Detailed descriptions of the developed algorithm and its quantitative performance

evaluations as well as its comparison with other approaches follow.

II. METHOD AND MATERIAL

A. B-Spline Affine Transformation (BSAT)

A transformation from the target (moving) image to the fixed image is defined as a mapping

f :  → . Given a point pj =[xj, yj, zj]T in a moving image where 0 ≤ xj, yj, zj ≤1, its

mapping f(pj) in the fixed image is computed using

(1)

where p̂j = [xj, yj, zj,1]T, T denotes transpose of a matrix. A(pj) is an affine transformation

matrix function with a matrix size of 3×4, which is the weighted sum of a set of affine

transformation matrices:
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(2)

 are the control points and each control point Bi is an 3×4 affine transformation

matrix. g(pj, Bi) ≥ 0 is the weight of the pair of point pj and control point Bi. For each point

pj, . Here, the weighting function g(pj, Bi) is defined by the quadratic B-

spline basis; and the proposed model is called B-Spline Affine transformation (BSAT). The

proposed BSAT model is a more generalized model of the B-Spline transformation (BST),

in which each control point is treated as a displacement / deformation. If the left three

columns of the transformation matrix Bi of each control point are replaced with an identity

matrix

(3)

then the BSAT model degenerates to a BST model. The BSAT model is also a more

generalized model of the affine transformation. If all the transformation matrices 

has the same elements, the model will degenerate to an affine registration. For each control

point, the BSAT model has twelve parameters, while the BST has three parameters. This

means that the BSAT model may provide more complex transformation (freedom) than the

BST with the same set of control points.

B. A Bi-Directional Objective/Cost Function

An objective function consists of an external cost function and an internal cost function

(4)

where Eerror measures the registration errors, and Erigidness measures the rigidness of the

registration. The parameter 1 > α ≥ 0 is a tradeoff between the registration accuracy and the

rigidness of the registration. In practical applications, feature identification procedures may

be used to identify some corresponding features (e.g., points, surfaces, or curves) depicted

on given images. Generally, the features could be represented using a set of points; hence,

the problem can be formulated as:

Input: two sets of feature points identified separately from a fixed image Sf and a moving

image Sm. For each moving point pj, a weight wj ≥ 0 may be associated to quantify the

priority or the importance of this point.

Output: a spatial transformation f defined in (1) by which E is minimized.

The registration error can be summarized as
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(5)

wj ≥0 is the weight of the moving surface point pj, qj is the corresponding point to pj in fixed

feature point set. The traditional methods typically determine the corresponding point qj in

fixed point set Sf by minimizing the distance between qj and f(pj), i.e.,

(6)

They only consider a unidirectional cost from the moving feature points to the fixed feature

points and ignore the cost from the fixed feature points the moving feature points. Also,

there may be multiple moving feature points corresponding to the same closest point in the

fixed feature point set. In cases such as the one in Figure 1(a), the transformed moving

points (warped points) will shrink to a line. Despite the minimal cost in this case, the

underlying correspondence between the two point sets is not correct.

In order to overcome this issue, we consider the cost from the fixed points to the moving

points as well. This bidirectional strategy is similar to the Hausdorff distance [49], which

measures the closest distance between two point sets. Here, we introduced a concept termed

as active pair. (pj, qj) is an active pair between the moving point set Sm and the fixed point

set Sf, if (pj, qj) meets the following three conditions:

a. pj, qj have the same label

b.
 or ;

c. For any other pairs (pj, q) and (p, qj) that satisfy condition (a) and (b), the

inequality holds: || f(pj) −qj ||2 ≥|| f(p) −qj ||2 and || f(pj) −qj ||2 ≥|| f(pj) −q ||2.

where the “same label” is determined before the registration procedure. The feature points

selected from the fixed and moving images are classified into different categories. The

points from the same category have the same label. For example, we can classify feature

points into different categories in terms of pulmonary lobe boundary and the boundary

points on the same lobe will have the same label.

To find the active pairs {(pj, qj) }, the following steps are performed:

1. For each fixed point, find its nearest moving point with the same label and assign

their connection / edge to both points;

2. For each moving point, find its nearest fixed point with the same label, assign their

connection / edge to both points;

3. For each connection/edge f(pj)qj, (pj, qj) is an active pair if length of f(pj)qj is

greater than all the other edges assigned to pj and qj.

The new scheme considers registration errors from both directions and ensures a

symmetrical “one-to-one” correspondence. The correspondence remains the same when we
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switch the fixed and moving point sets. Each point in the fixed point set and each point in

the moving point set only belong to one active pair. pj is an active moving point, if (pj, qj) is

an active pair. We note that, generally, not all the moving points are active and not all the fix

points are active. In an extreme case, there may be only one active pair initially. However, in

practice, more than half of the moving points are active. Two examples in Figure 1 are used

to illustrate the potential advantage of the proposed bi-directional correspondence as

compared to the traditional unidirectional correspondence. It can be seen from the examples

that bi-directional correspondence provides a more reasonable correspondence between the

warped object and the fixed object.

The rigidness cost function Erigidness measures the variation of the transformation matrix A,

and it is defined as

(7)

where ||•||F denotes the Frobenius norm. The rigidness Erigidness=0, if A is an identical matrix

function. If α → 1, all the transformation matrices  will be the same and the

registration will degenerate to an affine registration.

C. Optimization Procedure

The iterative closest point (ICP) method is widely used to find the correspondences between

two point sets. ICP “pushes” the moving feature points to their corresponding fixed feature

points iteratively. Given our bi-directional model, as the examples in Figure 1 show, a

corresponding fixed feature point is not necessarily the closest point of the moving feature

point. For each iteration, the energy function E is a quadratic polynomial of , thus

we can use a gradient descent method to compute  by minimizing E. In this study,

we directly obtain the optimal  by solving a least square problem with a sparse

coefficient matrix. Detailed implementation is described below.

Let a matrix X =[B1, B2,…, BM]T with a size of 4M ×3 include the transformation matrices

 of all the control points. The matrix  has a size

of L ×3. Here, M is the number of B-spline control points, and L is the number of active

moving points. We define a sparse matrix U with a size of L×4M, each entry of U is given

by

(8)

where i =1,2,…, M; j =1,2,…, L. Substitute U, X, and Q into the registration error function

(5), we have . Similarly, the rigidness cost function in Equation (7) is a
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quadratic equation of X thus can be rewritten in a compact form Erigidness= XTVX, where V

is a semi-definite matrix with a size of 4M ×4M. The optimization problem (4) is then

rewritten as the following least square problem

(9)

The above problem is equivalent to the following linear equation

(10)

Whereas UTU +V is a sparse matrix, thus we can use some efficient sparse solver, such as

SuperLU [50], to efficiently solve the sparse linear equation.

D. Some Implementation Details

In order to find the bidirectional correspondent feature points efficiently, we divide the

whole point sets (e.g., image pixels or voxels) into a set of sub-volumes, and the searching

for the nearest feature points is performed within the nearest sub-volume. In practice, the

identified feature points may not distribute uniformly in space. If the conventional B-spline

is used as the transformation model, there may be too many feature points around some

control points, while no feature points around some other control points. Hence, we used an

Octree-spline scheme instead of the conventional B-spline. First, an axis-aligned bounding

box (AABB) is used to establish a volumetric grid system for an image. If a sub-volume

contains too many feature points, it is then divided into eight smaller boxes with the same

size. This subdivision operation is repeated until there is no sub-volume that contains too

many feature points. For each sub-volume, its center is selected as a corresponding control

point for the spline transformation. In the optimization, the iteration would stop at step T if

the energy function ET is larger than 0.999 ET −1.

E. Performance Evaluation

As we mentioned, the innovations of our approach lies in two aspects, namely (a) a B-spline

transformation model where an affine transformation is defined at each control point, and

(b) a bidirectional objective / cost function. To verify the potential advantages, we designed

and compared the following four methods on four synthesized 2D datasets (Section II. E. 1):

• Method-AB: In the transformation model, an affine transformation (A) is defined at

each control point; and the proposed bidirectional distance (B) is used to compute

the cost.

• Method-AS: In the transformation model, an affine transformation (A) is defined at

each control point; and the traditional unidirectional distances (S) is used to

compute the cost.

• Method-DB: In the transformation model, a translation transformation (D) is

defined at each control point; and the proposed bidirectional distance (B) is used to

compute the cost.
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• Method-DS: In the transformation model, a translation transformation (D) is

defined at each control point; and the traditional unidirectional distances (S) is used

to compute the cost.

We implemented all the above four methods for both two-dimensional (2D) synthesized

images and three-dimensional (3D) volumetric images (i.e., chest computed tomography

(CT) examinations).

E.1 Synthesized 2D datasets

Four synthesized 2D datasets, as shown in Figure 2, were generated to assess the above

derived four methods. The points in green indicate the fixed point set, the points in red

indicate the moving point set, and the points in black indicate the grid points of the moving

point set. “data_1” and “data_2” are sampled from the capital letters “OBADIAH”. Each of

them has 2786 fixed feature points and 2786 moving feature points. In “data_3” and

“data_4”, there are some missing points in the moving image. In “data_1” and “data_3”, the

fixed and moving images have the same center, while in “data_2” and “data_4”, the centers

of the fixed and moving images are significantly different.

Whereas the regularized coefficient α is an important parameter in the deformation models,

we tested each model with 99 different α values ranging from 0.01 to 0.99 with an interval

of 0.01. For each α, the root mean squared error (RMSE) of the registration was computed.

The registration errors of both directions were computed:

(11)

where Nm and Nf are the number of the moving feature points and the fixed feature points,

respectively, Tα denotes an optimized transformation for a given α, pi is a moving feature

point, and qi is a fixed feature point that has the minimal distance to T(pi). The mean, the

maximum and the minimum of the 99 Errorα as well as their standard deviations were

computed.

E.2. Volumetric lung CT examinations with follow up scans

Forty low-dose CT examinations of twenty patients were specifically selected from a

database as a result of the University of Pittsburgh Lung Cancer Specialized Program of

Research Excellence (SPORE). These examinations were all pathologically verified lung

cancer cases with the tumor location information. They were acquired from 2002 to 2009

using LightSpeed Plus 4-MDCT or LightSpeed Ultra 8-MDCT scanners GE Healthcare. The

low-dose CT acquisition protocol varied slightly depending on patient size. Exposure

settings ranged from 120 to 140 kVp, 29.7±10.7 mAs, with section reconstruction interval

ranged from 0.625 mm to 5 mm, and in-plane pixel size from 0.50 mm to 0.98 mm. Images

were reconstructed with 512×512 pixel matrices using the GE Healthcare “lung”

reconstruction kernel. Each patient had two scans with a time interval from 4 months to 68

months (mean=22 months). In each scan, a lung nodule was identified by a radiologist [51].

The utilization of these CT examinations is to assess the performance of the developed
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scheme in pulmonary nodule (tumor) registration. Pulmonary lobes, which were identified

by a computerized scheme described in [52], were used as the feature points for registration

purpose. The registration error was assessed by computing the mean, maximum, and

minimum Euclidean distance (ED) between the mass centers of the corresponding nodules

between two follow-up scans. The mass centers were estimated using an automated nodule

segmentation scheme [53].

E.3. Registration of inspiration and expiration CT examinations

Twenty-pairs of CT examinations with full inspiration and at suspended full expiration were

randomly selected from a Lung Tissue Research Consortium (LTRC) study at the University

of Pittsburgh. These examinations were acquired without contrast and with subjects holding

their breath for approximately 15 seconds at both end-inspiration and end-expiration. The

protocol was the same for the inspiration and expiration acquisition for each participant.

Images were reconstructed to encompass the entire lung field in a 512×512 pixel matrix.

More details on the protocol can be found in [54]. The lobe boundaries were also employed

as feature points. To assess the accuracy of the developed methods in expiration and

inspiration registration, we used a computerized scheme described in [55] to identify the

airway trees and their bifurcation points in the first four generations. The correspondences of

the points were firstly established automatically by computing their Euclidean distances

after registration performed and then verified / corrected by an expert. The Euclidean

distances between the corresponding bifurcation points after registration operation are

computed as indices of the registration error.

F. Parameter setting in the experiments

In our experiments, all the feature points were assigned with the same weight 1. For the CT

examinations, an adaptive and dynamic α was selected in this study as α = 0.9/(T +1),

where T was the step number of the registration. The initialized grid volume system had a

grid size of 4×4×4. For the octree spline scheme, if a subvolume contains more than 2000

feature points, it was divided into eight smaller subvolumes. The number of the feature

points was around 1 million, and number of the control points was around 2000. Since each

control point in the B-Spline affine transformation has more freedom than the B-Spline

displacement, more control points were used in the B-Spline displacement so the two

transformations had the same degree of freedom.

III. RESULTS

First, the registration errors of the four derived methods on the four synthesized 2D datasets

are summarized in Table I. At the same time, the final registration results are shown in

Figure 4. It can be seen that Method-AB has the smallest error consistently. In particular, as

the registration errors of Method-DB and Method-AB show, the introduction of the bi-

directional objective function increase the registration accuracy significantly. The results in

Figure 4 demonstrated that the methods with unidirectional cost functions (i.e., Method-DS

and Method-AS) were trapped in local minima when there is complex structures (e.g., d-

data_1) or there are large displacements between two images (e.g., data_4). Second, for the

forty lung CT examinations with follow-up scans, the registration errors of the 40 depicted
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nodules (tumors) were summarized in Table II. It can be seen again that Method-AB has the

smallest registration error with a mean of 6.9±3.3 mm. Third, when studying the

registrations between the paired inspiration and expiration CT examinations, as shown in

Table III, we found that Method-AB had the best performance with a mean error of 2.7±1.0

mm. An example is shown in Figure 5.

In computational efficiency, the proposed registration scheme converged approximately in

30 iterations in the volumetric CT registration in our experiments. For each iteration, it took

the scheme about 10 seconds to identify all the corresponding feature points. Additional 15

seconds were needed to solve the sparse linear equation problem, when there were around

2000 control points. Therefore, it totally took 10 ~ 15 minutes to perform the registration.

IV. DISCUSSION

In this study, we developed a new registration scheme termed as B-spline affine

transformation (BSAT). The innovation of this scheme lies in two aspects: (1) defining an

affine transformation instead of the traditional translation at each control point, and (2)

defining a bi-directional instead of the traditional unidirectional objective / cost function.

Mathematically, the developed B-spline affine transformation (BSAT) is a generalized

model of the traditional B-Spline transformation (BST). The primary difference between the

B-spline model with affine transformations and the B-spline model with displacements or

translation are their regularizations. The regularization of the former model as in Equation

(7) gives the transformation more freedom so that the transformation will have a zero cost

on the regularization when displacing, rotating, rescaling, and shearing. On the contrary, the

regularization of the models with displacements gives the transformation much fewer

freedoms, where the transformation has a zero cost on the regularization only with

translation. Although the B-spline model also has zero cost in the model constraint when

using the bending energy (second order constraint), the second order constraint might be

more sensitive than the first order constraint used in the B-spline affine model. As our

experiments demonstrate, the affine transformation defined at the B-spline control points is

capable of obtaining smaller registration errors than the traditional displacement. The

traditional ICP methods use a unidirectional cost function that always pushes the moving

feature points to the fixed feature points. In contrast, the proposed bidirectional cost function

not only pushes the moving feature points to the fixed feature points but also pull the

moving feature points away from the fixed feature points at the same time, depending on

which direction will lead to a smaller cost. In our experiments, bidirectional cost energy

decreases faster than the unidirectional cost energy and converges to smaller values (an

example is shown in Figure 6).

The proposed B-spline affine transformation shares some similar properties as the polyaffine

transformation [21–23]. Both of them are defined as a composition of M affine

transformation and could be used to solve a sparse linear system. Without considering the

objective function and the optimizations, a B-spline affine transformation can be regarded as

a special model of the polyaffine model when using the B-spline control points as anchor

points and using B-spline basis as the weight function. However, they are different in some

aspects. First, the BSAT model was proposed for feature based registration while the
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polyaffine transformation was proposed for intensity based registration. Second, the

polyaffine model requires a preprocessing to find anchor points while the BSAT identifies

the control points directly. Third, they have different objective functions. In addition, the

two linear systems have different dimensions when optimizing the objective function. For

example, the BAST and the polyaffine models solve the linear systems with coefficient

matrices of size 4M*4M and 12M*12M, respectively, where M is the number of the control/

anchor points.

In concept, the proposed bidirectional energy function can be regarded as a variant of the

Hausdorff distance. As compared with the available work such as Sang et al.’s [48], the

underlying motivation of our approach and its strategy in implementation are different. For

example, Sang et al. proposed the bidirectional update processing to improve the finite

mixture model (FMM) in the presence of outliers (noises) in both fixing and moving point

sets. We proposed the bidirectional energy in order to achieve an efficient elastic registration

for homologous structures when there is large deformation. In addition, the bidirectional

update processing proposed by other investigators was implemented in a way where the

roles of the moving points and the fixed points were NOT fixed for two given point sets,

namely X and Y. In other words, in one iteration, the point set X is treated as the fixed point

set and Y as the moving point set; while in the next iteration, the point set X is treated as the

moving set and Y as the fixed set. The parameters and the positions of these points were

updated in each iteration. This procedure was repeated until the parameters converge. In

contrast, in our proposed model, the roles of the moving points and the fix points were fixed,

and the bidirectional energy was represented and solved in a single objective function.

In most applications, diffeomorphic registrations are desirable because a diffeomorphism is

a globally one-to-one smooth and continuous mapping with derivatives that are invertible

(i.e. positive Jacobian determinant) [56–57]; otherwise, the underlying topology may be

changed after registration. Detailed descriptions of the BST models and their solution can be

found in [56–57]. In the proposed BSAT model, although diffeomorphism is not guaranteed,

an implied soft constraint is imposed in the regularization term in Eq. (7).

In implementation, whereas the moving feature points are often not on the integer grids

when searching bi-directionally for the corresponding feature points, it may not be proper to

use the distance transform to improve the computational efficiency. Hence, we proposed to

divide the volume into a set of sub-volumes. Our experiments showed that this sub-division

strategy achieved a reasonable efficiency in registration. In addition, the selection of the

regularization parameter α is critical in the registration model. If α is too small, the

deformation will easily be trapped in local minima, especially when the mass centers of the

two images for alignment are far away to each other (e.g., “data_2” and “data_4” in Figure

2). If α is too large, the regularization will dominate the objective function and the

deformation will lead to larger error. In practice, there are several ways to address these

problems. For example, when performing the pulmonary nodule registration, we align the

lung volume centers for initialization. Another way to avoid the α selection is to set a large

α (e.g., 0.99) at the first iteration, and then make α decrease progressively until the

registration converges towards a predefined small value (e.g., 0.1). In this way, the

Gu et al. Page 11

Comput Med Imaging Graph. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



registration will not easily stop at local minima and may ultimately lead to a relatively high

accuracy.

V. CONCLUSION

In this study, a new registration scheme is proposed to align two images based on feature

points. The affine transformation is used to replace the traditional displacement at each B-

spline control point, and a bidirectional distance cost function is used to replace the

traditional unidirectional distance cost function. Experiments on both 2D and 3D image data

showed that the proposed B-spline affine model could obtain reasonable registration

accuracy.
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Figure 1.
Illustration of the difference between the bidirectional correspondence and the unidirectional

correspondence using two examples.
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Figure 2.
Four synthesized 2D datasets for performance assessment.
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Figure 3.
An example demonstrating the performance of the lobe segmentation scheme [50].

Gu et al. Page 17

Comput Med Imaging Graph. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
The registration results on the four synthesized datasets in each row.
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Figure 5.
An example of the registration result after the application of Method-AB to a pair of

inspiration and expiration CT examinations acquired on the same subjects. The overlays in

green represented the area where the lobes identified in different examinations were

overlapped and the overlay in red represented the area where there was no overlapping

between these lobes.
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Figure 6.
A comparison between the unidirectional and bidirectional correspondence on data_1.
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Table II

Registration errors of lung nodules. (unit: mm)

Mean Std Max Min

Affine 8.3 5.2 17.5 1.5

Method-DS 7.9 4.8 16.1 1.3

Method-DB 7.1 4.6 17.5 1.1

Method-AS 8.0 4.1 14.6 1.5

Method-AB 6.9 3.3 14.7 0.3
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Table III

Registration error of airway tree bifurcations. (unit: mm)

Mean Std Max Min

Affine 3.45 1.24 6.36 1.53

Method-DS 3.09 1.10 5.54 1.35

Method-DB 2.94 1.03 4.40 1.07

Method-AS 3.08 1.07 5.31 1.24

Method-AB 2.72 0.95 4.07 1.03
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