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Abstract

Fuzzy logic image analysis techniques were used to analyze three shades of blue (lavender blue, 

light blue, and dark blue) in dermoscopic images for melanoma detection. A logistic regression 

model provided up to 82.7% accuracy for melanoma discrimination for 866 images. With a 

support vector machines (SVM) classifier, lower accuracy was obtained for individual shades 

(79.9–80.1%) compared with up to 81.4% accuracy with multiple shades. All fuzzy blue logic 

alpha cuts scored higher than the crisp case. Fuzzy logic techniques applied to multiple shades of 

blue can assist in melanoma detection. These vector-based fuzzy logic techniques can be extended 

to other image analysis problems involving multiple colors or color shades.
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1. Introduction

Of all skin cancers, invasive malignant melanoma exacts the highest total mortality with an 

estimated incidence of 76,250 and an estimated total of 9180 deaths in the United States in 

2012 alone [1]. The incidence rate for melanoma has risen tenfold over the past 60 years [2]. 

Earlier detection of melanoma is crucial, as diagnosis at the earliest in situ stage does not 

alter life expectancy [3]. Dermoscopy is a non-invasive imaging technique that employs 

magnification in combination with reduction of skin surface reflections. Dermoscopy 

improves sensitivity, specificity and accuracy in melanoma detection [4–7], by enhancing 

visualization of many features, including shades of blue [7–10].

Blue coloration is present within several dermoscopic features: homogeneous blue 

pigmentation; blue-white veil, and blue-black color. Homogeneous blue pigmentation is a 

first-step criterion in the 2-step procedure for examining pigmented skin lesions [8]. Blue-

white veils are defined as irregular structureless areas of confluent blue pigmentation with 

an overlying white “ground-glass” appearance [9]. These structures allow semi-automatic 

discrimination of melanoma from benign lesions with an accuracy of 82.9% on a more 

advanced lesion set with blue that is easier to detect [10]. In clinical studies, a blue color is 

one of the positive criteria within the 7-point checklist for suspicious melanocytic skin 

lesions [8] and a blue-black color rule has been suggested as an indicator of pigmented 

nodular melanoma [11]. We analyzed 195 melanoma images and noted 22 with prominent 

blue pigmentation. In contrast to earlier studies [9,10], few lesions within the image set 

presented in the clinic with fully developed blue veils or blue-black areas. We therefore 

focused on shades of blue found in melanomas now seen in clinics at an early stage, often at 

the pre-invasive (in situ) stage [12–14].

Three shades of blue were chosen for analysis: light blue, dark blue, and lavender blue (Fig. 

1). Melanoma classification has been previously studied using color-derived features [15–

18]. We are not aware of any previous analysis of specific color shades in a machine 

learning approach for melanoma discrimination.

There have been numerous studies exploring fuzzy logic techniques for color analysis and 

segmentation in medical applications. Some of the fuzzy logic methods investigated in 

previous research for color and skin analysis include color histogram analysis for color 

labeling and skin lesion discrimination [19], blotch size estimation for skin lesion 

discrimination [20], blotch detection in skin lesions using fuzzy clustering and texture 

segmentation [21], fuzzy clustering for adaptively removing background skin color for skin 

color region segmentation [22], fuzzy c-means clustering for skin lesion segmentation [23], 

adaptive fuzzy c-means using local spatial continuity for cluster prototype estimation [24], 

and skin region segmentation using fuzzy decision tree modeling [25].

In this article, we present a fuzzy set representation to segment blue areas in melanoma 

images for discrimination from benign lesions using red, green, and blue chromaticity, 

relative RGB color, value (from the HSV color space) and the blue:green ratio. The order of 

the remaining sections of the article is as follows: Section 2 describes the image set, absolute 

thresholding procedure, fuzzy set characterization, blue shade segmentation, feature 
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extraction techniques and classification method; Section 3 provides the results; Section 4 

pertains to the discussion; Section 5 elaborates on potential future work in blue area 

segmentation and Section 6 presents conclusions.

2. Methods

Fig. 2 provides an overview of the experimental workflow including supervised blue shade 

segmentation and lesion discrimination using a training set to determine the membership 

function parameters. Detection of blue area was performed in two stages using the training 

set in the former stage and the test set in the latter: (1) manual blue area marking, 

determination of absolute threshold parameters, and fuzzy set implementation; and (2) 

automatic blue area mask generation, feature extraction, and classification.

2.1. Description of experimental data set

A test dataset of 866 contact, non-polarized dermoscopic images (173 melanoma and 693 

benign acquired dysplastic and congenital nevi) were acquired in the course of the study 

NIH CA101639-02A2. All melanomas were verified by histopathological examination by a 

dermatopathologist. All benign lesions were evaluated with dermoscopy. All lesions with 

any concern by either patient or physician were either biopsied or were followed in the clinic 

and found to be reliably benign. For fuzzy set development for the different blue area color 

shades, a training set of 22 additional melanoma images with blue areas was examined. In 

total, there were 888 images, with 195 melanomas in the training and test set. Of the 

melanomas, 110 were at the in situ stage and 85 were at the invasive stage, giving a ratio of 

in situ to invasive malignant melanomas = MIS:MM = 1.29. All images had 1024 × 768 

resolution and were contact non-polarized dermoscopy images acquired using 3Gen 

DermLite Fluid Dermatoscope (3Gen Inc., Dana Point, CA) with a Sony DSC-W70 7.2 

megapixel digital camera and a dermoscopic adapter. This research was approved by Phelps 

County Regional Medical Center Institutional Review Board, Rolla, MO, USA, according to 

the Helsinki Declaration. Informed consent was obtained from all participants.

2.2. Manual blue area marking

Three small, uniform-sized elliptical areas in each of the 22 training image melanomas with 

blue areas were manually selected for analysis in each lesion with the guidance of a 

dermatologist (W.V.S.) using a second-order best-fit B-spline to connect the border points 

manually selected by the dermatologist to create a closed border curve [26]. An example of 

these selections is shown in Fig. 3. Since melanoma images could have any shade or shades 

of blue, and it was not known a priori how to precisely define which shades were present, 

the widest possible range of blue shading was marked. These areas were then classified as 

light blue, dark blue, or lavender blue and used for pre-processing and threshold 

determination, following the training process for color parameter determination and blue 

area segmentation and analysis steps in Fig. 2.

2.3. Feature characterization – pre-processing and absolute thresholding

To equalize the color changes due to different skin types and processing techniques, the 

relative color approach was used. For this approach, the average RGB color of each pixel 
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inside the lesion was calculated by subtracting the average RGB color of the surrounding 

skin, using methods previously described [15–18]. The surrounding skin region was an area 

equal to 20% of the lesion area encircling the border plus an additional 10-pixel wide 

margin. The relative RGB color values were used for subsequent analysis.

Upper and lower absolute color threshold ranges were empirically determined from a 

training set of 22 melanoma images for the chromaticity of each color within the RGB color 

model using ChrX = X/(R + G + B); X ∈ {R, G, B}. The three chromaticity components for 

a pixel are: ChrR, ChrG, and ChrB; the optimized chromaticity thresholds are represented by 

ChrRopt, ChrGopt, and ChrBopt. These optimized thresholds were within bounds based on 

observations from a dermatologist (W.V.S.) on the manually marked areas. Pixels must 

satisfy these chromaticity thresholds: (1) ChrRopt1 < ChrR < ChrRopt2, (2) ChrGopt1 < ChrG 

< ChrGopt2, (3) ChrBopt1 < ChrB < ChrBopt2, where the lower and upper bounds opt1 and 

opt2, respectively, were determined empirically from the melanoma training set of lesions. 

Fig. 4b is an example of a blue area mask generated using the chromaticity thresholds from 

the original image, Fig. 4a.

Lavender blue was easily separated from the other two shades of blue (light blue and dark 

blue) using chromaticity thresholds determined empirically on the 22-image training set. 

Separating the other two shades of blue, which differ in brightness, was best accomplished 

using intensity (V) alone. An empirically optimized brightness threshold was calculated as: 

Vopt = 0.5Vm + 0.224, where 0.224 represents the median brightness value and Vm is the 

median brightness for all light and dark blue areas computed from the 22-image melanoma 

training set. Finally, falsely detected blue areas were removed by requiring that candidate 

pixels satisfy the inequality: B/G > B/Gopt, where B/Gopt is the optimized blue:green color 

ratio empirically determined as 0.92 from the training set.

2.4. Construction of fuzzy sets

To determine the color parameters for the blue area membership functions, we examined 

fuzzy set representations to define the parameters of each color shade by extending previous 

research using fuzzy sets to characterize color in skin lesion histograms [19] and blotches in 

dermoscopy skin lesion images [20]. In this research, a fuzzy set is specified to provide high 

membership to pixels within the skin lesion image that perceptually contribute to identifying 

blue areas. The advantage of fuzzy sets is that they provide degrees of membership that can 

be representative of lighter or darker blue areas. This is beneficial from a dermatologic 

perspective because it allows for inter-shade variation and color variation between lesion 

images.

For red and blue chromaticity thresholds, trapezoidal membership functions were used such 

that a membership value of 1 could be designated for all values between the absolute upper 

and lower thresholds and a lesser degree of membership to the ramp on both sides of 

absolute thresholds. Z-shaped and S-shaped membership functions were given to green 

chromaticity and relative colors, respectively, as they each had a single absolute threshold 

value. A membership value of 1 was designated to all the values specified by the single 

threshold and a degree of membership was denoted to those within the ramp of the 

membership function.
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The membership function for red chromaticity μred-chrom(x) which depends on four 

parameters is given in Eq. (1).

(1)

Let RX be the set of red chromaticity values for three different shades with X ∈ {light blue, 

dark blue and lavender blue}. The red chromaticity set R_lightblue ranges from 0.21 to 0.4, 

R_darkblue also ranges between 0.21 and 0.4 and R_lavenderblue ranges from 0.33 to 0.5. 

The fuzzy set is the pair (RX, μred_chrom(x)) where μred_chrom:RX → [0,1]. All the values in 

the sets RX have a degree of membership.

Four parameters, a, b, c and d, of the trapezoidal functions, determine the degree of 

membership. All the values between the parameters b and c were fully included in the fuzzy 

set as μred_chrom(x) = 1 and any value less than a or greater than d were designated as red 

chrom(x) = 0. Values between a and b have a membership value dependent on the alpha 

cuts; similarly, the membership values between c and d were also dependent on alpha cuts.

Fuzzy sets were also constructed based on trapezoidal membership function for blue 

chromaticity thresholds of lavender blue and combined light and dark blue. This 

membership function for blue chromaticity is μred_chrom(x) defined in Eq. (2).

(2)

The fuzzy sets for blue chromaticity can be denoted with the pair (BX, μblue_chrom), where 

μblue_chrom:BX → [0,1] and BX are the sets for blue chromaticity values of different shades 

with X ∈ {light blue, dark blue and lavender blue . Blue chromaticity set values range from 

0.24 to 0.49 for light blue and dark blue and 0.24–0.42 for lavender blue. Four parameters of 

the trapezoidal membership functions for blue chromaticity of different shades are listed in 

Table 1.

Fuzzy set pair (GX, μgreen_chrom) with μgreen_chrom:GX → [0,1] and GX being the green 

chromaticity set ranging from 0 to 0.38 for lavender blue was defined for green 

chromaticity. Z-shaped membership function denoted as μgreen_chrom(x) was based on two 

parameters and defined in Eq. (3).

(3)
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where a locates the left extreme of the sloped portion of the curve and b locates the right 

extreme of the curve.

The final fuzzy sets for relative color are defined using S-shaped membership functions. Let 

RelativeX denote the set with all possible relative color values ranging from −255 to 255, 

then the fuzzy set is the pair (RelativeX, μred_chrom) where μred_chrom:Relative X → [0,1]. 

The S-shaped membership function μred_chrom is given in Eq. (4).

(4)

where a and b define the left and right extremes of the sloped portion of the curve. For light 

blue, dark blue and lavender blue, all the relative color values above b are fully included in 

the fuzzy set and values below a are not included in the fuzzy set. Values between a and b 

have membership values depending on the alpha cut. Table 1, columns 3–6, shows the 

parameters used for different fuzzy sets to segment the blue areas.

2.5. Blue shades segmentation

Three shades of blue were segmented with various combinations of fuzzy sets. The fuzzy 

sets for red chromaticity, blue chromaticity and relative color were the same for light and 

dark blue shades. The weighted brightness threshold Vopt was placed on these combined 

areas to separate light blue and dark blue. Light and dark blue areas were separately 

segmented based on applying alpha cuts, e.g. specified membership values, for different 

combinations of color fuzzy sets, whereby, a pixel is included in the segmented light or dark 

blue area mask if the pixel satisfies the alpha-cut membership constraints for the specified 

combination of color fuzzy sets. Lavender blue was segmented using the red chromaticity, 

blue chromaticity, green chromaticity, and relative color fuzzy sets. Results of blue area 

segmentation are shown (Fig. 5).

2.6. Feature extraction

Different alpha-cut combinations were investigated to generate segmented blue area regions 

for feature and lesion discrimination analysis. Various contour features, color features and 

texture features listed in the following section were extracted for the analysis. A total of 150 

features were derived, using each of the 3 color shades.

2.6.1. Contour features

• Eccentricity of the largest blob (E): ; Returns the eccentricity value by 

calculating the Euclidean distance (D) between the centroid of largest blob and the 

centroid of the lesion, then dividing it with square root of the lesion area (A)

•
Relative size of all blobs (R): ; measures the relative by size 

dividing the sum of all blob areas (Bi) by the area of the lesion (A); n is the number 

of blobs in the lesion
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• Relative size of largest blob (S): S = Bmax/A; ratio of the largest blob area (Bmax) 

within the lesion and area of the lesion (A)

• Absolute size of largest blob: area of largest blob within the lesion

• Number of blobs in the lesion.

2.6.2. Color features

• Blue areas by quintiles: measures the blue areas present within each lesion quintile 

created by the Euclidean distance transform. The outer 5th of all pixels closest to 

the lesion boundary are the 1st quintile, and the inner 5th of all pixels are closest to 

the center, modified from [27].

• Average RGB values

• Maximum and minimum values

• Standard deviation: measures the variation of RGB values in blue areas

• Chromaticity: ChrX = X/(R + G + B); X ∈ {R, G, B}

2.6.3. Texture features

•
Mean (μ): ; measured for grayscale and RGB planes.

• Here, ri is a variable indicating the gray level of RGB value and p(ri) is the 

probability of the occurrence of ri. L is the number of possible gray levels.

•
Variance (δ2): ; measures the average contrast of blue 

areas in all the three RGB planes, as well as in grayscale.

• Smoothness (S): S = 1 − (1/(1 + δ2)); measures the smoothness of blue areas; its 

value is near zero for very smooth areas and near one for unsmooth regions.

•
Skewness (k): ; gives the skewness of blue area 

histograms. It returns a value of zero for symmetric histograms about the mean; a 

positive value for right skewed histograms; and a negative value for left skewed 

histograms.

•
Uniformity (U): U ; returns a maximum value when all gray levels 

or red, green and blue values are equal in all the blue areas.

•
Entropy (e): ; measures the randomness or uncertainty 

of values over blue areas.

2.7. Classification

A ten-fold cross-validation approach was used to generate training and testing sets using 173 

melanomas and 693 benign lesions. The features for each training/test set were normalized 

based on subtracting the mean and dividing by the standard deviation feature values as 
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determined from the training set. Fan's implementation of a support vector machine (SVM) 

was utilized for skin lesion classification [28,29]. The SVM algorithm used a linear kernel 

[28] and parameter settings based on the implementation in [29]. Classification results were 

obtained for different alpha cuts for all the three shades of blue.

3. Results

The blue shade segmentation algorithm in II.E was applied to a test set of 866 dermoscopic 

skin lesion images, including 173 melanoma and 693 benign lesions, using different alpha 

cuts to the red chromaticity, blue chromaticity, green chromaticity, and relative color fuzzy 

sets to generate blue area masks. Alpha cuts ranging from 0.25 to 0.75 were observed in 

increments of 0.05; the alpha cut of 1 represents the absolute threshold, i.e. the non-fuzzy 

case, also termed the crisp case. Melanoma and benign lesion discrimination was performed 

by using the SVM classifier on the features extracted from final color masks for light blue, 

dark blue, and lavender blue at the varied alpha cuts. Table 2 lists the diagnostic results 

obtained for different alpha cuts using a support vector machine (SVM) classifier.

The accuracy for individual shades ranged from 79.9% to 80.1%, with the highest accuracy 

(81.4%) obtained at an alpha cut of 0.25 using the SVM classifier for all three shades. Fig. 6 

shows an example of different alpha cuts to determine lavender blue areas. As the alpha cut 

value is decremented, the restrictiveness on the threshold relaxes, resulting in a larger area 

determination.

The features obtained from the final masks of all three blue shades were combined for 

comprehensive analysis of blue areas. Diagnostic accuracy was measured at different alpha 

cuts for the combined features. In addition to the SVM classifier, the logit logistic regression 

model of Statistical Analysis Software (SAS Corp., Cary, NC) was used for analysis. The 

alpha cut of 0.35 gave the highest accuracy of 82.7% using logit analysis. Discrimination 

maximum accuracy using the final logistic regression model for all three shades was similar 

(within 1.5%) to results for SVM at all alpha cuts (Table 3).

We examined the receiver operating characteristic (ROC) curves based on the logit logistic 

regression model using SAS which plots the sensitivity versus one minus specificity. The 

combined ROC curves (Fig. 7) depict the results of area under the ROC curve (AUC) of 

different alpha cuts ranging from 0.25 to 0.65 with 0.1 increments.

Statistical analysis of variables was performed the same logistic regression model for the test 

set of 866 images. Table 4 shows statistics for the eight most significant variables present in 

the final model for the alpha cut = 0.65 which attained the highest accuracy, 82.7%.

4. Discussion

This study analyzes the implementation of fuzzy set techniques on blue area segmentation 

for melanoma discrimination from benign lesions. Accuracy of up to 82.7% was obtained at 

alpha cuts of 0.3, 0.4, and 0.65 from the features derived on the 866-image test set using 

logistic regression. The diagnostic accuracy was improved for the combined shades over the 

accuracy of individual shades. Fuzzy logic allowed optimization over alpha cuts, with all 
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alpha cuts showing higher AUC than the crisp case (AUC 68.8% for alpha = 1.0). To our 

knowledge, this work is the first to exploit the presence of multiple critical shades of a color 

to enable automatic detection of early melanoma and the first to employ fuzzy logic to detect 

those color shades.

There are clinical correlates for the three most important features found by logistic 

regression. Blue itself corresponds to the Tyndall effect, the optical phenomenon of 

preferential reflection of short wavelengths from melanin present deep within the lesion. 

Lavender blue is newly described here. We hypothesize that lavender blue represents 

erythema coinciding with blue, giving a red tinge to the blue area. The erythema represents 

physiologic expansion of blood vessels, shown by subsurface transillumination to be a 

marker for skin cancer [30]. The most important features retained in logistic regression 

(Table 4) are derived from lavender blue areas, corresponding to this combination of blue 

from deep melanin and red from the blood vessels.

This study extends an observation made by Menzies and colleagues [31]: multiple shades of 

pink were associated with amelanotic melanoma. Here we extend this research to the 

detection of multiple blue shades using automatic segmentation by fuzzy logic.

The empirical nature of the observed color shade definitions represents a drawback in this 

study. This is an ‘anthroporphic’ modeling of color representation, that is,color plane cuts 

for the different shades are determined to match the shades observed by the dermatologist. 

This method, although entailing the drawbacks of empirical diagnostic modeling, can help 

elucidate the diagnostic process. The fuzzy logic process, using alpha cuts as shown in this 

study, allows data-driven optimization of the empirically determined color plane thresholds.

5. Conclusions

In this article, blue areas present in dermoscopic images of skin lesions were used to 

discriminate melanoma from benign lesions by fuzzy logic implementation. The method 

segments three shades of blue using a combination of alpha-cut membership functions, and 

characterizes and classified images based on key color parameters. A logistic regression 

model provided up to 82.7% accuracy for melanoma discrimination for 866 images. With a 

support vector machines (SVM) classifier, lower accuracy was obtained for individual 

shades (79.9–80.1%) compared with up to 81.4% accuracy with multiple shades.

6. Future work

For future work, additional features can be included to improve the accuracy and the corner 

points of the membership functions can be varied to further optimize melanoma 

discrimination.

Weaknesses in the current study include the relatively small set of lesions analyzed, which 

limit the power of conclusions drawn here. Future work includes the inclusion of more 

lesions in the analysis and the use of automatic borders in lesion analysis. Additionally, 

blood volume as a marker for malignancy was shown in the work of Terushkin et al. to be 

increased in more advanced malignancies [30]. One hypothesis that could be tested with 
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malignancies at various stages is that infrared illumination may play a greater role in 

detection of more advanced malignancies.
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Fig. 1. 
Dermoscopy image of invasive melanoma illustrating three shades of blue indicative of 

pigmented nodular melanoma. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 2. 
Blue area workflow overview.
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Fig. 3. 
Blue areas selected for analysis. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 4. 
(a) Melanoma image. (b) Blue area mask generated from chromaticity thresholds.
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Fig. 5. 
Melanoma with three shades of blue, optimized chromaticity and brightness thresholds, with 

quintile overlays. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 6. 
Dermoscopy image of melanoma and resultant lavender blue area masks with alpha cuts at 

(A) 1, (B) 0.5, and (C) 0.25. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 7. 
Receiver operating characteristic curve from the logistic regression models; AUC = area 

under the curve.
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Table 1

Corner points of membership functions for color parameters to segment blue areas.

Membership function a b c d

Red chromaticity (light blue) μred_chrom(χ) 0.21 0.27 0.34 0.4

Red chromaticity (dark blue) μred_chrom(χ) 0.21 0.27 0.34 0.4

Red chromaticity (lavender blue) μred_chrom(χ) 0.33 0.34 0.38 0.5

Blue chromaticity (light blue) μblue_chrom(χ) 0.24 0.3 0.43 0.49

Blue chromaticity (dark blue) μblue_chrom(χ) 0.24 0.3 0.43 0.49

Blue chromaticity (lavender blue) μblue_chrom(χ) 0.24 0.32 0.38 0.42

Green chromaticity (lavender blue) μgree_chrom(χ) 0.32 0.38 – –

Relative color (light blue) μrel_color(χ) 0 10 – –

Relative color (dark blue) μrel_color(χ) 0 10 – –

Relative color (lavender blue) μrel_color(χ) 15 30 – –
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Table 2

Support vector machine results for diagnostic melanoma accuracy based on varied alpha cuts for three shades 

of blue: Individual shades vs. all 3 shades.

Alpha cuts applied to color features Light blue (%) Dark blue (%) Lavender blue (%) All three shades (%)

0.25 80.1 80.0 80.0 80.74

0.30 80.0 80.0 80.0 81.19

0.35 80.0 80.0 80.0 81.19

0.4 80.0 79.9 80.0 81.42

0.45 79.9 79.9 80.0 81.42

0.5 80.0 79.8 80.0 80.63

0.55 79.9 79.8 80.0 80.96

0.6 80.0 79.8 80.0 80.74

0.65 80.1 79.9 80.0 80.29

0.7 80.1 79.9 80.0 79.95

0.75 80.0 80.0 79.9 79.62

1 79.9 80.1 79.9 79.39
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Table 3

Accuracy results based on support vector machine and logistic regression with statistical analysis software 

(SAS) different alpha cuts for combined shades.

Alpha cuts Support vector machine (maximum 
correct) (%)

Logistic regression (maximum 
correct) (%)

Logistic regression estimated area 
under the curve (%)

0.25 81.4 82.2 76.9

0.30 81.2 82.7 78.6

0.35 80.7 82.3 75.3

0.40 80.6 82.7 76.5

0.45 80.6 82.3 77.1

0.50 80.4 82.3 79.1

0.55 80.0 82.4 76.1

0.60 79.9 81.4 71.5

0.65 79.8 82.7 78.8

0.70 79.7 81.9 80.1

0.75 79.3 81.9 77.3

1.00 80.3 81.8 68.0
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Table 4

Statistical summary for eight significant variables (p ≤ 0.05) retained (of 150 variables analyzed) in final 

model, all 3 shades, accuracy maximized at 82.7% for alpha cut = 0.65.

Feature description (all features from sections E and F) Wald Chi-square p-Value

Green Chromaticity (lavender blue) 14.67 0.0001

Average Blue Color (dark blue) 12.06 0.0005

Eccentricity of Largest Blob (light blue) 2.56 0.0057

Area (dark blue) 1.73 0.05

Average Blue Color (lavender blue) 9.60 0.002

Red Minimum (lavender blue) 4.65 0.03

Blue Chromaticity (lavender blue) 5.42 0.02

Green Smoothness (lavender blue) 9.24 0.001
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