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Abstract

We present an image processing approach to automatically analyze duo-channel microscopic 

images of muscular fiber nuclei and cytoplasm. Nuclei and cytoplasm play a critical role in 

determining the health and functioning of muscular fibers as changes of nuclei and cytoplasm 

manifest in many diseases such as muscular dystrophy and hypertrophy. Quantitative evaluation of 

muscle fiber nuclei and cytoplasm thus is of great importance to researchers in musculoskeletal 

studies. The proposed computational approach consists of steps of image processing to segment 

and delineate cytoplasm and identify nuclei in two-channel images. Morphological operations like 

skeletonization is applied to extract the length of cytoplasm for quantification. We tested the 

approach on real images and found that it can achieve high accuracy, objectivity, and robustness.
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 1. Introduction

Skeletal muscle is the most abundant tissue of the human body, occupying about half of the 

body weight in healthy adults [1]. Skeletal muscle is principally composed of individual 

muscle fibers (or muscle cells) that are arranged in a structured manner. Muscle fibers are 

formed in the development process from the fusion of myoblasts (primitive muscle cells that 

can potentially develop into a muscle fiber) in a process known as myogenesis. The long, 

cylindrical, multinucleated muscle fibers is the biggest cell in the body, generally of tens of 
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micrometers in diameter and hundreds of micrometer in length. The cytoplasm of skeletal 

muscle fibers mainly consists of regularly arranged myofibrils, in which two components, 

actin and myosin filaments, are responsible for the striated appearance of skeletal muscles. 

Functionally, skeletal muscles not only control bodily movement through their contraction 

and relax but also constitute the largest metabolic pool of the body. Aberration of skeletal 

muscle is the cause of many muscular diseases, including cardiomyopathy [2–4], muscular 

hypertrophy [5,6], inflammatory muscle damage [7–9], muscle development [10,11], 

muscular dystrophies [12–14], amyotrophic lateral sclerosis (ALS) [15], and myasthenia 

gravis [16]. Many of these diseases have no effective treatment and some of them like 

muscular dystrophies have a high fatality rate [17,18].

In studying skeletal muscles there are multiple criteria in evaluating the healthy status of 

muscles, including functional improvement of muscles, biochemical changes in muscle 

mass, and morphology of muscle fibers observed under microscopes. In this paper we focus 

on developing an image processing approach to automatically analyze and quantify 

morphology of muscle fibers because many muscular diseases manifest themselves as 

abnormality in terms of changes in nuclei and cytoplasm of muscle fibers. For example, 

skeletal muscles are capable of undergoing hypertrophy (increase in their sizes) in response 

to increased loading, while it can become atrophy upon unloading or immobilization. 

Skeletal muscle fibers have been shown to gain newly formed nuclei via the fusion of 

myogenic cells with the adult fibers in muscular hypertrophy. In muscular atrophy, muscle 

fibers are shown to usually lose nuclei through apoptosis. As such, one important criterion in 

evaluating the efficacy of treatment under development is to assess whether normality in 

muscle fiber morphology can be restored, in combination with dynamic evaluation like 

muscle functions and in vivo imaging [19,20]. The large number of microscopic images of 

muscle fibers generated in a typical experiment can be on the order of hundreds, making it is 

time prohibitive and error prone for manual analysis. Computerized analysis can provide 

objective and quantitative measurements in a high-throughput manner and assist researchers 

to assess many direct features and derived characteristics of muscle fibers. For example, 

after finding nuclei and cytoplasm in images, computerized analysis can drive the nuclei-to-

cytoplasm ratio of muscle fibers, a criterion widely used to assess the health of muscle fibers 

[21,22].

In this work we developed an image processing pipeline consisting of image segmentation, 

quantification, and morphological operations to analyze muscle fiber images in a high-

throughput manner. We tested the method on muscle fiber images acquired from tissue 

samples stained for both nuclei and cytoplasm and found the method can achieve high 

objectivity and accuracy.

 2. Materials and methods

 2.1. Cell culture, immunostaining, and image acquisition

We harvested primary myoblasts from hind limb muscles of 4-week old C57BL/10 male 

mice as described in Rando et al. [23]. The myoblasts were expanded in Ham's F10 medium 

supplemented with 20% fetal calf serum and 5 ng/ml basic fibroblast growth factor on 

collagen-coated plates. After clone culture, the myoblasts were identified with anti-desmin 
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antibody through immunocytochemistry. To induce myogenic differentiation of the cultured 

myoblasts, the growth medium was replaced with differentiation medium (DMEM with 2% 

horse serum) after the percentage of coverage reached over 70%. For immunostaining, the 

differentiated cells were fixed with 4% paraformaldehyde for 30 min at 4 °C, washed and 

treated with 0.5% Triton-X 100 in PBS for 5 min at room temperature. Then the cells were 

incubated with primary antibody Myosin Heavy Chain (MHC) diluted in 1:50 (MEDCLA66, 

Accurate Chemical & Scientific Corp, NY) followed by incubation with a CyTm3-

conjugated secondary antibody (Jackson Lab) diluted in 1:500 to observe the cytoplasm. The 

nuclei were counter-stained with 4,6-diamidino-2-phenylindole (DAPI). Pictures were taken 

using a laser microscope (Nikon Eclipse E600) and saved as TIFF images with a pixel size 

of 0.76 μm. Fig. 1 shows a typical image after merging the DAPI and MHC channels.

 2.2. Image processing pipeline

As the original images were collected in two channels, one for cytoplasm and the other for 

nuclei, our image processing pipeline features two paths to analyze each channel separately. 

There are two challenges in extracting objects from this type of two-channel images. The 

first challenge is that the images may have an uneven background and objects have close 

adjacency among them. The second challenge is that due to limitations in staining and 

imaging, there are residual signals from the MHC channel in the DAPI channel and vice 

versa. For example, Fig. 2(a) shows the DAPI channel image of Fig. 1 and we can observe 

some weak components of cytoplasm in the image. Fig. 2(b) shows the MHC-stained 

cytoplasm of Fig. 1 and because nuclei are not stained by MHC, they appear as dark holes 

on the MHC channel image, which may affect the accuracy of segmenting cytoplasm if the 

dark holes are not taken into consideration.

From Fig. 1 we note that cytoplasm generally has an elongated ellipsoidal shape with 

varying lengths. We also note that cytoplasm tends to have an approximately straight profile, 

a fact that we will explore in our algorithm design to detect them. Our image processing 

pipeline is shown in Fig. 3, which consists of two paths, with one to process the cytoplasm 

channel and the other to process the nuclei channel. Each branch has two main steps, 

binarization and morphological analysis. At first, we give an overview of the image 

processing pipeline. In nuclei channel image processing we employed an adaptive 

thresholding method to binarize the images. The initial binarized result may consist of both 

individual and clustered nuclei and thus needs to be further processed. To segment clustered 

nuclei we calculated the distance transform of each object in the binarized image and apply a 

peak finding filter. We then determine the centroid of the peaks to account for flat peaks, 

obtaining the position and number of nuclei inside each object detected in the binarized 

image. In cytoplasm channel image processing, an adaptive threshold is used to segment the 

image. Then the segmentation result is merged with that from the nuclei channel image, 

which identifies the nuclei, to fill the small holes corresponding to the nuclei in the 

cytoplasm channel. By incorporating the results from the nuclei channel we avoid the 

necessity to identify small holes directly in the cytoplasm channel, a process that may 

generate false positives and false negatives. Then we perform skeletonization in the 

cytoplasm channel to extract the center lines of the cytoplasm. Last, we apply morphological 

analysis to separate adjacent cytoplasm and remove short spurs in the skeletons of 
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segmented cytoplasm and small areas in the cytoplasm images to clean up the results. Next 

we describe the steps in the image processing pipeline in more details.

 2.2.1. Binarization—Binarization is performed on both channels of images to

1. Adaptively thresholding of the nuclei and cytoplasm channels separately. 

At this step, we employ a circular moving window W with a radius r to 

binarize each channel [24]. Specifically, for each pixel p(x, y) in a (nuclei 

or cytoplasm) image we calculate the mean intensity p̄(x, y) of all pixels 

within W and calculate

(1)

We then compare δp(x, y) to a preset threshold T to classify p(x, y) to 1 if 

δp(x, y) ≥ T or 0, otherwise. In our approach, we set T to 0.1 for the nuclei 

channel and 0.005 for the cytoplasm channel, while the radius of the 

circular window W was set to 20 pixels for both channels. After 

thresholding, we obtain the final binarized nuclei image, which we label 

. The cytoplasm channel needs some additional processing, 

therefore we label the image obtained in this step as .

2. We next perform a logical OR operation of the two binarized images 

 and  to create a merged binarized image

(2)

where ∪ is the logical OR operation.

3. At this step we post-process IMerge to remove artifacts. We applied an area 

filter of 300 pixels to identify small groups of pixels such that

(3)

where f is the area filtering process. Here a group of pixels is defined as 

pixels that are connected. Two pixels are considered connected if they are 

next to each other in the row or column direction of the image (i.e., 

diagonally adjacent pixels are not considered as connected in our case). 

The reason of identifying artifacts based on IMerge instead of individual 

 and  is to reduce the probability of incorrectly marking 

valid structure that may be partially binarized in both  and . 

If we apply the area filter on  and  separately, this valid 

structure might be incorrectly identified as an artifact.
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4. Based on IArtifact identified above we then remove artifacts from IMerge to 

obtain

(4)

5. In the process of binarization, small holes may be formed in the binarized 

cytoplasm image  due to the presence of nuclei or noise. At this 

step, we fill small holes less than 100 pixels in .

The nuclei channel segmentation result of Fig. 2(a) is shown in Fig. 4(a). The initial 

binarized result of the cytoplasm channel of Fig. 2(b) is shown in Fig. 4(b), from which we 

can observe that there are holes in the binarized cytoplasm results that are caused by the 

nuclei and small scattered areas. The result of filling the small holes is shown in Fig. 4(c) by 

incorporating the locations of nuclei from Fig. 4(a). Finally small scattered areas are 

removed to produce the binarized cytoplasm shown in Fig. 4(d). From the figure we note 

that while most cytoplasm is well segmented there is some cytoplasm connecting to others in 

the image. So at the next step we will employ morphological analysis to separate those 

cytoplasm.

 2.2.2. Morphological analysis of the cytoplasm channel—At this step we apply 

morphological operations to segment  based on prior biological information. First, 

we modify the Palágyi algorithm to calculate the skeleton (or medial axis) of the binarized 

cytoplasm [25]. The skeleton corresponding to Fig. 4(d) is shown in Fig. 5(a). For better 

illustration we randomly chose three ROIs in Fig. 5(a) and show them in Fig. 5(b), (f), and 

(j). After finding the skeleton, we calculate the widths of all the cytoplasm by measuring the 

distance from the skeleton to the cytoplasm boundary. The corresponding results are shown 

in Fig. 5(c), (g), and (k), respectively. This step is implemented by measuring the Euclidean 

distance d from each point of the skeleton to the closest cytoplasm boundary point. The 

width of a cytoplasm is estimated as two times d along the skeleton. We also construct the 

network formed by the skeleton, which includes terminal nodes and bifurcation nodes that 

connects two or more branches. The constructed network is important for cytoplasm analysis 

as we need to separate individual cytoplasm that appears connected due to the limited image 

resolution. The constructed network is shown in Fig. 5(d), (h), and (l). In using the Palágyi 

algorithm short spiky branches may be created due to the noise in the image that affects the 

binarization process and such branches need to be removed. A short branch is considered 

noisy if its length is less than 10 pixels (or 7.6 μm), which is slightly larger than the average 

cytoplasm width. We chose this value because it is unlikely that a fiber has a length almost 

equal to its width, and therefore this value ensures that no real fibers are removed in this 

step. Fig. 5(e, i, and m) shows in green the small branches that are removed in this step. 

After obtaining the skeletons we proceed to separate touching or adjacent cytoplasms. 

Because we know a priori that cytoplasm does not make sharp turns, in other words, does 

not have a high curvature, we check each bifurcation point and compute the angles formed 

between the skeleton segments to determine which of them belong to the same cytoplasm 

and which one represents separate cytoplasm. Fig. 6 illustrates the process of computing 
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angles formed at bifurcation points and separating touching cytoplasms. At bifurcation point 

C, pairs of three line sections , , and  form three respective angles, α, β, and γ. 

We then determine that line sections  and  constitute a valid cytoplasm object 

because β is close to 180° and α and γ are much less than 180°. In the case illustrated in Fig. 

6, line sections  and  are determined to form the skeleton of one cytoplasm object 

while line section  is considered as the skeleton of another cytoplasm object and it is 

then separated at the bifurcation point C. Since skeleton sections are not always straight 

lines, we perform a first-order line fitting to each skeleton segment near the bifurcation 

point. The lengths of the line sections used for fitting (i.e., the distance of points A, B and D 
to point C) may affect the accuracy of the result. On the one hand, if the lengths used are too 

small, the robustness of the angle calculation may be affected as noise in the skeleton near 

the bifurcation point may have a profound effect in determining the direction of each 

skeleton section. On the other hand, if the lengths used are too large, the skeleton sections 

may deviate too much from being a straight line and may also affect the accuracy of 

calculation. In this work, we set the length of each line section used in angle calculation to 

10 pixels. Note that this length is large enough to avoid discretization effects in angle 

calculation. Next, we dilated the skeleton by several pixels to obtain an approximate 

representation of the original fibers. In Fig. 7(a) we show the overlap of the obtained 

skeleton on the original cytoplasm image. The dilated skeleton is shown in Fig. 7(b). Note 

that in the figure each fiber is represented by a different shade of gray.

 2.2.3. Morphological analysis of the nuclei channel—The purpose of this step is 

to detect and segment the nuclei. In this work, we applied a distance transform on the binary 

nuclei image, , in order to separate overlapping nuclei. First, we note that noise in 

the image acquisition process gives rise to very small connected components in the binarized 

image. Therefore, we need to remove such components while keeping valid nuclei that have 

small areas. The size of components caused by noise was found to be typically smaller than 

30 pixels, while we found no nuclei having a size smaller than 60 pixels. Thus, we choose to 

remove all components smaller than 60 pixels. Note that this difference in size between the 

noisy components and the nuclei means that the results are weakly sensitive to this 

parameter. For example, modifying the threshold to 40 pixels changed the results by less 

than 0.1% for all measurements. In this step, we have a new image given by

(5)

where f is, again, the area filtering process that identifies small components. We then apply a 

distance transform [26] on the resulting binary image. The distance transform works as 

follows. For each pixel that belongs to an identified object in , we calculate the 

smallest distance between the pixel and the border of the object and assign the obtained 

value to the respective pixel in a new image . In Fig. 8 we show an binarized image 

(Fig. 8(a)) and the respective distance transform (Fig. 8(b)). The task of identifying 

individual nuclei is then converted into the task of finding peaks in the distance transform. 

For such a task we use a maximum filter with a circular mask of radius rp pixels, that is, we 
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mark each pixel that has maximum intensity inside a disk of radius rp centered at the pixel 

under consideration.

Note that rp is an important parameter of the nuclei detection method as it sets the scale 

where we expect to find maximum values of the distance transform. In other words, the 

detected peaks will be separated by at least rp pixels. Since our main objective is to separate 

peaks in the distance transform that are close to each other and belong to the same object 

(caused by overlapping nuclei), the chosen radius of the maximum filter is related to the 

minimum radius expected from a nucleus. As pointed out above, we found no nucleus with 

an area smaller than 60 pixels, which is equivalent to a minimum radius of roughly 4 pixels 

(supposing perfect circular nuclei), therefore we set rp = 4 pixels (or equivalently, 3.04 μm). 

There are a few cases that a group of pixels have the same maximum value (i.e., a flat peak 

in the distance transform). In such cases we calculate the centroid of the flat region. We now 

have the positions of the nuclei in the nuclei channel, which can then be compared to the 

detected cytoplasm in the other channel to obtain geometric and morphologic measurements 

such as the number of nuclei in each fiber or number of nuclei per fiber length. We note that 

changing the radius of the peak finding filter does not change the positions of the detected 

nuclei as it only affect the total number of detected nuclei. The detected peaks from the 

nuclei shown in Fig. 8(a) can be seen in Fig. 8(c).

 3. Results

To evaluate the performance of the image processing pipeline, we tested it on some muscle 

fiber images. To illustrate the effect of the whole pipeline, Fig. 9 shows the processing 

results of another sample image. A cytoplasm object in the center of Fig. 9(a) is transformed 

into a line, as shown in Fig. 9(b). This line is dilated to give an approximate representation 

of the fiber, as shown in Fig. 9(c). This result is combined with the corresponding binarized 

nuclei image (the original image is shown in Fig. 9(d)). The fiber in the center of Fig. 9(a) is 

extracted and shown in Fig. 9(e) with its nuclei. Since we also have the positions of the 

nuclei, we only need to find how many nuclei are in the region defined by this fiber, which is 

four in this case. Such quantitative results allow us to perform many types of analysis that 

are difficult to achieve in manual analysis. First, we can derive the number of nuclei per 

cytoplasm, which is a criterion used to measure the healthy status of cytoplasm and muscles. 

Fig. 10 shows the histograms of the number of nuclei per cytoplasm calculated over five 

tissue specimens acquired under one experimental condition. From the figure we can 

observe the specimens have similar distribution in terms of number of nuclei per cytoplasm. 

Similarly we can calculate the fiber lengths in a straight-forward manner. The fiber lengths 

of the five tissue samples are shown in Fig. 11 and their average and standard deviation is 

shown in the last picture of Fig. 11. In addition to fiber length we can easily measure the 

width of fibers and mean fiber width (Fig. 12). The deviation of fiber width is also shown in 

Fig. 13. Finally, we plot the number of nuclei versus the fiber length in Fig. 14. The scatter 

plots illustrate that the number of nuclei is positively correlated with the fiber length. For 

example, most fibers with two or fewer nuclei are less than 300 μm long. Fibers that have 

three nuclei may have a maximum length of 400 μm, as shown in samples 1–3. For fibers 

having more than six nuclei, their lengths are between 200 and 600 μm. To validate the 

performance of our method, we performed manual analysis on one sample image as the gold 
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standard as manual analysis is usually used by researchers to analyze muscle fiber images. 

The result of manual analysis is shown in Fig. S1 of the supplementary material. In Fig. 15 

we show the comparison of the measurements obtained from manual analysis with the 

automated segmentation of the same sample. It is clear that the values are close, with no 

noticeable skewness or systematic bias. Therefore, we conclude that our method can 

accurately measure geometric and morphologic features of muscle fibers. Quantitatively, we 

can derive other morphological features and statistics from the images. Table 1 summarizes 

some features that the image processing pipeline measures, namely,

• Nuclei density: number of nuclei in an image divided by the image area.

• Fiber density: number of fiber in an image divided by the image area.

• Fraction of fiber area: the area occupied by all the fibers divided by the 

image area.

• Nuclei per fiber area: number of nuclei in an image divided by the total 

area of the cytoplasm.

• Total fiber length: the sum of all fiber lengths.

Supplementary Fig. S1 related to this article can be found, in the online version, at http://

dx.doi.org/10.1016/j.compmedimag.2014.07.003.

The table also shows the measured values by manual analysis of sample number five. As for 

the computational speed of the method, in a desktop computer with an AMD Phenom II X4 

955 processor and 200 MB memory, each image takes roughly 50 s to be processed using a 

Python script, as compared with the much longer time required in manual analysis.

 4. Discussion

In this paper we presented an image processing pipeline to detect and segment nuclei and 

cytoplasm in microscopic images of skeletal muscle fibers. Skeletal muscle fibers are a 

special type of cells in the sense that they are multinucleated as each fiber consists of 

multiple fused cells. Together, the morphology of nuclei and cytoplasm play an important 

role in determining the health of muscle fibers where malformation of muscle fibers is the 

cause of many muscular disorders. Thus from a biomedical perspective it is critical to 

analyze both nuclei and cytoplasm in evaluating the health of skeletal muscle fibers. 

Microscopes provide a direct assessment of muscle fibers as we can separately stain nuclei 

and cytoplasm for imaging. Due to imperfect conditions in staining and imaging, the 

microscopic images however may have residual signals from the cytoplasm channel in the 

nuclei channel. The cytoplasm channel may have small holes in the images that are occupied 

by the nuclei. Therefore, processing each channel of images separately may not generate 

satisfactory results. The novelty of the method is that it segments nuclei and cytoplasm in a 

joint manner to utilize the locations of nuclei in one channel as an additional input to 

accurately segment cytoplasm in the other channel. Compared with manual analysis, the 

proposed method produces objective and quantitative results that can be saved for detailed 

statistical analysis. The image processing pipeline is highly automatic to process multiple 
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data sets. As such, the proposed method can be used to assist biologists and clinicians in 

muscle fiber image processing and analysis.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An original image showing both cytoplasm and nuclei of harvested TA muscle from a mouse 

model of muscular dystrophy. We can observe that cytoplasm generally has an elongated 

ellipsoidal shape. Due to the presence of nuclei and other factors in imaging, cytoplasm has 

an uneven signal intensity, making them a challenge for automatic detection.
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Fig. 2. 
(a) The DAPI channel of Fig. 1 showing nuclei, from which we can observe some residual 

signals from the MHC channel. (b) The MHC channel of cytoplasm, from which we can 

observe that as nuclei are not stained by MHC they constitute dark holes in cytoplasm.
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Fig. 3. 
The proposed image processing pipeline. The branch to the left is for nuclei channel 

processing. The branch to the right is for cytoplasm channel processing.
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Fig. 4. 
Processing results of Fig. 2. (a) The detected nuclei. (b) The intermediate result of detecting 

cytoplasm. Note that holes caused by nucleus staining and small scatters are still present in 

this result. (c) Holes caused by nucleus staining are filled. (d) Small scatters have been 

removed in the cytoplasm result.
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Fig. 5. 
Topological representation of the cytoplasm. (a) Skeleton obtained from Fig. 4 by thinning. 

Three regions of interest (ROIs) are selected for detailed illustration. (b, f, and j) The three 

ROIs in (a). (c, g, and k) Color maps of (b, f, and j), respectively, showing the distance of the 

skeleton to the borders of cytoplasm, i.e., half the width of the cytoplasm at each point. (d, h, 

and l) Network reconstructed from the skeleton of (b, f, and j), respectively. (e, i, and m) 

Small removed branches are shown in green, the final skeletons are shown in red.
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Fig. 6. 
Procedure to separate overlapping or adjacent cytoplasm. (a) We first calculate the angles 

formed at a bifurcation point. (b) We can perform an “open” operation to separate the line 

section that does not form an approximate straight line with the other line sections. In case, 

line section  is determined to be the skeleton of a separate cytoplasm while line section 

 is considered as the skeleton of the same cytoplasm. (c) The corresponding example 

of (a). (d) The corresponding result of (c) after cytoplasm separation.
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Fig. 7. 
(a) Final skeleton superimposed to the original image. (b) The detected segments are 

expanded to represent the original fibers.
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Fig. 8. 
(a) Example of a binarized nuclei image, from which we note there are adjacent nuclei. (b) 

Distance transform of the binary image. (c) Identified nuclei marked in red overlaid into the 

original image. Note that the adjacent nuclei are well separated.
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Fig. 9. 
Illustration of the main steps of the procedure proposed in this paper for a single fiber. (a) 

Original cytoplasm image, zoomed in a single fiber (shown at the center). (b) Skeletons of 

(a). (c) Dilated skeletons representing an idealization of the original cytoplasm. (d) Zoomed 

in area of the original nuclei image. (e) Final result showing the fiber with its nuclei.

Comin et al. Page 20

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Histograms for the number of nuclei per cytoplasm. Each bar plot corresponds to a sample. 

The line plot is the average of all histograms into the same axes.
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Fig. 11. 
Fiber lengths of five muscular tissue specimens. The last picture plots the average fiber 

length with its standard deviation.
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Fig. 12. 
Mean fiber width.
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Fig. 13. 
Deviation of fiber width.
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Fig. 14. 
Number of nuclei per fiber length.
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Fig. 15. 
Comparison between the gold standard and our method for the automatic segmentation of 

muscle fibers. All four automatically measured quantities are close to the ground truth. The 

results of the manual segmentation can be found in Fig. S1 of the supplementary material.
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Table 1

Values obtained for five muscle fiber images and the gold standard. The gold standard is the manual 

segmentation of sample number 5.

Sample Nuclei density (μm–2) Fiber density (μm–2) Fraction of fiber 
area

Nuclei per fiber 
area (μm–2)

Total fiber length 
(μm)

1 0.00077 0.00042 0.23 0.0034 35,767

2 0.00101 0.00065 0.30 0.0034 46,089

3 0.00079 0.00048 0.24 0.0033 37,040

4 0.00086 0.00051 0.26 0.0033 39,467

5 0.00077 0.00052 0.24 0.0032 40,994

Gold standard of 
sample 5

0.00083 0.00046 0.29 0.0029 42,292
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