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Abstract

Dynamic MRI has been widely used to track the motion of the tongue and measure its internal 

deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite 

step to define the target boundary and constrain the tracking to tissue points within the tongue. 

Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and 

time frames involved in the segmentation, as well as the incorporation of numerous local 

deformations that occur throughout the tongue during motion. In this paper, we propose a semi-

automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include 

seeding a few slices at one time frame, propagating seeds to the same slices at different time 

frames using deformable registration, and random walker segmentation based on these seed 

positions. This method was validated on the tongue of five normal subjects carrying out the same 

speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal 

orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 

volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented 

volume variability between time frames than in manual segmentations.
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1. Introduction

The tongue is a crucial part of the oral cavity. Its behavior is critical for the production of 

speech, where its deformation shapes the vocal tract to produce sounds. It is also essential 

for eating, where it contains and propels the bolus during chewing and swallowing. Finally, 

the tongue is vital for breathing where every inhalation is accompanied by muscle activity 

designed to prevent the tongue from being pulled backward and closing off the airway [1].

Tongue malformation arising from natural malformation such as macroglos-sia or from 

surgery such as glossectomy to remove tongue cancer, creates situations that affect quality 

of life and may be life-threatening. The incidence of oral cancer has increased in the last 

four decades due to association to the human papillomatosis virus (HPV). Surgical ablation 

(glossectomy) and chemo-radiotherapy are the most common methods for treating tongue 

cancer patients [2]. It is crucial to understand the relationship between the anatomical 

structure of the tongue, its function, and the tumor for diagnosis, surgical planning, 

treatment quality assessment as well as scientific studies [3, 4]. However, the tongue is very 

difficult to study due to its location within the oral cavity, which makes measurement 

challenging. Characterization of tongue motion is also challenging because the tongue does 

not rely on rigid structures such as bones and cartilage, instead activates multiple muscles in 

a complex manner to produce a wide range of fast and precise movements [5]. Currently, 

there is no tool to directly characterize tongue motion and function with respect to the 

surgical approach and reconstruction procedure or chemo-radiation treatment in these 

patients [6]. The first step in these analyses is an algorithm to accurately and repeatably 

extract the tongue (or structure of interest) for use in further analysis.

Magnetic resonance imaging (MRI) is a widely used imaging modality for structural and 

functional analysis of the tongue and the vocal tract as it is nonionizing and shows excellent 

soft tissue contrast [3, 7–13]. In particular, fast MR imaging with tagging [14, 15] enables 

fast measurement and quantitative analysis of tongue motion during a specific speech or 

swallowing task [16, 17]. Since the major roles played by the tongue involve motion and the 

tongue is composed entirely of soft tissue, tagged-MRI is a natural method of exploring 

tongue behavior. There have been numerous attempts to compute 3D motion using dynamic 

MRI with MR tagging, mostly for cardiac motion analysis [18–22]. Several well-established 

algorithms such as tag-line intersection tracking [23–25], whole tag-line tracking [18, 20, 

26, 27], harmonic phase (HARP) tracking [19, 21], Gabor filter-robust point matching-

deformable model approach [28], and incompressible deformation estimation algorithm 

(IDEA) [22] enabled a computation of 2D and 3D motion fields from tagged-MR data. 

Despite the compelling need to study tongue function and this available technology, analysis 

of tagged-MRI data from the tongue has proved to be problematic because of the lack of an 

automatic or semiautomatic tongue segmentation method. The tongue surface is difficult to 
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measure in tagged-MRI. The air at the surface creates error, and the sides and bottom of the 

tongue are contiguous with other tissues, which makes the tongue segmentation even more 

challenging. To resolve these dilemmas and proceed with the analysis of tongue motion 

from tagged-MRI data, we use separately acquired cine-MRI, collected with the same spatial 

and temporal parameters, so that boundaries are not obscured. Segmentation of the tongue is 

carried out on the cine images and then applied to the tagged-MRI data.

In our workflow, a set of multi-slice 2D tagged- and cine-MR images are acquired at three 

orthogonal orientations (axial, coronal, sagittal). Two-dimensional motion fields at each 

orientation and slice are computed from the tagged-MRI by HARP tracking [16, 29]. The 

tongue boundary is segmented from the cine-MR images and overlaid on the tagged dataset. 

Finally, IDEA [21, 22] is used to reconstruct 3D motion fields from the 2D motion fields 

within the segmented tongue under an incompressibility constraint. The success of this 

approach critically depends on the segmentation of all 2D cine images at all time frames to 

produce 3D segmented masks. This imposes significant burden to the user because there are 

a large number of cine images to be segmented (approximately 800 (2D) images per study in 

our case). In addition, it is often difficult to segment the periphery of the tongue on 2D 

images due to the insufficient image contrast between the tongue and neighboring soft 

tissues, which may lead to inconsistent segmentations between different time frames and 

different orientations, affecting the IDEA computation. As a consequence, user interaction 

and verification are crucial during and after 2D and 3D segmentations, which causes the 

segmentation to be the bottleneck of the entire workflow.

Image segmentation problems have long been studied in the medical imaging field. The 

gold-standard approach for accurate and robust segmentation is considered to be an expert’s 

manual delineation. Yet manual segmentation of time-varying structures on a series of 3D 

volumes is extremely time-consuming due to the large number of volumes. Manual 

segmentation is not only tedious, but also prone to inter- and intra-rater variability. 

Individual experimenters must determine landmarks based on image intensity differences 

and may not be as precise as automatic or semi-automatic segmentation algorithms in 

repeated measurements. There are numerous semi-or fully automatic algorithms available 

[30, 31] such as region growing approaches [32–35], classifiers or clustering approaches 

[36–38], model-based approaches [39–43], and atlas-based approaches [44–49]. Several 

methods were proposed to segment the tongue [50–52] and the vocal tract [53, 54]. These 

methods were applied to 2D MR images [50, 53, 54] or a static high-quality 3D MR images 

[51, 52]. Although these segmentation methods can be applied to the segmentation of time-

varying volumes (i.e., motion) by repeatedly segmenting each volume at each time frame, 

they do not systematically process the entire set of volumes. Therefore, existing methods 

may not be efficient for our problem as they require the user interaction with individual 

volume if needed, and the user has to revisit the segmentation at each time frame to 

manually correct it if resulting segmentations are incorrect.

Our segmentation problem is challenging in several aspects: 1) There are a large number of 

images or volumes throughout the entire task cycle; in our experiments, there are 26 time 

frames per second and three image stacks, each with 7–14 slices. 2) Cine-MR images show 

relatively poor image contrast compared to conventional 3D high-resolution MR images, 
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due to fast image acquisition. 3) The tongue may temporarily touch adjacent structures, such 

as the teeth or soft palate, at only a few time frames during the motion. This may lead 

automatic methods to incorrect segmentation of such boundaries. Therefore, user 

interactions, preferably minimal, are desired to guide the algorithm to correctly segment 

those regions or directly correct the segmentation results.

In this paper, we propose a semi-automatic segmentation method, which bridges the gap 

between the fast MR image acquisition and established 2D/3D motion analyses to complete 

the dynamic MRI-based tongue motion analysis workflow (see Fig. 1). The initial concept of 

our segmentation algorithm has been presented in [16, 55] with preliminary results. The 

proposed method computes a tongue mask at every time frame with minimal user input, thus 

significantly diminishing the segmentation burden for the user. Unlike our previously 

proposed method [16, 55], we directly segment a 3D super-resolution volume with isotropic 

voxel size that is reconstructed from 2D cine images at every time frame. The user has to 

input seeds on a few slices of the super-resolution volume at only one time frame, and seeds 

for the remaining time frames are automatically generated by 2D deformable registration 

and temporal stack segmentation. The super-resolution volume at every time frame is 

segmented by the random walker (RW) segmentation algorithm [56] using the generated 

seeds. The only manual interaction in the proposed method is the initial seeding on a few 

slices, which can be done in a few minutes. The successive segmentation will be 

automatically computed for all time frames. This method was validated on the tongues of 

five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-

MR images obtained at three orthogonal orientations and 26 time frames.

The remainder of this paper is organized as follows. In Section 2, we describe our dynamic 

MR image acquisition process. In Section 3, we describe the key methods and each step of 

our semi-automatic segmentation workflow which consists of 1) super-resolution volume 

reconstruction, 2) random walker segmentation, 3) temporal stack segmentation, and 4) 

super-resolution volume segmentation. Numerical results based on five normal subjects are 

presented in Section 4. In Section 5, we further discuss the advantage and future 

improvements as well as other potential applications. Finally, the paper concludes in Section 

6.

2. Dynamic MR image acquisition

Our study uses T2-weighted multi-slice 2D dynamic cine- and tagged-MR images, acquired 

using a Siemens 3.0T Tim Trio system (Siemens Medical Solutions, Erlangen, Germany) at 

a frame rate of 26 frames per second. Both cine- and tagged-MR images were taken at 

exactly the same orientations using the same spatial and temporal parameters in the axial, 

coronal, and sagittal orientations while the subject repeated a speech task. The speech signal 

was simultaneously recorded during the image acquisition, and the MRI time frames for 

each slice were identified based on the speech phase. We used a fast MR image acquisition 

technique known as segmented k-space data acquisitions [57]. A set of k-space lines, i.e., 

partial Fourier information, were collected in a specified order but not constituting a 

complete coverage of k-space at each repetition. The complete k-space information was then 

assembled from the segmental repeated acquisitions in order to create an image by Fourier 
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inversion. In our experiments, typically 9–12 axial, 9–14 coronal, and 7–9 sagittal images 

(depending on the subject’s tongue size) were acquired in each orientation over 26 time 

frames. The tagged-MR images contain horizontal and vertical tags. Each image is 128×128 

pixels with a pixel size of 1.875×1.875 mm2, and both slice thickness and tag spacing are 6 

mm. A user-chosen rectangular ROI was used to extract the tongue region on each slice for 

both the segmentation and the motion tracking. The choice of ROI does not change the 

segmentation results, but affects the computation time as the algorithm only segments the 

region inside the ROI. Fig. 2 shows an example of the cine- and tagged-MR images at three 

orientations.

3. Methods

Fig. 1 shows our tongue motion estimation workflow. In this workflow, we first reconstruct 

super-resolution volumes from 2D cine images at all time frames. We then directly segment 

the 3D super-resolution volumes without requiring any 2D segmentation of the cine images. 

This approach enables the user to perform the segmentation using the 3D volumetric 

information of the target. The user needs to input seeds only on a few slices of the super-

resolution volume at only one time frame. The user-given seeds are automatically 

propagated to the same slices at different time frames by 2D deformable registration. Instead 

of propagating seeds to all time frames, which is time-consuming, we do it for only a few 

selected time frames and segment a temporal stack of images across all time frames at the 

same slice location using random walker (RW) segmentation algorithm with the user-given 

and the propagated seeds. For time frames where no user-given seeds are available, seeds 

are automatically extracted from the segmentation of the temporal stack of images. Finally, 

the super-resolution volume at every time frame is automatically segmented by RW using 

the seeds provided by the user and the algorithm. The following sections describe each step 

of the proposed semi-automatic segmentation method.

3.1. Super-resolution volume reconstruction

In multi-slice 2D dynamic MR scans, through-plane (slice-selection direction) resolution is 

relatively poor compared to in-plane resolution, e.g., 6 mm versus 1.875 mm in this study. 

Low through-plane resolution limits the accuracy and robustness of volumetric image 

processing and analyses such as segmentation, registration, and 3D motion analysis. Instead 

of directly processing each multi-slice dataset that is insufficient for these tasks by itself, we 

derive a high-resolution, isotropic 3D volume from the three orthogonal 2D multi-slice 

image stacks using a super-resolution reconstruction technique developed in our group [58].

We first upsample each multi-slice image stack along the through-plane direction using a 

fifth-order B-spline interpolation to produce an isotropic volume. We then choose a target 

volume (sagittal in this study) and register the other two volumes (axial and coronal) to the 

target using mutual information as a similarity measure. Alignment by translation has been 

found to be sufficient to register these data sets. The image intensity mismatches between 

the three registered volumes are corrected by using a spline-based intensity regression 

method [58]. A super-resolution volume is then reconstructed by solving a maximum a 

posteriori (MAP) estimation problem:
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(1)

where V is the super-resolution volume to be estimated, v1,v2,v3 are the processed three 

orthogonal volumes, p(v1,v2, v3|V) and p(V) represent the likelihood and the prior, 

respectively We assume that the image has additive white Gaussian noise, and use a Markov 

Random Field (MRF) prior to preserve the edge. We solve the MAP estimation problem in 

Eq. (1) by using a half-quadratic regularization technique that incorporates the region-based 

approach [59, 60]. The estimated super-resolution volume is 128×128x128 voxels with an 

isotropic voxel size of 1.875 mm. The super-resolution reconstruction is repeated for every 

time frame to yield a high-quality 4D MRI. The super-resolution volume not only provides a 

3D volume with higher spatial resolution, but also reduces the blurring artifact caused by the 

misalignment between multi-slice images at three orientations. Therefore, direct 

segmentation of the 3D super-resolution volume yields an improved segmentation over that 

which can be achieved by segmenting the 2D images separately.

3.2. Random walker segmentation

Segmenting the tongue in all super-resolution volumes at all time frames is time-consuming 

as there are 26 volumes per study to segment in our case. As well, the insufficient image 

contrast between the tongue and adjacent soft tissues at the periphery of the tongue makes 

the segmentation task challenging. We use RW segmentation [56], which is a robust, graph-

based, interactive semi-automatic algorithm, to find a globally optimal probabilistic multi-

label image segmentation. RW is preferred as the user can interact to define proper 

boundaries in the region where image contrast between the target of interest and the 

surrounding structures is poor.

In the RW segmentation framework, a user specifies a small number of pixels with user-

defined labels as seeds (in our case, on the tongue and the background). Each unlabeled 

pixel is assigned to the label with the greatest probability that a random walker starting at 

this pixel will reach one of the seeds with this label. In this framework, an image is 

considered as a graph that consists of a pair G = (V, E) with vertices (or nodes) v ∈ V and 

edges e ∈ E. An image pixel i corresponds to a node and is connected to the other node j by 

an edge eij We assign to each edge eij a Gaussian weighting function given by wij = exp{β(gi 

− gj)2} where gi indicates the image intensity at pixel i and β is a free parameter for which 

we used β = 30. It is known that the RW probabilities can be found by minimizing the 

combinatorial Dirichlet problem [56]

(2)

where D[x] is a combinatorial formulation of the Dirichlet integral, x is a real-valued vector 

defined over the set of nodes and L represents the combinatorial Laplacian matrix defined as 

in [18]. For the details of the algorithm, we refer readers to [56].

Fig. 3(a) shows an example sagittal image where the top-back of the tongue is touching the 

soft palate, showing no image contrast between these two structures. Fig. 3(b) shows an 
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example of user-given seeds around the boundary of the tongue and the soft palate and Fig. 

3(c) shows the resulting RW segmentation. This example demonstrates the capability of RW 

segmentation to accurately separate ambiguous regions with proper user interaction. In our 

method, RW is used not only for the segmentation of super-resolution volumes but also for 

the automatic seed generation by temporal stack segmentation. We now describe these two 

steps in the following sections.

3.3. Temporal stack segmentation

RW segmentation requires the user to input seeds only on a few slices of the target volume. 

However, it is laborious to segment all super-resolution volumes by manually inputting 

seeds due to the amount of data, i.e., 26 volumes per subject in our case. Therefore, we 

propose an approach to segment a temporal stack volume based on a small set of user-placed 

seeds at selected time frames from which seeds are automatically generated at all time 

frames. A temporal stack volume is a 3D volume that consists of a stack of 2D images at the 

same slice location and different time frames (see Fig. 4). For each user-chosen slice, we use 

time as the third dimension instead of through-plane direction to form a 3D temporal stack 

volume (2D target slice + time). The idea behind this is that the segmentation of temporal 

stack of images can be reliably computed by RW as images at the same slice location are 

smooth between adjacent time frames due to the fast image acquisition (26 frames per 

second). Seeds need to be input at only one time frame and then propagated to 3–4 other 

distributed time frames by 2D B-spline deformable registration [61] (see Fig. 4(a)). In case 

that the seeds are not properly propagated due to registration error, editing these incorrect 

seeds is trivial. Fig. 4(c)–(e) show an example of sagittal slice images with user-given seeds, 

properly propagated seeds, and incorrectly propagated seeds, respectively. In the case shown 

in Fig. 4(e), the tongue touched the soft palate and the seeds in the superior-posterior region 

of the tongue were moved to the soft palate (yellow box). However, the user can easily 

correct these incorrect seeds in the yellow box. The user-given and propagated seeds are 

then used to segment the 3D temporal stack volume using RW segmentation (Fig. 4(b)). The 

process is repeated for slices at different locations and orientations. Note that we only need 

to process several user-chosen slices (in this study, we only use 2–3 axial, 2–3 coronal, and 

2–3 sagittal slices, a total of 6–9 slices) that are well-spread over the target volume. Since 

RW segmentation computes the probabilities of a random walker at each non-labeled pixel 

to reach the labeled pixels, i.e., seeds, to determine the segmented label on that pixel, it is 

desirable to spread the seeds over the volume rather than placing them only on specific 

regions or slices. These 3D temporal stack segmentations are then applied to automatic seed 

generation for the 3D super-resolution volume segmentations at all 26 time frames, of which 

process is described in the following section.

3.4. Super-resolution volume segmentation

3D temporal stack segmentations of user-chosen slices (6–9 slices in our study) are used to 

generate seeds for the segmentation of 26 super-resolution volumes. For the time frames 

where no user-given seeds are available, seeds are extracted from the segmented 2D masks 

that are slices of the segmented temporal stack volume (see Fig. 4(b)). The segmented 2D 

mask M at each time frame is first eroded using a disk structuring element D to reliably 
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extract seeds from the segmented 2D mask while eliminating potential errors from 

inaccurate segmentation near the boundary. For each label, eroded mask Me is computed by

(3)

where E is an Euclidean space, Ds is a translation of D by the vector s, i.e., Ds = {x + s\x ∈ 

D}, ∀s ∈ E. For each label l, boundary  and the skeleton  of the eroded mask are 

extracted. The union of the points on the boundary and the skeleton of the eroded mask 

becomes the extracted seeds for the 2D cine slice;

(4)

where i is the slice index and Nl is the number of labels. The super-resolution volume at 

each time frame is then segmented by RW using the user-given and automatically generated 

seeds that are available on 6–9 slices. Fig. 5 shows an example of automatically extracted 

seeds in axial, coronal, and sagittal slices from a 2D segmented mask at each orientation. 

Fig. 6 shows two examples of super-resolution volume segmentations performed on time 

frames 13 (seeds are provided by the user) and 1 (seeds are extracted from the temporal 

stack segmentations).

4. Experiments and results

We evaluated the proposed semi-automatic segmentation methods on MR images of five 

normal volunteers. Each subject performed the same speech task, repeating the word 

“asouk”, while multi-slice 2D dynamic cine- and tagged-MR images were acquired as 

described in Section 2. We chose this word for the following reasons. It takes less than a 

second to say, which is the temporal limit of the tagged MRI data collection. It begins with a 

“schwa” which is the neutral vowel, because the tongue is in the middle of the oral cavity 

and the shape of the vocal tract is close to a uniform cross sectional tube. Once the word 

“souk” begins there is little to no jaw motion, so tongue deformation is the primary 

mechanism for shaping the vocal tract. The motion from “s” to “k” is fairly unidirectionally 

backward and upward.

An isotropic super-resolution volume of 128 × 128 × 128 voxels with a voxel size of 

1.875×1.875×1.875 mm3 was reconstructed at every time frame, yielding a total of 26 super-

resolution volumes for each subject. A user-chosen ROI of approximately 70×70×70 voxels 

(ROI size varied case by case) was used for segmenting and tracking the tongue region. The 

user provided seeds on 2–3 axial, 2–3 coronal, and 2–3 sagittal slices only at time frame 13 

(middle of 26 time frames), and the seeds were propagated to time frames 4, 8, 18, 22 by 2D 

B-spline deformable registration [61]. We specifically chose these time frames (4, 8, 13, 18, 

22) to spread seeds out across 26 time frames, i.e., seeded every 4–5th time frame. For each 

slice with user-given seeds, 26 time frames were stacked to form a 3D temporal stack 

volume of ~ 70 × 70 × 26 voxels. The temporal stack volume was segmented by RW using 

the seeds available at 5 time frames (4, 8, 13, 18, 22). For the time frames where no seeds 

were provided (or propagated) by the user, seeds were automatically generated from the 

segmented mask of the temporal stack volume using the method described in Section 3.4. 
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Note that this temporal stack segmentation was repeated only on 6–9 selected slices. 3D 

super-resolution volumes at all time frames were then automatically segmented by RW 

using the seeds provided by the user, propagated by the deformable registration, and 

generated from the temporal stack segmentations. Fig. 6 shows two example segmented 

surfaces of Subject 1 computed by RW at two time frames with user-provided (frame 13) 

and automatically generated (frame 1) seeds.

4.1. Segmentation quality and inter-rater variability

To evaluate the semi-automatic segmentation quality, a trained scientist (SA1) manually 

segmented all 130 super-resolution volumes (1 volume/time frame × 26 time frames × 5 

subjects). For semi-automatic segmentation, three trained scientists (SA1–SA3), including 

the one who performed the manual segmentation (SA1), input seeds on slices of their own 

choices. Each user consistently input seeds on 3 axial, 3 coronal, and 3 sagittal slices at time 

frame 13. Dice similarity coefficients (DSCs) between the semi-automatic and the manual 

segmentations were computed at every time frame, and the averaged DSCs over 26 time 

frames are shown in Table 1. The segmentations differed mostly on the back of the tongue 

where we forced the exclusion of muscles extending outside the tongue. The variation 

among segmentations in this region was expected as there was no obvious image contrast 

between the muscles within and outside the tongue. Even with this ambiguity, the DSCs 

between different raters are very similar and the overall DSC for all three raters was 0.92.

We also compared the volume variation of the segmented tongue across 26 time frames in 

the manual and the semi-automatic segmentations. Since the tongue is known to be 

incompressible, the volume of the segmented tongue mask at every time frame should not 

vary [16, 22]. As summarized in Table 2, the tongue volume varied on average (in terms of 

standard deviation) by 2.8 cm3 in manual segmentation, which comprised 2.8% of the 

tongue volume. In semi-automatic segmentations, the tongue volume varied by 2.3 cm3 

(SA1), 2.3 cm3 (SA2), and 2.2 cm3 (SA3), comprising 2.4%, 2.4%, and 2.2% of the tongue 

volume, respectively. Although DSCs between different raters are very similar (see Table 1), 

the segmented volume sizes show noticeable differences in some cases. For example, the 

segmented volume of Subject 1 (S1) by the rater 3 (SA3) is larger than those by the other 

raters (SA1 and SA2). These differences happen mostly on the back of the tongue where 

different raters applied slightly different criteria to exclude muscles extending outside the 

tongue (see Fig. 7). Therefore, these differences stem from the rater performance rather than 

the algorithm, which is the nature of manual or semi-automatic segmentation. However, note 

that the semi-automatically segmented volume variability across 26 time frames is smaller 

for most cases (lower standard deviation) compared to the manual segmentation. The next 

section will discuss variability within and between these methods, however, this result 

shows that our semi-automatic method yields more consistent tongue segmentation across 

all time frames than the manual segmentation.

4.2. Reproducibility: intra-rater variability

To evaluate the reproducibility of the segmentation, i.e., intra-rater variability, we repeated 

the semi-automatic segmentation eight times, Trials 1–8 (T1–T8). In this evaluation, the user 

(SA1) who performed the manual segmentation varied the number of slices between 2–3 at 
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each orientation, and the location and combination of slices receiving input seeds. Fig. 8 

shows the DSCs between the repeated semi-automatic segmentations and the manual 

segmentation as well as volume variability of the semi-automatic segmentations. For all 5 

subjects and 8 repeated segmentations, DSC varied between 0.87 and 0.96 with an average 

DSC of 0.92, which is consistent with the results in Sec. 4.1. The overall volume variability 

for 8 repeats was lower than the manual segmentation except for only one case (S2). It was 

slightly higher than the manual segmentation for Subject 2 (S2), i.e., 2.3 versus 1.5 cm3 for 

which the manual segmentation was better than the other cases. Table 3 shows the results of 

the repeated segmentations for Subjects 4 and 5, which show the highest and the lowest 

averaged DSCs, respectively. The results indicate that the repeated semi-automatic 

segmentations are consistent with the same level of DSCs and the volume variabilities. Even 

for the most challenging case (S5) with the lowest averaged DSC and largest volume 

variability, the average DSC for all 8 repeated segmentations was 0.90 and the overall 

standard deviation of the segmented tongue volumes was lower than the single set of manual 

segmentations, i.e., 3.4 versus 3.9 cm3.

It was observed that the manually segmented volumes are slightly larger than the semi-

automatically segmented volumes. This happened because the semi-automatic segmentation 

algorithm and the human rater drew the boundary with slightly different criteria. Remember 

that the super-resolution volume was created by merging 3 sets of multi-slice images (at 3 

different orientations). The resulting super-resolution volume was therefore blurry due to 

slight misalignment between the registered volumes as well as the low resolution of the 

original cine images (1.875 × 1.875 × 6 mm3 with slice thickness of 6 mm). The semi-

automatic segmentation tends to separate two regions with different image intensities by 

choosing the mid-intensity as the boundary while the human rater tends to push the 

boundary to an extreme, i.e., close to one region. For example, on the tongue-air boundary, 

the semiautomatic algorithm chose the boundary in the middle gray region between the 

bright tongue and the black air, but the human rater included all blurred gray intensity as the 

tongue, which makes the manually segmented tongue larger than the semi-automatic 

segmentation. Note that this observation is solely based on the intra-rater variability study 

where we compared the repeated semi-automatic segmentations with the manual 

segmentation done by the same rater (SA1). However, this observation implies that there 

could be minor systematic difference between the manual and the semi-automatic 

segmentations if the rater does not select the mid-intensity between regions as the boundary 

during the manual segmentation.

For the same reason, we noticed that, even in the semi-automatic segmentations, the 

segmented tongue was slightly larger when the user input seeds on more slices, e.g., T1 

compared to the others (T2–T8) in Table 3. This is because the user input seeds close to the 

boundary of the tongue while automatically extracted seeds were slightly inside due to the 

erosion operation. In this case, the segmentation at the time frame where user input (or 

propagated) seeds showed slightly larger segmented tongue compared to the other time 

frames with automatically extracted seeds, which resulted in increased volume variability. 

Therefore, cases with more slices with user-given seeds yielded slightly larger volume 

variability, e.g., T1. However, this caused a small variation in the resulting segmentations – 

only ~0.5 cm3 increase in standard deviation.
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We also computed DSCs between the first segmentation (T1, with 3 axial, 3 coronal, and 3 

sagittal slices with user-given seeds) and the other seven segmentations (T2–T8) to further 

evaluate the consistency of the segmentations (as seen in Table 3). In this case, DSC varied 

between 0.93 and 1.00 (after rounding to the nearest 1/100th) with an average DSC of 0.97. 

Fig. 8(b) shows these DSC plots for all 5 subjects and Table 3 shows DSCs of individual 

repeats for Subjects 4 and 5. These results demonstrate that the semi-automatic segmentation 

is reproducible with different choice of slices and different user-given seeds.

4.3. Computation time

The proposed semi-automatic segmentation was implemented on Matlab and ran on a PC 

with Intel Xeon CPU and 12 GB memory. Manual segmentation takes 20–30 minutes on 

average for each volume, which requires approximately 10 hours (20–30 minutes/volume × 

26 volumes) for one subject. For the semi-automatic segmentation, seeding on a set of 

selected slices and propagating seeds to 4 different time frames take 2–3 minutes. The 

segmentation of a single temporal stack volume takes 2–3 seconds, which requires less than 

30 seconds for segmenting temporal stack volumes for the selected 6–9 slices. The 

successive super-resolution volume segmentations for all 26 time frames take 2–5 minutes 

(5–10 seconds per each volume) depending on the ROI size. Since the super-resolution 

volume segmentation is automatic, the user only needs to interact with the software for the 

initial 3– 4 minutes. Overall, the whole semi-automatic segmentation process requires ~10 

minutes at most, which implies that we can reduce the segmentation time by a factor of 60. 

Considering the actual user-interaction time, the user can reduce effort (in terms of time) by 

over 150 times without sacrificing performance.

4.4. Tongue motion analysis

The proposed segmentation methods were originally developed for motion analysis of the 

tongue based on 4D MRI. To demonstrate the utility of the proposed methods in 3D tongue 

motion analysis, we have processed the tagged-MR images and the computed super-

resolution volumes to compute 3D motion fields of the tongue for Subject 1 (S1). The 2D 

motion fields were first computed by the HARP tracking [19, 21] on the tagged-MR images. 

The super-resolution volumes were processed by the proposed semiautomatic segmentation 

to produce segmented 3D tongue masks for all 26 time frames. The 3D motion fields were 

then computed by IDEA [22] using the 2D motion fields and the segmented 3D tongue 

masks. Fig. 9 shows an example of the 3D tongue motion that visualizes 3D displacement 

vectors at individual voxels from the initial sound “a” to the sound “s” (time frame 8) and 

“k” (time frame 17) during the speech task of “asouk”. Each colored cone represents the 

direction (cone direction) and the amplitude (cone height) of the 3D displacement at each 

voxel position. The base of the cone represents the position of each voxel at the initial “a” 

sound and the tip corresponds to the moved position of the same voxel at the “s” or “k” 

sound. Cones were colored as red for the right-left motion, blue for the up-down motion, and 

green for the anterior-posterior motion for better visualization. The 3D displacement vectors 

imply that the tip of the tongue moves slightly forward (to the anterior direction) and also 

upward between the speech sounds “a” and “s”. From “a” to “k”, the top of the tongue 

moves upward while the back of the tongue moves forward. Further analysis on all normal 

and patient data sets are under investigation, and will be reported in a future publication.
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5. Discussion

In our experiments, we used expert’s manual segmentation as the gold standard to evaluate 

the performance of the semi-automatic segmentation. However, manual segmentation of the 

tongue is challenging and may show variability due to the lack of sufficient features in the 

boundary of the tongue and the adjacent soft tissues. Additionally, the tongue boundary is 

uncertain in case that the tongue touches the neighboring soft tissues such as soft palate 

during the speech. Harandi et al. [51, 52] repeated manual segmentation of the tongue on a 

high-resolution MRI, and reported that the volume overlap index between different manual 

segmentations was 91% (equivalently DSC of 0.91). We expect slightly lower volume 

overlap in our case as we used cine-MRI of which image quality is poorer than high-

resolution MRI. Although there exists uncertainty in manual segmentation, the variability of 

the expert’s manual segmentation of the tongue is not high and is considered as reasonable 

gold standard [51, 52]. Therefore, DSC of around 0.91 or higher is considered acceptable in 

our experiments. Our method achieved an average DSC of 0.92 when comparing to manual 

segmentation, and an average DSC of 0.97 between the repeated semi-automatic 

segmentations, which is more consistent than the manual segmentation of the high-

resolution MRI.

In Section 4, we have demonstrated the accuracy and effectiveness of our semi-automatic 

segmentation on five tongue motion analysis cases. Here we would like to discuss a few 

issues that a user may experience during the semi-automatic segmentation process as well as 

other potential applications.

In order to minimize the user’s effort in seeding, we propagate the user-given seeds from 

one time frame to others by 2D deformable registration. Seed propagation by deformable 

registration, however, is sometimes erroneous due to the insufficient image contrast between 

the tongue boundary and other neighboring structures. In our experiments, the erroneous 

seed propagation happened usually at a local region where the tongue touched the soft palate 

or the user forced to separate muscles extending outside of the tongue. These seed 

misplacements were manually corrected before the temporal stack segmentations. Although 

this requires additional user-interactions, manual correction of seeds adds only a few 

seconds per image. Other segmentation methods would suffer from such errors on 

ambiguous boundaries with very poor image contrast, in which case the user has to correct 

the final segmentations. Note that correcting seeds in a few 2D slices is much easier than 

correcting final segmentations of 3D volumes.

To further reduce the user’s effort, we also extract seeds from the segmented temporal stack 

of images for time frames where no user-given seeds are available. We typically used 

skeletons and edges of the segmented mask to produce user-given seed-like patterns, and let 

the user easily modify them if needed. However, one can use the segmented mask itself as a 

set of seeds after image erosion to eliminate errors on the boundary. This will reduce the size 

of the unlabeled regions, thus further reducing the segmentation time.

In our experiments, we used only two labels, i.e., tongue and background, to segment the 

whole tongue for its tissue motion during speech. Since RW segmentation supports multi-
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label segmentation, more than two structures can be simultaneously segmented in the same 

manner. Even if multiple time-varying structures need to be segmented, the user only needs 

to add more seeds with different labels on a few chosen 2D slices, which requires very little 

additional effort compared to the 2-label segmentation. Therefore, the overall computation 

time does not change much, which makes the proposed method even more attractive than 

manual or other segmentation methods. For example, the vocal tract can be simultaneously 

segmented along with the tongue in our data sets. Its shape and volume variation during 

speech is of great interest to speech scientists for quantitative modeling and analysis of 

sound production. The application of the proposed method may revolutionize scientific 

grounds using MRI for the vocal tract as gold standard in speech, but also in emerging field 

in swallowing and obstructive sleep apnea.

Segmented structures can also be analyzed by other methods such as principal component 

analysis after registering them across all time frames. Such a method will enable the analysis 

of the target shape variation and determination of the major modes of variation, and also be 

useful for the data sets without tagged-MRI or for the regions where MR tagging is 

challenging or infeasible, e.g., the vocal tract. Other image-based motion analysis methods 

can also benefit from our segmentation methods. One direct application would be the 

cardiac motion analysis that can be computed by HARP and IDEA [19, 21, 22], which 

requires segmentation of the heart across multiple time frames. Another potential application 

is tumor and organ motion analysis in radiation therapy. For example, respiration-induced 

tumor and organ motion in lung and pancreatic cancer cases is of great concern in radiation 

therapy. 4D CT and/or 4D MRI are typically used to analyze the motion and determine the 

treatment margin. In these 4D imaging techniques, a single respiratory cycle is divided into 

~10 phases, yielding ~10 volumes representing the patient anatomy at different breathing 

phases. To compute the radiation therapy margin accounting for the motion and analyze the 

variation in shape and location, both the tumor and the critical structures must be segmented 

at each phase. Therefore, this segmentation process can be greatly improved (in terms of 

computation time) by the proposed semi-automatic approaches.

6. Conclusions

In this paper, we proposed a semi-automatic segmentation method for 3D motion analysis of 

the tongue with dynamic MRI. The proposed method requires a small amount of user-

interactions only at initial stages to guide the algorithm. A few temporal stack volume 

segmentations followed by 3D super-resolution volume segmentations using RW over all 

time frames enable an accurate and robust automatic segmentation of time-varying 

structures. Overall, the proposed method significantly reduces the segmentation burden 

while keeping a more consistent segmentation quality compared to the manual 

segmentation. Although it was applied to the segmentation of the tongue, it can be extended 

to the segmentation of any time-varying objects such as the heart or tumors or organs 

experiencing motion due to breathing.
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Figure 1. 
Dynamic MRI-based tongue motion estimation workow
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Figure 2. 
Cine-MR (top row) and horizontally (middle row) and vertically (bottom row) tagged-MR 

images at three orientations.
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Figure 3. 
An example of RW segmentation of the tongue. (a) A sagittal image of the region where the 

tongue touches the soft palate showing very poor image contrast between these two 

structures. (b) A user-given seeds separating the tongue (red) and the background (green) 

including the soft palate. (c) RW segmentation of the tongue (red) and the background 

(green).
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Figure 4. 
An example of temporal stack segmentation at sagittal orientation. (a) Seed propagation 

from time frame 13 (user-given seeds) to other selected time frames (4, 8, 18, 22 in our case) 

by 2D deformable registration. (b) RW segmentation of temporal stack images using the 

user-given and propagated seeds in (a). (c) The user-given seeds on time frame 13. (d) An 

example of successful seed propagation. (e) An example of unsuccessful seed propagation.
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Figure 5. 
Example of extracted seeds from the temporal stack of image segmentations. Bottom images 

show the seeds for the tongue (red) and the background (green) at three orientations 

extracted from the segmented masks on the top.
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Figure 6. 
Example of super-resolution volume segmentations. Seeds were provided at 8 slices (3 axial, 

2 coronal, 3 sagittal slices) in the super-resolution volume to segment the tongue at each 

time frame. (a) User-given seeds at time frame 13, and the segmented 3D tongue from the 

super-resolution volume. (b) Automatically extracted seeds from the temporal stack 

segmentations at time frame 1, and the segmented 3D tongue from the super-resolution 

volume.
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Figure 7. 
Example of different seeding patterns in the back of the tongue region on Subject 1 (S1). 

(Top) Example axial slices on which seeds were input. SA1 and SA2 seeded on the axial 

slice 56 and SA3 seeded on slice 55. (Middle) User-given seeds for the tongue (red) and the 

background (green). (Bottom) Segmented tongue masks. SA3 used smaller ROI than SA1 

and SA2. The tongue seeds (red) extend more in SA3 than the other two, resulting in larger 

segmented tongue (especially on the back).
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Figure 8. 
DSC and volume box plots for the repeated semi-automatic segmentations and the manual 

segmentations. The red central mark is the median, the edges of the box are the 25th and 

75th percentiles, and the whiskers extend to the most extreme data points. (a) DSCs between 

the repeated semi-automatic segmentations and the manual segmentations. (b) DSCs 

between the semi-automatic segmentations T1 and the other 7 sets of semi-automatic 

segmentations (T2-T8). (c) Volumes of the repeated semi-automatic segmentations. (d) 

Volumes of the manual segmentations.
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Figure 9. 
An example of 3D displacement vectors of the tongue computed by the semiautomatic 

segmentations and HARP-IDEA. Time frame 8 (left column) shows the tongue motion from 

“a” to “s”, and time frame 17 (right column) shows the motion from “a” to “k” sound during 

a speech task of “asouk”.
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Table 1

Evaluation of the segmentation quality. Averaged DSCs between the semiautomatic (3 raters, SA1–SA3) and 

the manual segmentations for 26 time frames are computed.

Subject

Number of slices
with user-given seeds

(axi,cor,sag)

Average
DSC

SA1 SA2 SA3

S1 3, 3, 3 0.90 0.90 0.89

S2 3, 3, 3 0.93 0.92 0.92

S3 3, 3, 3 0.94 0.94 0.94

S4 3, 3, 3 0.94 0.94 0.93

S5 3, 3, 3 0.91 0.90 0.91

Overall 0.93 0.92 0.92
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Table 2

Evaluation of the segmented tongue volumes and the volume variability across time frames. The manual and 

semi-automatic (3 raters, SA1–SA3) segmentations are compared, and the mean and standard deviation of the 

sizes of the 26 segmented volumes for each subject are shown.

Subject
Segmented volume
mean ± s td (cm3)

Manual SA1 SA2 SA3

S1 83.9 ± 2.4 84.9 ± 1.5 86.7 ± 1.5 97.4 ± 1.8

S2 83.5 ± 1.5 82.0 ± 2.3 82.7 ± 2.5 87.9 ± 2.4

S3 112.7 ± 4.2 111.1 ± 3.1 114.6 ± 2.4 115.5 ± 2.1

S4 102.8 ± 2.1 99.2 ± 2.2 99.8 ± 2.0 95.6 ± 2.2

S5 105.6 ± 3.9 103.7 ± 2.7 99.2 ± 3.0 104.5 ± 2.5
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