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Abstract

Shape based active contours have emerged as a natural solution to overlap resolution. However, 

most of these shape-based methods are computationally expensive. There are instances in an 

image where no overlapping objects are present and applying these schemes results in significant 

computational overhead without any accompanying, additional benefit. In this paper we present a 

novel adaptive active contour scheme (AdACM) that combines boundary and region based energy 

terms with a shape prior in a multi level set formulation. To reduce the computational overhead, 

the shape prior term in the variational formulation is only invoked for those instances in the image 

where overlaps between objects are identified; these overlaps being identified via a contour 

concavity detection scheme. By not having to invoke all 3 terms (shape, boundary, region) for 

segmenting every object in the scene, the computational expense of the integrated active contour 

model is dramatically reduced, a particularly relevant consideration when multiple objects have to 

be segmented on very large histopathological images. The AdACM was employed for the task of 

segmenting nuclei on 80 prostate cancer tissue microarray images from 40 patient studies. Nuclear 

shape based, architectural and textural features extracted from these segmentations were extracted 

and found to able to discriminate different Gleason grade patterns with a classification accuracy of 

86% via a quadratic discriminant analysis (QDA) classifier. On average the AdACM model 

provided 60% savings in computational times compared to a non-optimized hybrid active contour 

model involving a shape prior.
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1. Introduction

Active Contours (AC) can be categorized as boundary-based (first generation) and region-

based (second generation) schemes (Kass et al., 1988; Caselles et al., 1997; Chan and Vese, 

2001). Most AC models are not intrinsically capable of handling object occlusion or scene 

clutter. Therefore, the integration of shape priors into the variational formulation represents 

a natural way to overcome occlusion. Third generation (hybrid) AC models involve 

combining a shape prior with geometric/geodesic active contours that simultaneously 

achieves registration and segmentation (Leventon et al., 2000; Rousson and Paragios, 2002; 

Chan, 2005). Rousson and Paragios (2002) proposed a novel approach for introducing shape 

priors into level set representations, focused on 2D closed shapes. A limitation of most third 

generation AC models, however, is that only one pair of overlapping objects can be 

accurately resolved at a time. Further, most of these methods are sensitive to model 

initialization and typically require varying degrees of user intervention (Kass et al., 1988; 

Caselles et al., 1997; Chan and Vese, 2001; Leventon et al., 2000; Rousson and Paragios, 

2002; Chan, 2005). Moreover, the efficiency of these hybrid schemes are limited by the 

computational overhead of the non linearity of the convergence of the evolving curve. 

Additionally, the shape prior (the most computationally heavy term in the variational 

formulation) is typically invoked in segmenting every object in the scene, regardless of 

whether or not an overlap exists. Non-overlapping objects, in most cases, can be segmented 

by first and second generation AC models alone.

In this paper, a variational adaptive segmentation scheme (AdACM) is presented. The 

original instantiation of our segmentation method Ali and Madabhushi (2012) combined 

boundary and region based energy terms with a shape prior in a multi level set formulation 

to resolve overlapping and non-overlapping nuclei. However, due to the computation 

overhead of including shape prior energy, such a scheme is computationally expensive for 

large images (such as histopathology). AdACM selectively invokes the shape prior term in 

the variational formulation for only those instances in the image where overlaps between 

objects are identified; these overlaps being identified via a contour concavity detection 

scheme. By not having to invoke all 3 terms (shape, boundary, region) for segmenting every 

object in the scene, the computational expense of the integrated active contour model is 

dramatically reduced, a particularly relevant consideration when multiple objects have to be 

segmented on very large histopathological images (See Figure 1). Furthermore, most of the 

shape based level set models reported in literature are only able to handle the overlap 

resolution of a single pair of objects per image (Leventon et al., 2000; Rousson and 

Paragios, 2002; Chan, 2005). However, AdACM segmentation scheme provides 

simultaneous segmentation of all overlapping and non-overlapping objects in very large 

images.

In their seminal work, Cootes et al. (1995) proposed to use principal component analysis 

(PCA) to capture the main shape variations of parametric AC’s (active shapes) within a 

training set and thus to represent specific shapes. Consequently, their model is not 

parametrization free. Leventon et al. (2000) proposed the introduction of prior shape 

information into AC, intrinsically represented by level set functions, the core idea being to 

apply PCA on the signed distance functions (SDF) of the parametric ACs. This feature 
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allowed them to construct an intrinsic and parametrization free shape model. The shape prior 

is comprised of the mean level set shape and a weighted sum of the m strongest eigen modes 

of variation (obtained from the PCA of the SDFs). SDFs have the additional advantage that 

they are more robust to slight misalignments of the training sequence compared to 

parametric curves. Unfortunately, the shape functions resulting from PCA are not exactly 

SDFs, as proved by Leventon et al. (2000), but they can nonetheless be used in practice 

since they are very close to real SDFs. Rousson et al. In a similar fashion, Rousson and 

Paragios (2002) proposed a method where the optimal weight factors of the eigenmodes of 

variation are estimated by solving a linear system. Bresson et al. (2003) integrated the 

geometric shape prior of Leventon et al. (2000) into the segmentation framework based on 

AC as well as on a region driven term derived from the Chan and Vese energy term (Chan, 

2005). In Rousson and Paragios (2002); Paragios and Deriche (1999), the signed distance 

functions of the training images are computed and the statistics of the signed distance 

training set is captured via PCA. This representation assumes that the probability 

distribution function of the training set is Gaussian.

Various segmentation methods have been previously proposed that are bottom-up 

approaches. Supervised learning (Cheng et al., 2013), multi-reference level-set (Hang Chang 

et al., 2012), hierarchical partial matching (Petrakis et al., 2002) and various shape-based 

models (Petrakis et al., 2002; Yang and Jiang, 2001) have been proposed for cell 

segementation. Recently, a new non-parametric method was proposed to tackle these three 

challenges in a unified framework (Zhang et al., 2011a and Zhang et al., 2012). Unlike these 

previously proposed approaches, our strategy instead of using any parametric model based 

off shape statistics, incorporates the use of shape priors on-the-y through a sparse shape 

composition. However, sparse shape composition has inferior run-time efficiency, in 

particular when there are a large number of training datasets available for training the model.

Prostate Cancer (Cap) is evidenced by profound histological, nuclear and glandular changes 

in the organization of the prostate. Grading of surgically removed tumor of CaP is a 

fundamental determinant of disease biology and prognosis. The Gleason score, the most 

widespread method of prostate cancer tissue grading used today, is the single most important 

prognostic factor in Cap strongly influencing therapeutic options (Epstein et al., 1996, 

2005). The Gleason score is determined using the glandular and nuclear architecture and 

morphology within the tumor; the predominant pattern (primary) and the second most 

common pattern (secondary) are assigned numbers from 1–5. The sum of these 2 grades is 

referred to as the Gleason score. Scoring based on the 2 most common patterns is an attempt 

to factor in the considerable heterogeneity within cases of CaP. In addition, this scoring 

method was found to be superior for predicting disease outcomes compared with using the 

individual grades alone. Problems with manual Gleason grading include inter-observer and 

intra-observer variation and these errors can lead to variable prognosis and suboptimal 

treatment (Veltri et al., 2010). In recent years, computerized image analysis methods have 

been studied in an effort to overcome the subjectivity of conventional grading system 

(Madabhushi, 2009; Hipp et al., 2011; Gurcan et al., 2009). An important prerequisite to 

such a computerized CaP grading scheme, however, is the ability to accurately and 

efficiently segment histological structures (glands and nuclei) of interest. Perviously, texture 

Ali et al. Page 3

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based approaches (Jafari-Khouzani and Soltanian-Zadeh, 2003; Huang and Lee, 2009) 

characterized tissue patch texture via wavlet features and fractal dimension. However, a 

limitation of these approaches were that the image patches were manually selected to obtain 

region containing one tissue class on the digitized slide. Doyle et al. (2007) showed that 

spatial graphs (eg. Voronoi, Delaunay, minimum spanning tree) built using nuclei as vertices 

in digitized histopathology images, yielded a set of quantitative feature that allowed for 

improved separation between intermediate Gleason patterns. Farjam et al. (2007) employed 

gland morphology to identify the malignancy of biopsy tissues, while Diamond, et al. 

(Diamond et al., 2004) used morphological and texture features to identify 100-by-100 pixel 

tissue regions as either stroma, epithelium, or cancerous tissue (a three-class problem). 

Tabesh et al. (2007) developed a CAD system that employs texture, color, and morphometry 

on tissue microarrays to distinguish between cancer and non-cancer regions, as well as 

between high and low Gleason grade prostate cancers (both cases used binary classification).

In this work, we leverage the AdACM scheme for automatic segmentation of all nuclei on 

large digitized tissue microarrays (TMAs) of CaP. Additionally, we leverage the findings of 

Veltri et al. (2010) who demonstrated a link between nuclear morphology and Gleason grade 

to develop a nuclear morphology based classifier to predict Gleason grade. We complement 

the morphologic features extracted from segmented nuclei with (a) graph features extracted 

from different types of graphs, where the nuclear centers constitute the graph vertices 

constructed from nuclear centroids and (b) texture features to distinguish primary Grade 3 

and Grade 4 prostate cancers. Since the institution of the Epstein criteria (Epstein et al., 

2005), there appears to be a trend in pathology grading of prostate tumors towards over-

grading, the so called “Gleason drift” whereby most pathologists tend to call prostate cancer 

patterns starting from 3 and above (corresponding to a score of 6 and above). Consequently, 

there are almost no prostate cancers that are called 5 and lower, at least in the US. Because 

of PSA and early detection, more than 80% of the prostate cancers found are therefore a mix 

of primary grade 3s and 4s (score of 6, 7 and 8) (Epstein et al., 2005), scores of 9 and 10 are 

rare due to early detection. Since most of the prevalent Gleason scores are 6–8, the patterns 

that are most important to distinguish between are 3 and 4. Hence, the reason for focusing 

on only Gleason grades 3 and 4 in this paper. Moreover, grades 3 and 4 have the most 

variability among pathologists and a good automated Gleason grading scheme needs to be 

able to accurately and reproducibly distinguish these two patterns. The accuracy of the 

nuclear classifier is also implicitly reflective of the performance of AdACM, since accurate 

nuclear segmentation is a pre-requisite for accurately quantifying nuclear morphology. 

Major contributions of the papers are:

1. Adaptive active contour based on shape prior without user intervention.

2. Selectively invoking shape term (computationally expensive step) in the regions of 

overlapping nuclei identified by concavity detection, thereby reducing 

computational complexity.

3. Nuclear morphology based classifier to predict Gleason patterns.

The rest of the paper is structured as follows. Our hybrid active contour method is described 

in Section 2., while methodologies for selectively invoking energy terms in the active 

contour model is discussed in Section 3. We discuss feature extraction for Gleason grading 
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in Section 4, while Section 5 discusses feature selection and classification. We describe the 

experimental design, results and performance measures in Section 6. In Section 7 we present 

our concluding remarks.

2. Hybrid Active Contour Model

An image is defined as  = (x, fg) where x is a 2D grid representing pixels c ∈ x, with c = (x, 

y) representing the Cartesian coordinates of a pixel and fg assigns intensity values to c ∈ x, 

where fg(c) ∈ ℝ (gray scale). Table 1 has the description of notations and commonly used 

symbols in this paper.

The contours that segment the nuclear-boundaries are represented using the level set 

method, and are evolved by minimizing the variational energy functional. Under the level 

set framework, the contour is represented implicitly as the zero level of a higher dimensional 

embedding function, and the contour propagation is performed by evolving the embedding 

function. This enables handling topological changes of the boundary (splitting and merging) 

easily.

2.1. Shape Term - Fshape

We combine the shape prior, ψ, with a Geodesic Active Contour(GAC) to create the shape 

functional. The shape prior, ψ, is created using the statistical methods described in (Rousson 

and Paragios, 2002). Each shape in the training sample is embedded as the zero level set of a 

higher dimensional surface. The Signed Distance Function (SDF) is used to encode the 

distance between the level set (shape contour) and the grid pixels. The level set formulation 

of the shape functional is expressed as:

(1)

where {ϕ} is a level set function, ψ is the shape prior, δ(.) is the Dirac function, and δ(ϕ) is 

the contour measure on {ϕ = 0}. Equation 1 introduces a shape prior in such a way that only 

objects of interest similar to the shape prior can be recovered, and all unfamiliar image 

structures are suppressed. It evaluates the shape difference between the level set ϕ and the 

the shape prior ψ at each iteration of the evolution. However, this formulation only solves 

for a single level set consistent with the shape prior.

2.2. Region Homogeneity Term

We define a functional to drive the shape model towards a homogeneous intensity region 

using the shape prior. If our objects of interest have a smooth intensity surface, then the 

Mumford-Shah (MS) model is the most appropriate model to segment these objects (Chan 

and Vese, 2001). Since the MS method applied on the AC will extract globally 

homogeneous regions and our objective is to capture an object corresponding to a particular 

shape space, the best solution is to apply the MS-based force on the shape prior (Chan and 

Vese, 2001). Indeed, this new force will globally drive the shape prior towards a 

homogeneous intensity region based on the shape of interest. The functional Fregion can be 

Ali et al. Page 5

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



written with the shape function ψ and statistics of partitioned foreground and background 

regions, uin, uout:

(2)

where ψ is the shape function, Hψ is the Heaviside function (Chan and Vese, 2001), Θr = |I − 

ur|2 + μ|∇ur|2 and r ∈ {in, out}.

2.3. Combining Shape, Boundary and Region-based Functionals

We define a synergistic model to address the problem of object segmentation, integrating a 

geometric shape prior with local and global intensity information within a variational 

framework:

(3)

(4)

where ψ is the shape function of the object of interest given by the PCA (see Section 2.1), g 

is an edge detecting function, δ(.) is the Dirac delta function, and δ(ϕ) is the contour measure 

on {ϕ = 0}, and β1, β2 are arbitrary positive constants that balance the contributions of the 

boundary, shape, and region terms. The proposed functional F1 is an extension of the work 

of Chan (2005) where we have integrated a new statistical shape model. Writing out 

Equation (3) in its entirety we have,

(5)

Proof of existence of solution for above model is provided in our previous method (Ali and 

Madabhushi, 2012).

2.4. Segmenting multiple objects under mutual occlusion

The level set formulation in Equation (5) is limited in that it allows for segmentation of only 

a single object at a time. In this work, we incorporate the method presented in (Zhang and 

Pless, 2006) into Equation (5). Consider a given image consisting of multiple objects {O1, 

O2, ⋯, Om} of the same shape. For the problems considered in this work (nuclei 

segmentation on histopathology images), all nuclei are assumed to be roughly elliptical in 

shape. Instead of partitioning the image domain into mutually exclusive regions, we allow 

each pixel to be associated with multiple objects or the background. Specifically, we try to 

find a set of characteristic functions χf such that:

(6)
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We associate one level set per object in such a way that any Ok, Ol, k, l ∈ {1, 2, ⋯, m} are 

allowed to overlap with each other within the image. These level set components may both 

be positive within the area of overlap, and enforce the prior on the shapes of objects 

extracted from the image. We consider a specific case of segmenting two objects within an 

input image, which is generalizable to N independent familiar objects.

The simultaneous segmentation of two familiar objects with respect to the given shape prior 

is solved by minimizing the following modified version of Equation (5):

(7)

where Hχ1νχ2 = Hψ1 + Hψ2 − Hψ1Hψ2, Hχ1^χ2 = Hψ1Hψ2, Φ = (ϕ1, ϕ2), and Ψ = (ψ1, ψ2). The 

fifth term penalizes the overlapping area between the two regions being segmented, and it 

prevents the two evolving level set functions from becoming identical. Minimizing Equation 

(7) by alternating with respective to dynamic variables, yields the associated Euler-Lagrange 

equations, parameterizing the descent direction by time t > 0.

General case of N > 2. The method described above can be generalized for simultaneous 

segmentation of N > 2 independent objects, all of which can leverage the shape prior ψa. 

Following is the generalized form of Equation 7:
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(8)

3. Selectively Invoking Energy terms in Hybrid ACM

3.1. Watershed Based Initialization and Concavity Detection

We use the popular watershed transformation to obtain the initial delineations of nuclear 

boundaries in the entire image. By creating the binary mask of the delineations, we obtain 

the estimated boundaries of the nuclei present.

High concavity points are characteristic of contours that enclose multiple objects and 

represent junctions where object intersection occurs (Figure 2). The area (s) of the closed 

sub-contour s is compared to predetermined area of an ideal nucleus τA. Hence a sub-

contour is eligible for a split if (s) > τA. Since c = (x, y), the difference between any two 

points cw and cw − 1 will represent a vector in 2D. Concavity points are detected by 

computing the angle between vectors defined by three consecutive points (cw − 1, cw, cw+1) ∈ 

s. The degree of concavity/convexity is proportional to the angle θ(cw) as shown in Figure 2. 

θ(cw) can be computed from the dot product relation (Equation 9):

(9)

A point is considered to be concavity point if θ(cw) > θt, where θt is an empirically set 

threshold degree. Concavity points can be distinguished from convexity points by 

computing the cross product of the vectors (cw − cw − 1) and (cw+1 − cw), where a concavity 

point would yield a positive cross product if the point were moving in a counterclockwise 

direction on s (see Fig. 2). The value of θ(cw) for an eligible concavity point cw is 

constrained to be less than an empirically determined value θmax. The value of θmax serves 

as a threshold for detecting meaningful concavity points and in our case it was found that 

 yielded optimal results. Note that numerous false concavity points may also be 

detected due to noisy boundaries on the contour.
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3.2. Adaptive Selection of Energy Functionals in Hybrid AC Model

The number of detected concavity points, cc ≤ 1, indicates presence of a single non 

overlapping nucleus. In such cases, shape prior constraint is not necessary and we reduce the 

model to only employ the region term by setting β1 = 0. Similarly, l number of cc indicate 

the presence of l overlapping objects. Hence in those regions we initialize the model with 

the integrated hybrid model (region, boundary, shape terms) with l level sets and set N = l 

(in Equation 7). The initial contour (as defined by watershed segmentation) is defined as a 

circle of radius r at the center of the contour, which is also serves as the seed point for 

placement of the initial level set. Figure 3 illustrates the work flow from initialization to 

final segmentation for AdACM.

4. Feature Extraction for Discriminating Gleason Patterns

We seek to develop a feature set that describes the nuclear morphological, architectural, and 

textural attributes of CaP from tissue microarrays are then used to describe and discriminate 

between the different Gleason patterns in the TMAs.

From each image  a feature vector F is created comprising the nuclear, graph, and textural 

based attributes. These values are calculated as described below.

4.1. Nuclear Morphology

A total of 7 nuclear features from each of the segmented nuclei were extracted. These 

nuclear morphologic features include: Area Overlap Ratio, Average Radial Ratio, 

Compactness, Convexity, Mean Nuclear Area, Mean Nuclear Perimeter, Mean Nuclear 

Diameter.

4.2. Nuclear Architecture

We calculate features that describe the spatial location of nuclei within the histological 

image. On each of the segmented nuclei, center of mass is calculated to represent the nuclear 

centroid. To analyze the nuclear architecture in greater detail, we construct a series of 

graphs, using the nuclear centroids as nodes of the graph. Quantifiable features are then 

extracted from the these graphs (see Table 2).

We denote a graph as  = (V,E,W), where V are vertices, E are edges, and W are edge 

weights, proportional to length. The set of vertices, edges, and weights make up a unique 

graph on ℛ. We construct the following graphs (illustrations are shown in Figure 4)

Voronoi Diagram ( V)—The Voronoi Diagram partitions ℛ into a set of polygons with 

centroids V, where a non-centroid pixel is assigned to the polygon of the closest centroid 

pixel. This yields a tessellation of the image, as shown in Figure 4(b). Pixels that are 

equidistant from exactly two centroids make up E (edges of the graph), while pixels 

equidistant from three or more centroids make up the intersections of multiple edges. The 

perimeter, area, and chord lengths of each polygon in V are computed, and the average, 

standard deviation, disorder, and minimum to maximum ratio of each are calculated for a 

total of 12 Voronoi-based features per .
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Delaunay Triangulation ( D)—The Delaunay Triangulation is a triangulation of vertices 

V such that the circumcircle of each triangle contains no other vertices. The Delaunay and 

Voronoi graphs are dual to each other, meaning that two points are connected in D if and 

only if their polygons in V share an edge. An example of D is given in Figure 4(c). From 

this graph, we compute the area and perimeter of each triangle, and the average, standard 

deviation, disorder, and minimum to maximum ratio of these are calculated to yield 8 

Delaunay-based features per .

Minimum Spanning Tree ( M)—A spanning tree of a set of points V is an undirected, 

fully connected graph on V. The weight W of the graph is the sum total of all edges E, and 

the Minimum Spanning Tree (MST) is the spanning tree with the lowest overall W. The 

MST, denoted M, is a subgraph of the Delaunay Triangulation. An example of M is given 

in Figure 4(d). We calculate the average, standard deviation, disorder, and minimum to 

maximum ratio of the weights W to yield 4 MST-based features per .

4.3. Tissue Texture Feature Extraction

The proliferation of nuclei, difference in size and shape leads to a change in overall textural 

characteristics in a region of interest (ROI). To quantify this change in tissue texture 

characteristics, we calculate a number of low-level image statistics from each ROI. These 

statistics can be broadly characterized into two groups: first-order statistics, second-order 

co-occurrence features. Each of these is calculated in a pixel-wise fashion and are computed 

independently for each of the hue, saturation, and intensity channels of the original scanned 

image, generating a set of corresponding feature images. The average, standard deviation, 

and mode of each of these feature images is calculated, yielding a texture feature vector to 

quantify the image. In total, 253 texture features are calculated in this manner. The details of 

each feature type are given below.

First-order Statistics—We calculate 15 different first-order statistics from each image, 

including average, median, standard deviation, and range of the image intensities within the 

sliding neighborhood, as well as the Sobel filters in the vertical, horizontal, and both 

diagonal axes, 3 Kirsch filter features, gradients in the vertical and horizontal axes, 

difference of gradients, and diagonal derivative. By calculating these 15 features for each 

channel in the image, and then calculating the mean, standard deviation, and mode of the 

feature images, we obtain a total of 135 first-order statistics for .

Co-occurrence Features—Co-occurrence features, also referred to as Haralick features 

(Haralick et al., 1973), are computed by constructing a symmetric 256 × 256 co-occurrence 

matrix which describes the frequency with which two different pixel intensities appear 

together within a fixed neighborhood. The number of rows and columns in the matrix are 

determined by the maximum possible value in a channel of ; for 8-bit images, this 

corresponds to 28 = 256. Element (a, b) in the matrix is equal to the number of times pixel 

value a occurs adjacent to pixel value b in . From the co-occurrence matrix, a set of 13 

Haralick features are calculated: contrast energy, contrast inverse moment, contrast average, 

contrast variance, contrast entropy, intensity average, intensity variance, intensity entropy, 

energy, correlation, entropy, and two measures of information. Extracting these values from 
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each channel and taking the mean, standard deviation, and mode of each feature image 

yields a total of 117 co-occurrence features.

5. Feature Selection and Classification

5.1. Minimum Redundancy Maximum Relevance Scheme

There are many potential benefits of variable and feature selection: facilitating data 

visualization and data understanding, reducing the measurement and storage requirements, 

reducing training and utilization times, defying the curse of dimensionality to improve 

prediction performance. After extracting texture features, we utilized the minimum 

Redundancy Maximum Relevance (mRMR) feature selection scheme (Peng et al., 2005) in 

order to identify an ensemble of features that will allow for optimal classification of CaP 

primary grade 3 versus 4. The feature selection scheme is used to identify the most 

discriminatory attributes from among all of the textural, architectural, and nuclear 

morphologic features extracted.

In the following description, the selected subset of features Q is comprised of feature vectors 

Fi, i ∈ {1, …, |Q|} (note that F = {F1, …, FN }, Q ⊂ F and |Q| < N). The mRMR scheme 

attempts to simultaneously optimize two distinct criteria. The first is ”maximum relevance” 

which selects features Fi that have the maximal mutual information (MI) with respect to the 

corresponding label vector L. This is expressed as

(10)

The second is ”minimum redundancy” which ensures that selected features Fi, Fj ∈ Q, i, j ∈ 

{1, …, |Q|}, are those which have the minimum MI with respect to each other, given as

(11)

Under the second constraint, the selected features will be maximally dissimilar with respect 

to each other, while under the first, the feature selection will be directed by the similarity 

with respect to the class labels. There are two major variants of the mRMR scheme: the MI 

difference (MID, given by U − V) and the MI quotient (MIQ, given by U/V). These variants 

represent different techniques to optimize the conditions associated with mRMR feature 

selection. In this study, we evaluated the use of both MID and MIQ for feature selection as 

well as determined an optimal number of features by varying |Q| the mRMR algorithm.

5.2. Quadratic Discriminant Analysis

The Quadratic Discriminant Analysis (QDA) classifier aims to find a transformation of the 

input features that is able to optimally discriminate between the classes in the dataset. Given 

a set of samples C with associated feature set, F, QDA solves for Y = FT AF + BTF, where 

Y = {Y1, Y2, …} denotes the resultant vector of QDA.
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Based on calculating the means µl(C) = + 1, µl(C) = − 1 and covariances ΣlC = + 1, Σ lC = − 1 of 

the 2 classes in the dataset (Grade 3 and Grade 4), we can solve the equation below to 

calculate the following log likelihood ratio:

(12)

6. Experimental Design and Performance Measures

6.1. Data Description

Our dataset comprised a total of 80 images obtained from 40 patient cases, in the form of 

TMAs with 2 TMAs per patient study. The various CaP tissues and controls included in 

these TMAs were selected and reviewed by a John Hopkins Hospital pathologist. Slides 

from all cases selected are reviewed and mapped by a pathologist and the normal-appearing 

and staged and/or graded index tumor areas were identified and marked on the slide for each 

case. Using these template slides marked for normal-appearing (adjacent) and diagnostic 

CaP areas, the tissue blocks were coordinately marked using the template slides, and 0.60-

mm cores were punched from the normal-appearing and CaP areas and then transferred to 

recipient blocks. The TMAs were prepared (both normal-appearing and cancer areas) using 

a Beecher MT1 manual arrayer (Beecher Instruments, Silver Spring, MD) in the Johns 

Hopkins Hospital TMAJ pathology core facility. Each TMA was constructed using four 

replicate 0.6mm core tissue samples from the normal-appearing and cancer areas of each 

patient who had undergone radical prostatectomy for CaP. The 40 studies (consisting of 

TMAs for cancer areas) comprised 13 Gleason patterns 6 (3+3), 8 pattern 7 (3+4), 7 (4+3) 

pattern 7, 7 pattern 8 (4+4) and 5 pattern 9 (4+5) studies where the first number in the 

parenthesis refers to the primary and the second number to the secondary Gleason grade.

6.2. Comparative Strategies

We qualitatively and quantitatively compared the segmentation performance with the GAC 

(Geodesic Active Contour) (Caselles et al., 1997) and the Rousson shape based model (RD) 

(Rousson and Paragios, 2002). The RD model is a popular region based AC model where 

the model is driven by the Gaussian distribution of both foreground and background and 

also involves a shape prior.

Experiment 1 Overlap Resolution: The aim of this experiment was to demonstrate the 

ability of our scheme to correctly resolve the overlap between all intersecting nuclei 

across 80 histopathology images.

Experiment 2 Comparison of our model against the GAC and Rousson-Derich (RD) 

models in terms of detection accuracy: The aim of this experiment was to compare the 

detection accuracy of our model over two state-of-the-art AC models, GAC and RD.

Experiment 3 Comparison against GAC and RD model in terms of segmentation 

accuracy: The aim of this experiment was to compare the segmentation performance in 

terms of boundary and area overlap metrics compared to the GC and RD model.
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Experiment 4 Runtime analysis and computational efficiency: The aim of this 

experiment was to evaluate the computational efficiency and speed up achieved by 

AdACM compared against other models.

Experiment 5 Classifier Accuracy: The aim of this experiment is to evaluate classifier 

accuracy in distinguishing grade 3 vs grade 4. Furthermore, we evaluate the optimal 

feature set determined by mRMR feature selection method.

6.3. Performance Measures

6.3.1. Evaluation of Detection Performance—The metrics used to evaluate object 

detection include: 1) sensitivity (SN); 2) positive predictive value (PPV); and 3) overlap 

detection ratio (OR) (see Table 3). The detection results from three models (Chan-Vese, our 

model and RD) are compared to manual detection results obtained from an expert clinician. 

The SN and PPV values are computed from the true-positive (TP), false-positive (FP), and 

false negative (FN) values (TP, FN, FP are subsequently defined):

(13)

(14)

TP refers to the number of nuclei correctly identified while FP refers to the number of 

objects incorrectly identified as lymphocyte nuclei and FN refers to the number of nuclei 

missed by the model. The detection results are represented as the centroid of the region 

enclosed by a closed contour. TP, FP, and FN values are obtained by comparing each 

centroid generated by the model to manually determined object centroid. The overlap 

detection ratio (OR) (Table 2) is computed as follows:

An overlap is characterized by the existence of a common boundary between two objects 

and in our case may be between two or more nuclei.

6.3.2. Evaluation of Segmentation Performance—Segmentation results are 

compared to manual delineations performed by an expert oncologist (which serves as 

ground truth for segmentation evaluation) by computing boundary based metrics, namely 

Hausdorff distance (HD), mean absolute distance (MAD), and area overlap metrics (true 

positive area (TPa), false-positive area (FPa), true-negative area (TNa), and false-negative 

area (FNa)). The manual delineation is represented as a closed boundary .

For each of the 8040 nuclear boundary segmentations, a corresponding value for HD and 

MAD were obtained. HD and MAD values close to zero correspond to better segmentation. 

The area overlap metrics are used to compute the sensitivity SNa, specificity SPa, positive 
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predictive value PPVa and the overlap ratio OVa of the segmentation results for each of the 

three models. The area overlap metrics are computed as follows:

where (·) is the area of the closed boundary. For each image, the set of pixels lying within 

the manual delineations of the nuclei is denoted as ( ). (S) is the set of pixels whose 

level set functions are positive, after the convergence of active contour model. The SNa and 

PPVa values are computed in a similar fashion as described in (13) and (14), respectively. 

SPa and OVa values are computed as follows:

7. Results and Discussion

7.1. Qualitative Results

Qualitative results for 3 studies illustrated in Figure 5 reflect the superiority of our model in 

resolving overlapping nuclei. For the CaP TMA images (1024 × 1024), we applied AdACM 

for nuclear segmentation.

7.2. Quantitative Results

Results of quantitative evaluation of detection and segmentation performance for each of the 

three models are shown in Tables 3 and 4. These results reflect the improved performance 

over Rousson and GAC, respectively. The SN and PPV values listed in Table 3 reflect the 

efficacy of our model in detecting nuclei in prostate images as compared to other two 

models.

In terms of segmentation performance, our model easily outperformed both Rousson and 

GAC models, respectively, in terms of all six segmentation evaluation measures over 8040 

nuclei from 80 images. The HD and MAD values for our model were less than 5 pixels for 

over 95% of the studies respectively. The statistical measures from the area overlap metrics 

are summarized in Table 4

7.3. Runtime Analysis and Computational Efficiency

We evaluated the computational efficiency of AdACM with respect to a hybrid ACM 

(HACM) which did not employ selective invocation of the shape prior. On 100 image 

patches of 200 × 200 pixels and in the presence of average of 114 nuclei with 40 overlaps 

per patch, AdACM required 252s to accurately segment nuclei and resolve all intersections, 

compared to HACM which took 560s; all evaluations being performed on a 3 GHz, dual 

core processor with 4 GB RAM. Table 5 summarizes runtime for individual modules of the 

AdACM algorithm. It can be noted that majority of the time (70%) is spent in energy 

evolution and thus selective invocation of shape prior reduces evolution complexity thereby 

reduction complexity of the entire method.
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7.4. Evaluating Discriminability of Feature Classes

The extracted features are aggregated into feature set QTot = {QArc, QTex, QNuc}, where 

QArc, QTex, QNuc refer to architectural, textural and nuclear features. 3D features plots in 

Figure 6 illustrate each feature set’s ability in separating Gleason grade 3 vs grade 4. Note 

that the features plots in Figures 6 (a) suggest that the nuclear shape features are able to 

capture the subtle morphologic differences between the two Gleason patterns, in turn 

reflecting the accuracy of AdACM.

7.5. Classification Accuracy

We employee mRMR algorithm to prune QTot to provide an optimal number of features that 

can be used to train the QDA classifier to accurately distinguish between intermediate 

primary grade 3 and grade 4 tumors. The main free parameter associated with the mRMR 

scheme is the number of features to be selected (|Q|). We empirically varied the number of 

features and evaluated the classification for each resulting feature set using a QDA 

classifier. We found that an ensemble of 28 features as determined via from mRMR was the 

optimal feature set size (top 10 of the 28 features are listed in Table 6). Figure 6(d) 

illustrates a clear separation of Grade 3 and Grade 4 with the feature set found by mRMR. 

Figure 7 illustrates the effect of varying the size of the feature ensemble as a function of 

classification accuracy.

For a database of 80 images, the QDA classifier achieved an accuracy of 86.1 ± 0.5% in 

distinguishing primary grade 3 from 4 using an ensemble of 28 features chosen from across 

all the 3 feature classes. In order to ensure robustness of the feature selection and classifier, 

a randomized 3 fold cross-validation procedure was implemented. In a single cross-

validation run, the dataset is divided into 3 randomized subsets (comprising 27, 27 and 26 

images). Two subsets were considered as training data and the remaining as testing data, 

following which classification is performed. This was repeated until all 3 subsets were 

classified, and the entire cross-validation procedure was iterated 10 times. QDA 

classification accuracies and the pruned number of features are given in Table 8.

8. Concluding Remarks

In this work we presented a new hybrid active contour that employs a shape prior for 

concurrent segmentation of multiple overlapping nuclei. Our model (AdACM) selectively 

invokes the shape prior terms (the most computationally expensive step of the hybrid active 

contour model) in those image regions where objects overlap, overlaps being determined via 

a concavity detection scheme. This selective invocation of energy terms in the variational 

formulation yields a hybrid ACM that is both accurate and computationally efficient. We 

extracted nuclear, architectural and texture based features to automatically distinguish the 

primary, intermediate Gleason grades of prostate cancer tissue microarrays. Morphologic 

features derived from nuclei segmented via AdACM yielded the highest accuracy amongst 

all the feature categories considered (architectural, nuclear, textural) in discrimination of 

intermediate Gleason grade patterns (3 versus 4), on prostate cancer TMAs, in turn 

reflecting the segmentation accuracy of AdACM. By employing Minimum Redundancy 

Maximum Relevance feature selection Scheme, we were able to select an optimal number of 
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features spanning the architectural, morphologic, and textural attribute classes to train a 

Quadratic Discriminant Analysis classifier. The combination of the best features across all 

the feature classes (nuclear, architectural, and textural) yielded a higher classification 

accuracy compared to any of the individual feature categories.

In this study we limited ourselves to only attempting to distinguish between primary 

Gleason grades 3 and 4. Due to the relatively small size of the dataset we did not attempt to 

train the classifier to distinguish the prostate cancer TMAs based off Gleason scores. 

Preliminary qualitative results derived from the PCA embeddings of the nuclear 

morphologic features suggest that our combined segmentation and classification scheme 

does appear to separate out the TMAs based off their Gleason scores. In future work, we 

intend to increase the size of our dataset in order to be able to train and evaluate the 

classifier presented in this paper to automatically separate out Gleason scores. Additionally 

we also intend to leverage AdACM in the context of nuclear and cell segmentation in other 

domains within digital pathology.
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Highlights

This work presents an optimized region, boundary and shape based multi-level set 

segmentation scheme, which selectively leverages shape prior energy functional to 

resolve overlap and non-overlapping objects. We leverage this new segmentation scheme 

to develop a CAD system to perform automated Gleason grading on large histopathology 

images.
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Figure 1. 
Selective incorporation of variational terms based on detection of concavity points 

(representative of overlapping objects). In (a) the absence of concavity point reflects the 

presence of a single nucleus. Similarly (b) and (c) detection of the number of concavity 

points represents the number of nuclei.
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Figure 2. 
Concavity detection: Three consecutive points on s (cw − 1, cw and cw + 1) are used to define 

two vectors (shown with arrows). The angle θ between them is a measure of concavity/

convexity of the point cw (Fatakdawala et al., 2010).
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Figure 3. 
Constituent modules of the AdACM. (a) Original image; (b) Watershed segmentation of 

individual nuclei with an overlay detected concavity points; (c) Placement of initial level 

sets in the image; (d) final segmentation. Note that in the region shown as A where 4 

concavity points where detected, 3 level sets were initialized with the shape prior, whereas 

in region B, only a single level set (only region based term) was initialized.
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Figure 4. 
Different graph features are used to model nuclear architecture of Grade 6 CaP. Shown from 

left to right (a) original histology image with detected nuclear centroids, (b) Voronoi 

diagram, (c) Delaunay triangulation, and (d) Minimum spanning tree. Nuclear centroids 

were used as graph vertices.
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Figure 5. 
(a)–(c) Nuclear segmentations (orange boundaries) for three different TMA cylinders 

corresponding to Gleason scores 6, 7 and 9. (b)–(f) Magnified ROI’s from (a)–(c), 

respectively, reveal that our hybrid ACM (AdACM) with a selective shape prior is able to 

accurately segment almost all nuclei. (g)–(i) Further magnification of the region of interest 

(ROI) shown in (a), (b), (c) reveals that our model is able to accurately resolve overlaps and 

intersections.
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Figure 6. 
3D feature plots, constructed by taking top 3 features, reveal separation of primary grade 3 

and grade 4 by using (a) Nuclear (b) Textural (c) Graph based features, and (d) top 3 

features given by mRMR scheme.
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Figure 7. 
Plot of classifier accuracy as a function of the number of features in the ensemble. The 

highest classification accuracy is obtained when the number of features in the ensemble is 

between 25–40.
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Table 1

Description of notations and commonly used symbols in this paper.

Symbol Description Symbol Description

2D image scene x 2D Cartesian grid of pixels c = (x, y)

fg(c) function that assigns intensity values to pixel c s the shape contour (zero level set)

cw point on contour boundary Ω bounded open set in ℝ2

H(ϕ) δ(ϕ)

Ωf foreground region Ωf = {c ∈ Ω : ϕ(c) > 0} Ωb background region Ωb = {c ∈ Ω : ϕ(c) < 0}

ϕ(c) the level set function (·) the set of pixels within boundary

ψ the shape function uin, uout partitioned foreground and background regions

F feature set Q selected subset of feature set
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Table 2

Summary of image derived features used to characterize architectural arrangement and morphological 

appearance of CaP nuclei. Relationship of graph, morphological features to visual attributes is also shown.

Feature Class Extracted Features Relevance to Histology

Voronoi Tesselation

Area Standard Deviation, Area Average, Area Minimum / Maximum Area 
Disorder, Perimeter Standard Deviation, Perimeter Average, Perimeter 
Minimum / Maximum, Perimeter Disorder, Chord Standard Deviation, Chord 
Average, Chord Minimum / Maximum, Chord Disorder

Tissue Architecture
Delaunay Triangulation

Side Length Minimum / Maximum, Side Length Standard Deviation, Side Length 
Average, Side Length Disorder, Triangle Area Minimum / Maximum, Triangle 
Area Standard Deviation, Triangle Area Average, Triangle Area Disorder

Minimum Spanning Tree MST Edge Length Average, MST Edge Length Standard Deviation, MST Edge 
Length Minimum / Maximum, MST Edge Length Disorder

Nuclear Morphology Area Overlap Ratio, Average Radial Ratio, Compactness, Convexity, Mean 
Nuclear Area, Mean Nuclear Perimeter, Mean Nuclear Diameter.

Nuclear size, boundary, 
appearance
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Table 3

Quantitative evaluation of detection results for the 3 models over 80 prostate histology images.

SN PPV OR

GAC 0.30 0.58 0.022

Rousson 0.69 0.53 0.76

Our Model 0.85 0.66 0.90
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Table 5

Quantitative evaluation of segmentation, and Overlap Resolution between the Geodesic Active Contour 

(Caselles et al., 1997), Rousson-Deriche (Rousson and Paragios, 2002) and AdACM for randomly selected 

nuclei across the 100 patches of 200 × 200 across 80 TMA images.

Watershed/Preprocessing Concavity Detection Initialization Energy Evolution

Runtime (seconds) 25 45 5 175
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Table 6

Top 10 ranked features

Feature Name Feature Type

1 Average Radial Ratio Nuclear

2 Perimeter Standard Deviation Voronoi

3 Mean Nuclear Perimeter Nuclear

4 Intensity Variation Harlick

5 Side Length Average Delaunay

6 Area Overlap Ration Nuclear

7 Chord Standard Deviation Voronoi

8

, window: 5 × 5

Gabor

9 MST Edge Length Standard Deviation Minimum Spanning Tree

10 Compactness Nuclear
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Table 7

Comparison of three methods (GAC, RD and AdACM) in predicting primary grade 3 vs 4

GAC RD AdACM

Accuracy 68.8 ± 1.3% 751 ± 0.8% 86.1 ± 0.5%
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Table 8

Classification accuracies of AdACM compared against varying feature set sizes

QDA Accuracy

Optimal Feature Set (28) 86.1 ± 0.5%

Nuclear Features 81.2 ± 0.4%

Architectural Features 78.7 ± 0.6%

Textural Features 68.3 ± 0.5%
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