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Abstract

The tongue is a critical organ for a variety of functions, including swallowing, respiration, and 

speech. It contains intrinsic and extrinsic muscles that play an important role in changing its shape 

and position. Diffusion tensor imaging (DTI) has been used to reconstruct tongue muscle fiber 

tracts. However, previous studies have been unable to reconstruct the crossing fibers that occur 

where the tongue muscles interdigitate, which is a large percentage of the tongue volume. To 

resolve crossing fibers, multi-tensor models on DTI and more advanced imaging modalities, such 

as high angular resolution diffusion imaging (HARDI) and diffusion spectrum imaging (DSI), 

have been proposed. However, because of the involuntary nature of swallowing, there is 

insufficient time to acquire a sufficient number of diffusion gradient directions to resolve crossing 

fibers while the in vivo tongue is in a fixed position. In this work, we address the challenge of 

distinguishing interdigitated tongue muscles from limited diffusion magnetic resonance imaging 

by using a multi-tensor model with a fixed tensor basis and incorporating prior directional 

knowledge. The prior directional knowledge provides information on likely fiber directions at 

each voxel, and is computed with anatomical knowledge of tongue muscles. The fiber directions 

are estimated within a maximum a posteriori (MAP) framework, and the resulting objective 

function is solved using a noise-aware weighted ℓ1-norm minimization algorithm. Experiments 

were performed on a digital crossing phantom and in vivo tongue diffusion data including three 

control subjects and four patients with glossectomies. On the digital phantom, effects of 

parameters, noise, and prior direction accuracy were studied, and parameter settings for real data 

were determined. The results on the in vivo data demonstrate that the proposed method is able to 

resolve inter-digitated tongue muscles with limited gradient directions. The distributions of the 
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computed fiber directions in both the controls and the patients were also compared, suggesting a 

potential clinical use for this imaging and image analysis methodology.

Keywords

Diffusion magnetic resonance imaging; limited gradient directions; sparse reconstruction; prior 
directional knowledge; interdigitated tongue muscles

1. Introduction

The tongue is a critical organ for a variety of functions, including swallowing, respiration, 

and speech [1, 2]. It contains intrinsic and extrinsic muscles that play an important role in 

changing its shape and position [3]. Tongue muscles have been studied using diffusion 

tensor imaging (DTI) [4–9], which provides a noninvasive tool for investigating fiber tracts 

by imaging the anisotropy of water diffusion [10]. For example, in Gaige et al. [5], based on 

diffusion tensors, the technique of fiber tracking [10–13] was used to reconstruct 3D curves 

representing key muscle fibers and visualize the tongue anatomy. In Felton et al. [6], muscle 

fibers were studied together with strain rate to demonstrate the relationship between fiber 

organization and tissue deformation during swallowing. Using DTI, studies on the influence 

of interventions on the tongue muscles have also been performed. In Shinagawa et al. [8] 

and Shinagawa et al. [9], preliminary studies were carried out to track the deformed muscle 

fibers in patients with oral appliances. In Murano et al. [7], tongue muscle fibers were 

tracked for a patient after the glossectomy and compared with a control subject.

These studies [5–9] all used DTI-based fiber tracking [11, 13]. However, many of the tongue 

muscles interdigitate, and it is well known that DTI cannot represent crossing fiber 

directions [14]. Thus, using the tensor model is insufficient for reconstructing interdigitated 

tongue muscles. For example, the transverse muscle interdigitates with the genioglossus, and 

DTI fails to reconstruct the transverse muscle. Figure 1(a) gives a typical example of fibers 

tracked with DTI when seeded in the transverse muscle; it can be seen that the majority of 

the transverse muscle fibers, which should be reconstructed as left to right (red) streamlines, 

are missing. Therefore, a fiber tracking method that is able to resolve crossing fibers is 

crucial for correct representation of the tongue muscles.

To address the problem of tracking crossing fibers, different imaging modalities that seek to 

obtain more comprehensive directional information, including high angular resolution 

diffusion imaging (HARDI) [15] and diffusion spectrum imaging (DSI) [16], have been 

proposed. Since these modalities typically acquire around 100 gradient directions and 

demand long scan times (which limits their application in clinical research), a number of 

attempts to accelerate the imaging process have been made [17–19]. However, because of 

the involuntary swallowing, which limits the available time to around 2–3 minutes for in 

vivo acquisition in the tongue, especially in cases where pathology is present, only a dozen 

(or so) gradient directions are achievable in practice. Thus, there is insufficient time for the 

acquisition of HARDI and DSI, despite the efforts to accelerate image acquisition. In 

addition, a great number of existing DTI data sets have been acquired and need better 

analysis. Therefore, although both HARDI and DSI data could be used for the methods 
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described in this paper, we limit the presentation of results to the conventional DTI 

acquisitions that are presently achievable.

There are also methods designed to better exploit the information in DTI to resolve crossing 

fibers. For example, Behrens et al. [20] and Peled et al. [21] use two-tensor models to 

recover crossing directions. In Behrens et al. [20], a Bayesian estimation is used to fit the 

parameters of the model, which is achieved by Markov chain Monte Carlo sampling. The 

method in Peled et al. [21] places a number of constraints on the tensors in the two-tensor 

model to reduce the number of free parameters, and resolves two crossing fiber directions 

using a nonlinear least squares method. Ramirez-Manzanares et al. [22], Landman et al. 

[23], and Zhou et al. [24] use multi-tensor models with a fixed tensor basis to resolve 

crossing fibers. In Ramirez-Manzanares et al. [22], diffusion signals are modeled as a 

discrete mixture of Gaussian random variables and are deconvolved using a set of diffusion 

basis functions which represent fiber directions. In Landman et al. [23], a sparse 

reconstruction technique is used, where a dictionary is constructed with a fixed tensor basis. 

The fiber directions are estimated by solving the ℓ1-norm regularized least squares problem. 

Zhou et al. [24] adds an isotropic component in the multi-tensor model and solves the 

problem with ℓ1-norm and TV-norm regularization.

Using the number of gradient directions that is common in clinical research (around 30), 

these two-tensor or multi-tensor models are able to resolve crossing fibers. However, due to 

the limited number of gradient directions in in vivo tongue diffusion data acquisition, there is 

insufficient information for successful resolution of crossing fibers using these methods. 

Figure 1(b) gives an example of fibers tracked using the multi-tensor model in Landman et 

al. [23], when the fibers were seeded in the transverse muscle. Although part of the 

transverse muscle is reconstructed, it is clear that the major body is missing. Thus, 

distinguishing interdigitated tongue muscles, which constitute a large percentage of the 

tongue volume, is very challenging.

In this paper, we present a multi-tensor method for distinguishing interdigitated tongue 

muscles by incorporating prior directional knowledge within a Bayesian framework. The 

proposed method is named Fiber Interdigitation Estimation by Bayesian Reconstruction 

(FIEBR). In FIEBR, the prior directional knowledge provides information on likely fiber 

directions at each voxel, and can be computed with anatomical knowledge of tongue 

muscles. Note that this work is an extension of our conference paper [25]. Compared to Ye 

et al. [25], here we have included more comprehensive muscle information and we also 

propose a way to determine the parameters of the algorithm. In addition, while only one 

control subject was included in Ye et al. [25], here we have included both control subjects 

and patients after glossectomies to show the influence of surgeries on the muscles and 

demonstrate the potential of applying FIEBR for clinical use.

An example of the FIEBR result is shown in Figure 1(c). In contrast to the DTI model and 

the multi-tensor results in Figures 1(a) and 1(b), FIEBR successfully reconstructs the 

transverse muscle. In FIEBR, we use a fixed tensor basis to model the diffusion weighted 

signals in each voxel, and then we determine the contribution of each basis tensor using 

maximum a posteriori (MAP) estimation. The prior distribution contains both the prior 
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directional information and sparsity constraints, and data fidelity is modeled in the 

likelihood term. The resulting objective function can be solved as a noise-aware version of a 

weighted ℓ1-norm minimization [26]. Using the estimated fiber directions from FIEBR, we 

also propose a streamlining fiber tracking strategy to reconstruct tongue muscles.

The remainder of the paper is organized as follows. Section 2 describes the proposed 

algorithm. In Section 3, validations of FIEBR are presented on a digital crossing phantom 

and in vivo tongue diffusion data. A discussion is provided in Section 4 and Section 5 

summarizes and concludes the paper.

2. Methods

In this section, we first introduce a multi-tensor model with a fixed tensor basis. Then, the 

MAP estimation of the fiber directions incorporating prior directional knowledge is 

presented, and an approach to obtaining prior knowledge of tongue muscle fiber directions is 

provided. A streamlining fiber tracking strategy using the estimated fiber directions is also 

described. Finally, the constants used in the proposed FIEBR and streamlining algorithms 

are summarized.

2.1. Multi-tensor Model with a Fixed Tensor Basis

We define a fixed tensor basis comprising N prolate tensors Di whose primary eigenvectors 

(PEVs) are oriented over the sphere. Each Di represents a fiber direction given by its PEV. 

In this work, N = 253, the second and third eigenvalues of each basis tensor are equal to 0.5 

× 10−3 mm2/s, and the primary eigenvalue is equal to 2 × 10−3 mm2/s. These eigenvalues are 

empirically determined by examining the diffusion tensors in regions of noncrossing fiber 

tracts [23]. At each voxel, the diffusion weighted signals can be modeled as a mixture of the 

attenuated signals from these tensors. Using the Stejskal-Tanner tensor formulation [27], we 

have [23]

(1)

where b is the b-value, gk is the k-th gradient direction (k ∈ {1, 2, …, K} where K is the 

number of gradient directions), Sk is the diffusion signal in the k-th direction, S0 is the 

baseline signal without diffusion weighting, fi is the (unknown) nonnegative mixture 

fraction for Di, and nk is a noise term. Note that in this signal model, as in Ramirez-

Manzanares et al. [22], Daducci et al. [28], and Landman et al. [23], we do not explicitly 

require , but the fi's can be interpreted as mixture fractions when they are 

normalized to sum to one [23]. By defining yk = Sk/S0 and ηk = nk/S0, Eq. (1) can be written 

as:

(2)

Ye et al. Page 4

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where y = (y1, y2, …, yK)T, G is a K × N matrix comprising the attenuation terms 

, f = (f1, f2, …, fn)T, and η = (η1, η2, …, ηk)T.

2.2. Mixture Fraction Estimation with Prior Knowledge

We use MAP estimation to estimate the mixture fractions f. Accordingly, we seek to 

maximize the posterior probability of f given the observations y. The posterior probability is 

given by

(3)

Therefore, since the denominator in Eq. (3) is constant with respect to f, the desired solution 

is

(4)

Since at each voxel the number of fiber directions is expected to be small, we promote 

sparseness in f by using the Laplace prior density: p(f) ∝ e−λ‖f‖1, where λ is a positive 

constant. However, sparsity alone is not sufficient prior information when the observations 

do not include a large number of gradient directions (as in DTI of the in vivo tongue). 

Therefore, we further supplement the prior knowledge with directional information. Suppose 

prior information about likely fiber directions were known at each voxel. For each voxel, let 

the prior directions be represented by the collection of vectors {w1, w2, …, wP}, where P is 

the number of prior fiber directions. A similarity vector a can be constructed between the 

directions represented by the basis tensors and the prior directions:

(5)

where vi is the PEV of the basis tensor Di. Each entry ai in a represents the similarity 

between the basis direction vi and its closest prior direction. Note that wm and vi are unit 

vectors and thus ai ∈ [0, 1]. We modify the prior density by incorporating the similarity 

vector as follows: p(f) ∝ e−λ‖f‖1eγa·f, where γ is a nonnegative constant. In this way, basis 

tensors closer to the prior directions are made to be more likely a priori (except when γ = 0 

and no prior information is incorporated).

Since f ≥ 0, we have

(6)

Where
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(7)

and C is a diagonal matrix with Cii = (1 − αai) (note that α ≥ 0). Therefore, p(f) has a 

truncated Laplace density given by

(8)

where Zp(α, λ) is a normalization constant. We require α < 1 to ensure that Cii > 0. Thus, 0 ≤ 

α < 1.

Suppose the noise η in Eq. (2) follows a Rician distribution. A Rician distribution can be 

approximated by a Gaussian distribution when the signal to noise ratio is above 3:1 [29], 

which holds for most observed data in the proposed application. The conditional density for 

the observed data is then modeled as a Gaussian density: , where ση 

is the noise scale.

Using Eq. (3), we can then write the posterior density as

(9)

where Z(α, λ, ση, G) is a normalization constant. The MAP estimate of f is found by 

maximizing p(f|y) or ln p(f|y):

(10)

By using , the minimization in Eq. (10) is equivalent to

(11)

which is a noise-aware version of a weighted ℓ1-norm minimization [26]. We note that this 

formulation is equivalent to the CFARI objective function developed in Landman et al. [23] 

when α = 0 (i.e., C = I). Thus, our approach, developed with an alternative Bayesian 

perspective, is a generalization of the CFARI algorithm.

To solve Eq. (11), we use a new variable g = Cf. Since C is diagonal and Cii > 0, C is 

invertible and therefore f = C−1 g. Letting G = GC−1 , we have
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(12)

We find ĝ using the optimization method in Kim et al. [30] and the mixture fractions f can 

be estimated as:

(13)

Finally, the mixture fractions are normalized so that they sum to one:

(14)

Directions associated with nonzero mixture fractions are interpreted as fiber directions, and 

the value of fi indicates the contribution of the corresponding direction in the diffusion 

signal.

2.3. Prior Directions for the Tongue Muscles

To obtain prior directions, we built a template by manually identifying regions of interest 

(ROIs) for the genioglossus (GG), the geniohyoid (GH), the inferior longitudinal muscle 

(IL), the superior longitudinal muscle (SL), the transverse muscle (T), and the vertical 

muscle (V) according to Takemoto [31] on a high resolution structural image (0.8 mm 

isotropic) of a subject. Examples of these identified muscles on the template are shown in 

Figure 2. T interdigitates with GG near the mid-sagittal planes and with V on lateral parts of 

the tongue. GG and V intersect with SL near the top and back surface of the tongue. The 

interdigitation of the tongue muscles is summarized in Table 1.

The b0 image (the image without diffusion weighting) was also acquired for this template 

subject in the same position as the high resolution structural image. A mask of the tongue 

area was delineated on the b0 image. The muscle ROIs were subsampled to have the same 

resolution as the b0 image. For each test subject, a manual mask of the tongue was drawn on 

the b0 image. We used SyN deformable registration [32] between the b0 images masked by 

the tongue regions to deform the template to the target space, where cross correlation was 

used as the similarity metric.

Using deformed ROIs of the tracts, the prior directions can be obtained as follows. GG is 

known to be fan-shaped; therefore, we use fan-shaped prior directions for GG, as illustrated 

in Figure 3(a). Specifically, the origin of GG in the mid-sagittal slice can be identified on the 

test subject during the delineation of the whole tongue. Suppose the x-axis represents the 

left-right (L-R) direction, the y-axis represents the anterior-posterior (A-P) direction, and the 

z-axis represents the inferior-superior (I-S) direction. Then at a voxel xGG = (xGG, yGG, zGG) 

belonging to GG, fanning GG prior directions can be obtained with respect to the GG origin 

(xo, yo, zo) as
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(15)

Similarly, since V is known to fan out like GG, for a voxel xV = (xV, yV, zV) in V, its prior 

fiber direction is set as

(16)

The GH and IL have A-P fiber directions, therefore in GH and IL voxels we use

(17)

as the prior directions. The fibers in T propagate transversely, therefore the prior direction 

wT of a T voxel is

(18)

Finally, SL has arc-shaped fibers close to the top and back surface of the tongue, as 

illustrated in Figure 3(a). The approximate circle center for the arc in the mid-sagittal slice is 

manually identified on the test subject as xc = (xc, yc, zc). For a voxel xSL = (xSL, ySL, zSL) 

belonging to SL, its prior direction can be calculated as

(19)

which is tangential to the arc. An example of the prior directions on a test subject is shown 

in Figure 3(b). The directions are color-coded by the standard DTI scheme. Note that in the 

coronal view, the A-P directions (GH and IL) are not visible, and in the sagittal view, the L-

R directions (T) are not visible.

It is possible that the prescribed knowledge is incorrect due to an anatomical abnormality or 

error in its specification. Some variation is to be expected and can be compensated by 

selecting the weight assigned to the prior knowledge appropriately (see experiments below). 

However, when the prior knowledge varies grossly from the data, it is best to recognize this 

and adaptively downweight or remove this particular prior knowledge. For example, when 

there is one fiber direction (P = 1), the priors should not deviate much from that fiber 

direction; when there are two fiber directions (P = 2), the prior directions should be close to 

the plane defined by the two fiber directions, or in other words they are close to orthogonal 

to the normal of the plane.

One way of removing incorrect priors is to use the diffusion tensor information, which is 

calculated from the diffusion weighted images (DWIs). Suppose the first and third 

eigenvectors of the diffusion tensor are vd1 and vd3, respectively; vd1 provides an estimate of 

the fiber direction when there is no crossing fiber, and vd3 provides an estimate of the 

normal of the plane defined by the fiber directions when there are two crossing fibers. 

Accordingly, we discard prior fiber directions when
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(20)

Or

(21)

where ξ1 and ξ2 are thresholds.

2.4. Fiber Tracking

Given the FIEBR estimated fiber directions, fiber tracking can be carried out using a 

streamlining technique similar to Landman et al. [23]. Starting from a seed voxel, the fiber 

directions with f̃i > tmf are used to initiate fibers, where tmf is a threshold, because directions 

with small f̃i's are interpreted as components of isotropic diffusion. For each initiated fiber, 

at each step, one of the fiber directions in the current voxel is selected as the propagation 

direction until the fiber reaches the next voxel. In selecting fiber directions, only those with 

fĩ > tmf are considered. As in Landman et al. [23], the fiber direction that maximizes the 

importance weighting f̃i|vi · vlast|4 is selected. Here vlast is the unit propagation direction in 

the previous tracking step. Starting and terminating criteria based on fractional anisotropy 

(FA) are used. Only voxels with FA larger than a threshold tFA are used to initiate fibers, 

and when fibers reach FA values lower than tFA, they are terminated. Finally, a turning 

angle threshold θt is used: when the angle between the current and previous propagation 

directions is larger than θt, the fibers are terminated. In this work, tmf = 0.1, tFA = 0.2, and θt 

= 40°, which are common settings in other DTI fiber tracking algorithms [23, 33, 34].

2.5. Summary of Constants

A table summarizing the constants used in the proposed method is shown in Table 2. α, β, 

ξ1, and ξ2 are used in the mixture fraction estimation, and tmf, tFA, and θt are used in the 

fiber tracking process. Note that for α and β, different values are used based on the levels of 

noise. Their values are determined in Section 3.1.3 and are not listed in Table 2.

3. Results

FIEBR was first applied on a digital crossing phantom. Different settings of α and β (see 

Eqs. (7) and (11)) were tested with different levels of noise. In addition, we studied the 

influence of the accuracy of prior knowledge. Parameters learned from these computational 

phantom studies were used on the next set of experiments involving in vivo tongue diffusion 

data, where three control subjects and four patients with glossectomies were included. Fiber 

directions were estimated and muscle fibers were tracked on all seven subjects. These results 

are visualized for qualitative comparison and histograms of fiber directions are numerically 

evaluated for quantitative comparison.

3.1. Digital Crossing Phantom

A 3D crossing phantom with two tracts crossing at 90° was generated to verify the operation 

of the FIEBR algorithm. A two-tensor model is used for the generation of the simulated 

Ye et al. Page 9

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diffusion signals [35]. Figure 4 shows an axial view of this computational phantom. Twelve 

diffusion gradient direction acquisitions (with b = 500 s/mm2) were simulated and both 

FIEBR and CFARI [23] were applied to these data. The eigenvalues of the basis tensors 

were determined as described in Section 2.1 and they were also used for the phantom 

generation.

3.1.1. Noise-free Case—First we applied FIEBR on this noise-free phantom for a proof-

of-concept experiment. The horizontal and vertical directions—i.e., the correct directions—

were used as the prior directions for the horizontal and vertical tracts, respectively. A result 

with α = 0.5 and β = 0.05 is shown and compared with CFARI results (β = 0.05) in Figures 

4(a) and 4(b). Here the standard DTI color scheme is used. Since directions with small f̃i's 

are interpreted as components of isotropic diffusion, we only show directions with fĩ > tmf. 

In the crossing regions, CFARI fails to produce the correct crossing directions (Figure 4(a)), 

while FIEBR correctly generates the crossing pattern (Figure 4(b)).

Next, we studied the performance of FIEBR with inaccurate prior directions. To introduce 

errors in the prior directions, we rotated the true directions by θ = 10° and used the rotated 

directions as the prior directions. Two cases of rotations were tested: in and out of the axial 

plane. Specifically, in the first case the horizontal and vertical directions were both rotated 

clockwise in the axial plane; and in the second case the horizontal directions were rotated 

around the vertical line out of the axial plane and the vertical directions were rotated around 

the horizontal line out of the axial plane. The results of the two cases are shown in Figures 

4(c) and 4(d). In both cases, even with inaccurate prior directions, FIEBR correctly 

estimates noncrossing and crossing fiber directions.

3.1.2. Influence of Noise, Algorithm Parameters, and Prior Direction 
Inaccuracies—To make the simulation more realistic, we added Rician noise in the 

phantom test. We selected three sample voxels in the phantom: one in the noncrossing 

horizontal tract, one in the noncrossing vertical tract, and one in the crossing region. 

Different levels of Rician noise η in Eq. (2) were added to the sample voxels. We describe 

the noise level using the signal-to-noise ratio (SNR) S0/ση, where S0 is the b0 image 

intensity and ση is the scale of the Rician noise distribution. We also tested with different 

values of α, β, and prior direction inaccuracy θ. The inaccurate prior directions were 

obtained with in-plane and out-of-plane rotation by θ. The sets of the testing parameters 

were: S0/ση ∈ Ση = {+∞, 25, 12.5, 8.33}, α ∈ A = {0.1, 0.2,…, 0.9, 0.99}, β ∈ B = {0.05, 

0.2, 0.4,…, 2.0}, and θ ∈ Θ = {0°, 10°, 20°, 30°}. For each combination of S0/ση, α, β, and 

θ, 100 simulations were performed for each sample voxel.

To quantitatively evaluate the results, we define two error measures for angles:

(22)
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(23)

Here N1 is the number of directions with normalized mixture fractions f̃i larger than a 

threshold t (in this case t = 0.1), vi is the basis direction, uj is the ground truth of fiber 

directions, and N2 is the number of ground truth directions. N2 can be 1 or 2, depending on 

whether fiber crossing exists at the location. e1 measures how close the estimated directions 

are to the ground truth, and e2 measures how well each true direction is estimated. Note that 

using only e1 or e2 is insufficient because the estimated directions can agree with one of the 

true crossing directions and ignore the other, or each true direction can be properly estimated 

but there are other estimated directions representing incorrect directions.

Examples of the mean errors of the estimated fiber directions are plotted in Figures 5 and 6 

for S0/ση = 25, θ ∈ {0°, 10°}, α ∈ A, and β ∈ B. For the inaccurate prior directions rotated 

by θ, the results of the in-plane and out-of-plane cases are averaged. The results for the two 

noncrossing voxels are averaged as the noncrossing cases. Note that the cases with α = 0 are 

equivalent to CFARI results.

Figure 5 shows examples when noise of S0/ση = 25 is added to noncrossing voxels. Using 

the correct prior directions (θ = 0°) reduces the effect of noise (see Figures 5(a) and 5(c)). 

When errors are introduced in the prior directions, the effect of noise can still be reduced 

with the proper selection of α and β (see α = 0.4 and β = 1.2 in Figures 5(b) and 5(d)). 

Figure 6 gives examples of the crossing cases. It can be seen that the effect of noise can be 

reduced with true or inaccurate prior directions. Note that for θ = 10°, the errors can be 

smaller than 10°, which indicates the result is better than simply using the prior directions as 

the estimate.

3.1.3. Determination of Algorithm Parameters Based on Noise Levels—We used 

all the combinations of S0/ση, α, β, and θ to determine the best parameter settings for real 

data. For each combination of S0/ση, α, and β, we averaged the errors with different θ for the 

noncrossing and crossing cases separately. Then for each S0/ση, the α and β which minimize 

the average error using all the θ were selected for the noncrossing and crossing cases. Using 

the plots in Figures 5 and 6 and other similar plots not shown, the selection is summarized in 

Table 3. This table is later used to determine α and β in the real data application.

Based on Table 3, different α and β values are used for different levels of noise. To calculate 

S0/ση, we first estimate the image noise scale ση by placing a bounding box in the 

background. Here we assume the background noise follows a Rayleigh distribution, and 

can be estimated as [36]

(24)
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where Ii's are the intensities of the background voxels in the bounding box, and Nb is the 

number of these voxels. Then, ση is estimated as

(25)

Thus, at each voxel x, using the estimated noise scale σ̂
η, the b0 image intensity S0(x), and 

Table 3, we decide α(x) and β(x) as follows. In noncrossing regions:

(26)

In crossing regions:

(27)

In this way, the selected parameter pairs minimize the average errors at their corresponding 

noise levels.

3.2. In Vivo Tongue Diffusion Data

Experiments were then performed on in vivo tongue diffusion data, where three control 

subjects and four patients with glossectomies were included. DWIs were acquired on a 3T 

MR scanner (Magnetom Trio, Siemens Medical Solutions, Erlangen, Germany). Each scan 

has 12 gradient directions and one b0 image. The b-value is 500 s/mm2. The field of view 

(FOV) is 240 mm × 240 mm × 84 mm. TR/TE=5000/68 ms. The resolution is 3 mm 

isotropic. The acquisition of each subject took about two minutes and 30 seconds, which 

must be this short because the involuntary urge to swallow occurs about every two minutes. 

We applied FIEBR on the subjects using the parameter settings in Eqs. (26) and (27), which 

are computed independently for each voxel. The eigenvalues of the basis tensors were set as 

described in Section 2.1. For each subject, the FIEBR processing took around 10 minutes.

3.2.1. Application to Control Subjects—An example of the estimated fiber directions 

on a representative control subject is shown and compared with the PEV of the diffusion 

tensor and the CFARI algorithm [23] in Figure 7. In the mid-sagittal view, we highlight the 

regions of GG crossing with SL, and in the mid-coronal view, a region of GG/V and T 

crossing is highlighted. The PEV alone obviously cannot represent crossing fiber directions 

and the CFARI algorithm fails to resolve crossing fibers, while FIEBR is able to recover the 

crossing directions.
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In Figure 8, we plot the distribution of fiber directions in the whole tongue of this control 

subject for all three algorithms. The distributions are plotted on the upper part of the unit 

sphere and viewed from top. The surface of the hemisphere is divided into bins by 

discretizing the azimuth angle and the elevation angle. In each bin, the density is calculated 

by dividing the number of the fiber directions that fall in the bin by the bin area. In the 

FIEBR result, there are many L-R fiber directions, which are indicated by the bins near (−1, 

0) and (1, 0) (highlighted as region A in Figure 8(c)). The L-R directions represent the T 

fiber directions. There are also many fiber directions in the A-P direction, which are 

indicated by the bin near (0, −1) (highlighted as region B in Figure 8(c)). These directions 

represent the IL, GH, and part of GG fibers. The three bins on the negative part of the line x 

= 0 show the fanning pattern of GG fiber directions (highlighted as region C in Figure 8(c)). 

In the results from the PEVs and CFARI, far fewer L-R directions are observed.

Next, fiber tracking was performed for further validation of the fiber direction estimation. 

Using fiber tracking, we can evaluate the coherence of the fiber directions qualitatively. We 

placed seeds in GG and T separately. The results on the representative control subject are 

shown in Figures 9 and 10, where FIEBR is compared with both the FACT algorithm [11] 

and the fiber tracking method proposed in Landman et al. [23] that uses CFARI results. The 

visualization of fibers was created in TrackVis [37], where the fibers are color-coded by the 

orientation of each segment.

In Figure 9, it can be seen that many of the GG fibers produced by FACT and CFARI 

terminate due to the crossing of GG with T and SL, while FIEBR tracks GG through these 

crossing regions (see the highlighted region). It is also evident that FIEBR produces 

smoother and more fan-shaped GG fibers than FACT and CFARI. Note that because of the 

seeds placed in crossing regions, in the FIEBR result we can also observe that some T and 

SL fibers are tracked. In Figure 10, FACT fails to produce T fibers, and CFARI only 

produces T fibers at the anterior portion of the tongue, while FIEBR reconstructs transverse 

T fibers throughout the tongue.

3.2.2. Application to Patients with Glossectomies—We now show FIEBR results 

when applied to patients with glossectomies. An example and comparison of fiber tracking 

results is shown in Figure 11. Here we show the areas that are affected by the surgery near 

the mid-sagittal plane. Seeds were placed in GG. Compared to FACT and CFARI, FIEBR 

tracks GG through the crossing areas of GG and T (see the highlighted region). In the 

FIEBR result, it can be seen that sparser GG fibers in the lesion were tracked than outside 

the lesion. Note that because of seeding in the crossing regions of GG and T, some T fibers 

were also produced in the FIEBR result, and the T fibers are also sparser in the lesion than 

outside the lesion.

3.2.3. Comparison between Controls and Patients with Glossectomies—To 

investigate the influence of glossectomies on the muscles, we computed fiber direction 

histograms for all patients. The distributions of the fiber directions in the tongue are plotted 

in Figure 12. Compared with the distribution in Figure 8, patients 1, 3, and 4 show a similar 

organization of fiber directions, while patient 2 has a very different fiber organization. To 

quantitatively demonstrate this, we calculated the symmetric Kullback–Leibler divergence 
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for the direction distributions between the subjects and list the result in Table 4. It can be 

seen that the divergence values between patient 2 and other subjects are much larger than 

those between the other subject pairs. We also notice that patient 4 has a pattern that appears 

to be more similar to those of patients 1 and 3 than those of the control subjects.

4. Discussion

There is insufficient information for the CFARI algorithm to correctly resolve crossing 

fibers given DTI acquisitions with only 12 gradient directions. This is because there can be 

multiple solutions with the sparsity regularization alone and the output fiber directions can 

simply be dependent on the implementation of the optimization algorithm. Therefore, we 

further add prior directional information in the estimation problem to account for the 

insufficient information.

In the crossing phantom test, we observed that the inclusion of prior directional information 

enables the method to find the crossing patterns and reduce the effect of noise, even with 

inaccurate prior directions. The choice of the parameters should consider the factors such as 

noise levels and prior direction inaccuracy. Because the noise level can be estimated from 

the image but it is difficult to determine how accurate the prior information is, we tested 

different prior direction inaccuracies for each noise level, and used the average performance 

to decide the parameter setting for the real data application. These settings achieved results 

that are consistent with the anatomical structures of the muscles. For example, we have 

tracked transverse T fibers and fanning GG fibers.

In the experiments on real tongue data, FIEBR tracks crossing fibers better than FACT [11] 

with the single tensor model and CFARI [23] which usually requires around 30 gradient 

directions. The addition of prior knowledge can also have a smoothing effect on fiber 

tracking. For the patients, the method is still able to distinguish interdigitated muscles, such 

as GG and T. It also reflects the anomalies caused by glossectomies, where the GG and T 

fibers terminate in the lesion.

The case study between the subjects shows that the control subjects share a consistent 

pattern of fiber directions (indicated by the divergence values in Table 4). Less organized 

fiber directions were observed in patient 2 while the other three patients have similar fiber 

direction distributions to the control subjects. This could indicate that patient 2 is more 

affected by the glossectomy, where tongue muscles must be adapted to function after the 

surgery. We also observed that patient 4 is more similar to patients 1 and 3 than to the 

controls, which is consistent with the fact that patient 1, 3, and 4 all underwent 

glossectomies. This case study provides a possible example of applying the proposed 

method for clinical use.

Segmentation of the muscles is currently obtained by registration of a template. It provides 

general locations of the muscles but it is possible that mis-registration can happen at the 

boundaries. Therefore, before using the prior knowledge, we inspect the agreement between 

the prior directions and the diffusion information as shown in Eqs. (20) and (21) to reduce 

the influence of inaccurate prior directions. In the future, the registration could be replaced 

by a carefully designed volumetric segmentation algorithm to improve the segmentation 
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accuracy. In the brain, such algorithms have been developed—e.g., Bazin et al. [38], Ye et 

al. [39], and Yendiki et al. [40]. There is also an effort that segments the ex vivo calf tongue 

muscles [3]. These methods could be adapted and then applied on the human tongue muscles 

to provide better ROIs of muscles.

Unlike the major brain white matter tracts, the geometries of the tongue muscles are 

relatively simple and their fiber directions do not have large variability. This anatomical 

simplicity allows us to compute prior directions and use them for reconstructing tongue 

muscles. It is also possible to apply the FIEBR algorithm to other simple structures such as 

the mylohyoid muscle and the palatopharyngeus muscle. For complex structures like white 

matter tracts, specification of prior directions is not straightforward and would need further 

investigation.

5. Summary and Conclusion

In this work, we have proposed a Bayesian approach to distinguishing interdigi-tated tongue 

muscles with limited diffusion magnetic resonance imaging by incorporating prior 

directional knowledge. The diffusion weighted signals are modeled with a fixed tensor basis. 

We use MAP estimation, where the prior directional information and the sparsity of the 

basis tensors are included in the prior distribution, and data fidelity is ensured in the 

likelihood term. The fiber directions are estimated by solving the resulting weighted ℓ1-norm 

regularized least squares problem. Using the estimated fiber directions, a fiber tracking 

method is also presented.

The method was first applied on a digital crossing phantom for quantitative evaluation, and 

the results show that the use of prior information can correctly resolve crossing fibers and 

reduce the effect of noise. Based on the phantom results, parameter settings were determined 

for real data. Then the experiments were performed on in vivo tongue diffusion data and the 

results demonstrate that the proposed method is able to resolve crossing tongue muscle 

fibers with limited gradient directions. A case study on three control subjects and four 

patients with glossectomies shows that the method can reveal the difference in fiber 

direction distributions between subjects. In particular, the Kullback−Leibler divergence 

values indicate that one of the patients is observed to have quite different organizations of 

fiber directions than the other subjects. This case study provides a potential tool to examine 

the influence of glossectomies on tongue muscles.
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Highlights (for review)

• We resolve crossing tongue muscles with limited diffusion gradient directions.

• We use prior direction knowledge and formulate the problem in an MAP 

framework.

• Fiber directions are estimated using a noise-aware weighted L1-norm 

minimization.

• The method reduces the effect of noise and resolves crossing fibers.

• The method was applied on patients to show its potential for clinical use.
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Figure 1. 
An example of fiber tracking seeded in the transverse muscle, which in this axial view 

should be seen as left to right (red) streamlines. Each segment of the fibers is color-coded by 

the standard DTI color scheme (red: left-right; green: front-back; and blue: up-down). (a) 

DTI model. (b) Multi-tensor model. (c) Proposed method with prior information.
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Figure 2. 
The muscles on the template in the sagittal view and coronal view. Note that muscles shown 

together are not overlapping.
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Figure 3. 
(a) A schematic of GG and SL fiber directions (sagittal view). (b) An example of prior fiber 

directions on a test subject in the mid-coronal view and mid-sagittal view. The directions are 

color-coded by the standard DTI scheme. Note that in the coronal view, A-P directions (GH 

and IL) are not visible, and in the sagittal view, L-R directions (T) are not visible.
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Figure 4. 
Axial view of the FA of the crossing phantom. Estimated fiber directions from (a) CFARI 

and (b)-(d) FIEBR when (b) the prior directions are correct, (c) the prior directions are 

rotated by 10° in the plane, and (d) the prior directions are rotated by 10° out of the plane.

Ye et al. Page 22

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Mean e1 and e2 errors in the noncrossing cases with S0/ση = 25 and different θ, α, and β.
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Figure 6. 
Mean e1 and e2 errors in the crossing cases with S0/ση = 25 and different θ, α, and β.
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Figure 7. 
Estimated fiber directions from FIEBR compared with the PEV and the CFARI algorithm: 

(a) mid-sagittal view and (b) mid-coronal view. Note the highlighted regions for 

comparison.
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Figure 8. 
Distribution of fiber directions of a representative control subject plotted on the upper unit 

sphere. The hemisphere is viewed from top. Regions are highlighted in the FIEBR result for 

evaluation.
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Figure 9. 
Fiber tracking results seeded in GG. Note the highlighted region for comparison.
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Figure 10. 
Fiber tracking results seeded in T. Note the highlighted region for comparison.
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Figure 11. 
Fiber tracking results seeded in GG on a patient with a glossectomy. The results are shown 

near the lesion, which was delineated on the sagittal slices near the mid-sagittal plane. Note 

the highlighted region for comparison.
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Figure 12. 
Distributions of fiber directions of the patients plotted on the upper unit sphere. The 

hemisphere is viewed from top.
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Table 2

A summary of the constants used in the proposed method.

Constants Default Values

Mixture Fraction Estimation

α N/A

β N/A

ξ1 π/4

ξ2 π/4

Fiber Tracking tmf 0.1

tFA 0.2

θt 40°
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