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Abstract

Computerized evaluation of histological preparations of prostate tissues involves identification of 

tissue components such as stroma (ST), benign/normal epithelium (BN) and prostate cancer (PCa). 

Image classification approaches have been developed to identify and classify glandular regions in 

digital images of prostate tissues; however their success has been limited by difficulties in cellular 

segmentation and tissue heterogeneity. We hypothesized that utilizing image pixels to generate 

intensity histograms of hematoxylin (H) and eosin (E) stains deconvoluted from H&E images 

numerically captures the architectural difference between glands and stroma. In addition, we 

postulated that joint histograms of local binary patterns and local variance (LBPxVAR) can be 

used as sensitive textural features to differentiate benign/normal tissue from cancer. Here we 

utilized a machine learning approach comprising of a support vector machine (SVM) followed by 

a random forest (RF) classifier to digitally stratify prostate tissue into ST, BN and PCa areas. Two 

pathologists manually annotated 210 images of low- and high-grade tumors from slides that were 

selected from 20 radical prostatectomies and digitized at high-resolution. The 210 images were 

split into the training (n = 19) and test (n = 191) sets. Local intensity histograms of H and E were 
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used to train a SVM classifier to separate ST from epithelium (BN + PCa). The performance of 

SVM prediction was evaluated by measuring the accuracy of delineating epithelial areas. The 

Jaccard J = 59.5 ± 14.6 and Rand Ri = 62.0 ± 7.5 indices reported a significantly better prediction 

when compared to a reference method (Chen et al., Clinical Proteomics 2013, 10:18) based on the 

averaged values from the test set. To distinguish BN from PCa we trained a RF classifier with 

LBPxVAR and local intensity histograms and obtained separate performance values for BN and 

PCa: JBN = 35.2 ± 24.9, OBN = 49.6 ± 32, JPCa = 49.5 ± 18.5, OPCa = 72.7 ± 14.8 and Ri = 60.6 

± 7.6 in the test set. Our pixel-based classification does not rely on the detection of lumens, which 

is prone to errors and has limitations in high-grade cancers and has the potential to aid in clinical 

studies in which the quantification of tumor content is necessary to prognosticate the course of the 

disease. The image data set with ground truth annotation is available for public use to stimulate 

further research in this area.
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1. Introduction

Prostate cancer (PCa) remains the most commonly diagnosed cancer in men in developed 

countries. Fortunately, cancer deaths are steadily declining despite a fairly steady rate of new 

incidences per year [1]. Microscopic evaluation of prostate needle biopsies is the gold 

standard for PCa diagnosis and criteria have been established to manage patients based on 

histopathologic observations in the biopsy and radical prostatectomies. While normal glands 

are organized into ducts and acini and well separated by stroma, as PCa develops, the 

malignant acinar structures undergo excessive branching morphogenesis. This is the reason 

for the histological appearance of small and tightly packed glands with little or no 

intervening stroma that has become a diagnostic hallmark of low-grade PCa. The 

architecture in high-grade cancer is different. Cancer cells form glands within glands 

(Gleason grade 4 (G4) cribriform) loose their ability to form glands that possess a lumen 

(G4 non-cribriform) or grow in sheets (G4 or G5) [2]. The association between the severity 

and growth pattern of the prostate cancer provides the basis for the Gleason grading scheme 

[2,3], which is used clinically. Accurate grading by pathologists requires extensive 

experience and is occasionally associated with disagreement about low- versus high-grade 

diagnostic interpretation. In fact, in the early days of the Gleason grading scheme, the inter-

observer reproducibility to distinguish low-grade (Gleason grade 3 (G3)) from high-grade 

tumor growth patterns (G4) ranged between 25% and 47% depending on the grade 

distribution in the study cohort [4–6].

One way to potentially improve the reproducibility and accuracy of tumor grading is through 

a computer-assisted approach. Tools for recognition and quantification of morphological 

characteristics, which correlate with individual Gleason grades have been under intense 

development by computational pathology researchers. The vast majority of software 

algorithms for image analysis employs context-based gland quantification to distinguish 

benign/normal tissue from low- and high-grade areas of cancer [7–12]. As a starting point 
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for image analysis, a typical scenario involves the generation of image tiles with several 

areas of tumor cells, which receive a grade annotation by an experienced pathologist. A set 

of descriptors that reflect the cellular organization, inflammation or various secretions is first 

extracted from the image tiles and then classified according to the cancer grade annotation of 

the image. Typically, the image content of the entire tile is predefined as stroma (ST), 

benign/normal (BN), low-grade (G3) or high-grade (G4) cancer [13,14].

Numerous approaches have been developed to capture the growth pattern of prostate 

cancers. Existing techniques involve various kinds of image features to capture growth 

patterns that are related to color, texture and nuclear topology [7–11,14].

Yet, the performance of these classification methods varies greatly. The uniformity of the 

image content, ideally with only one tissue component in each tile, has a major impact on 

the accuracy of the tissue classification. For images with heterogeneous content, such as 

those from cancer tissues, which contain admixtures of benign structures and cancer, the 

performances of the classifiers decline. While the speed of evaluating the entire slide 

constitutes a major advantage of the tile-based analysis, the approach has several 

shortcomings. The impact of the tile size, which varies among studies on the performance of 

the classifier, is unknown. Moreover, the predictive power of tissue descriptors and 

classifiers can be artificially high, if training and validation is performed on small sets of 

tiles (usually <100). This problem is particularly grave in prostate cancer since large tiles 

with homogenous tissue content cannot be generated in sufficient quantity.

To overcome the problems that are caused by tissue heterogeneity, tissue classes can be 

manually delineated by a pathologist for algorithm training and validation [13,15–17]. The 

training set consists of similar manually annotated tissue regions. While this approach is 

more laborious, it provides additional opportunities for computational image classification 

[15–17]. Low-power image magnification (<20×) is often employed for prostate cancer 

image analysis mainly, because it is the most efficient way to manually grade prostate cancer 

[7,8,10] [15]. However, a recent study shows the improved performance of high-resolution 

imaging. In the work published by Kwak et al. [16], 21 intensity and 42 texture features 

(including local binary patterns) were utilized to segment stroma from the epithelium and 

the analysis was conducted on 4 different resolution scales. The training was performed 

manually by a pathologist and ROC curves showed high concordance rates with final 

algorithm output. However, since the robustness of image analysis is a complex product of 

the quality of manual ground truth, image resolution and tissue heterogeneity, it is important 

to determine the effect of each component on the accuracy of segmentation

Recently, machine learning approaches have become popular to quantify tumor areas in 

histopathological preparations. When expression of protein biomarkers in breast cancer 

specimens was visualized by staining with antibodies and quantified by image analysis, 

human and software-derived annotations showed strong agreement in the classification of 

cancer areas. Furthermore, software developed by academic or commercial groups 

efficiently separated cancer from stroma within image tiles on a sub-tile resolution [18,19]. 

However, quantitative analysis of specimens stained with hematoxylin and eosin (H&E), 

which is routinely used for histopathologic evaluations, is much more challenging and the 

Gertych et al. Page 3

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



development of software for analysis of H&E stained slides is the main determinant of the 

pace at which the image analysis field advances.

Since benign prostate glands and G3 and G4 cancer areas are morphologically distinct from 

stroma in H&E stained tissue sections, the differences can be numerically captured by image 

analysis. These slide preparations provide an ideal starting point to demonstrate the power of 

machine learning tools for classification of H&E images on a sub-tile resolution. In other 

words, instead of classifying the whole tile content into one class, a machine learning tool 

can classify individual pixels and deliver pixel-based tissue quantifications. Towards the 

development of such tools, our team designed three separate classifiers to identify and 

quantify areas of stroma in images with benign glands, or G3, or G4 prostate cancer with 

excellent performance [17]. In contrast to other methods, the histograms composed of pixels 

from H&E intensity measurements that we utilized to describe and classify images were 

superior to histograms of oriented gradients and provided the highest tissue classification 

rates. Encouraged by the preliminary results, we continued to improve the approach through 

the employment of intensity features combined with a more complex texture features for the 

capture of patterns within areas of glandular architecture. The tissue segmentation results 

were compared to manual annotations by a pathologist in a large set of high-resolution 

images of radical prostatectomies. Overall, this approach combines improvements in 

classification performance and speed and is ready for preliminary testing in prognostic and 

predictive biomarker studies.

2. Materials

Radical prostatectomy specimens from 20 patients with a diagnosis of G3 or G4 prostate 

cancer according to the contemporary grading criteria [2,3] were retrieved from archives in 

the Pathology Department at our institution under an Institutional Review Board approval 

no. Pro00029960. Slides were digitized by a high resolution whole slide scanner SCN400F 

(Leica Biosystems, Buffalo Grove, IL) dedicated for pathology research. The scanning 

objective was set to 20× and the focusing was automatically adjusted by the scanner. The 

output was a color RGB image with the pixel size of 0.5 μm × 0.5 μm and 8 bit intensity 

depth for each color channel. We utilized freely available libraries from OpenSlide.org [20] 

to import Leica (.scn) images, select histopathologically important fields of view (FOV) that 

were converted to TIFFs for methods development. Furthermore, the FOVs were split into 

tiles of 1200 × 1200 pixels for image analysis. Of the total 5000 tiles, a subset of 210 images 

was selected by pathologists (SM, SB) who identified ST, BN glands, G3 cancer and G4 

cancer containing cribriform and non-cribriform growth patterns. Depending on their 

content, tiles were categorized into groups (Table 1), and then annotated manually using a 

custom graphical user interface (GUI) which we specifically developed for this task (Fig. 1). 

The GUI facilitated: (a) import–export of images in common formats (tiff, jpg, png, etc), (b) 

free-hand contouring with the capability of an intuitive contour closing and space filling of 

the contour, (c) tissue labeling by colors: high-grade tumor (red), low-grade tumor (yellow), 

benign/normal glands (blue) and stroma (cyan), (d) easy correction of wrongly delineated 

areas, and (e) delineation of stroma by using a semi-automatic image flood-filling procedure 

after all glandular annotations are finished. At the end of this procedure all annotated image 

tiles were returned to pathologists for cross-evaluation.
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3. Methods

3.1. Overview of the image analysis strategy

Tissue classification based on H&E images is a challenging and computationally expensive 

process [13,19]. Our approach involves the stratification of prostate tissue in two sequential 

steps: (1) separating stroma (ST) from the epithelium (EP) and (2) differentiating of benign/

normal glands (BN) from prostate cancer (PCa) (Fig. 2). In each step only two tissue classes 

are analyzed at once. In step 1, a mask covering epithelial areas is generated to facilitate 

recognition of BN and PCa tissues in the next step. This strategy is significantly different 

from other published approaches [8–10,13], because it does not involve the per se glandular 

segmentation and extraction of glandular features. Many gland segmentation approaches 

known to date [9,21–24] are based a priori on the segmentation of nuclei, and use the 

glandular lumen to recognize the presence of glands. However, nuclear segmentations often 

fail in dense, overstained or understained tissue areas and glandular lumens can be occluded 

by corpora amylacia or secretions. Furthermore, empty spaces caused by tissue retraction 

artifacts or blood vessels can falsely be recognized as glandular lumens. In areas of high-

grade cancer lumens are absent or difficult to detect. To overcome the limitations of existing 

methods, we formulate the problem as pixel-wise semantic segmentation based on intensity 

and texture descriptors that are extracted from images after color deconvolution. We apply 

novel and robust descriptors to distinguish BN from PCa. Due to the complexity of the 

cellular architecture in prostate tissue, different classifiers and descriptors are utilized at each 

step (Fig. 2). Since non-epithelial tissues such as ST are morphologically less heterogeneous 

than BN glands and PCa, the computational expense can be decreased by removing ST 

before analyzing glandular structures.

Our methodology was developed based on the following premises: (a) the density of 

epithelial nuclei is higher than the density of stromal nuclei, (b) the intensity of eosin is 

different in ST versus BN glands and areas of PCa and (c) the texture of hematoxylin and 

eosin in glands differs from the texture in ST. Hence, we utilize the difference in pixel 

intensity characteristics of eosin and hematoxylin to classify areas of prostate tissue. The 

classifiers are able to distinguish the three tissue classes based solely on the descriptors 

(intensity and/or texture histograms) that are extracted from hematoxylin (H) and eosin (E) 

image stains after color deconvolution [25]. The color deconvolution algorithm developed by 

Ruifrok and Johnston, was used to process RGB color images for digital separation of 

immunohistochemical dyes in a tissue image and performs well even if the dyes have 

overlapping absorption spectra or co-localize in same cellular compartment. Using optical 

density vectors of the pure dyes and an ortho-normal transformation of image intensities the 

algorithm deconvolves optical density of dyes for all image pixels. As a result, blue 

hematoxylin and pink eosin images are obtained as single channel intensity images. For 

details regarding color deconvolution the reader is referred to [25].

Histogram-based features are extracted by sliding a window W over H and E images with 

the interval of W/4 in horizontal and vertical directions. Descriptors are calculated for W 
and assigned to its central pixel. Descriptors for the remaining pixels are obtained via 

bicubic interpolation and then classified. Descriptors obtained this way form a three 
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dimensional descriptor matrix with x and y dimensions that are same as in the input image 

and the z-dimension determined by the descriptor length. W slides from the top left corner to 

the bottom right corner vertically and horizontally throughout the image and stops 

systematically at W/4 intervals (defined by x and y) to calculate the descriptor (histogram). 

Subsequently, the descriptor is inserted to the three dimensional matrix and at x and y 

positions defined by W/4 intervals. Descriptors at image borders are calculated after 

mirroring pixels that are up to W/2 away from the image border. The mirroring provides a 

sufficient number of pixels to calculate a descriptor at pixels for which W positioned at the 

upper left corner and along the borders of the original image. A bicubic interpolation is then 

applied to the three dimensional descriptor matrix to obtain values at positions not visited by 

W. It is applied to each z-plane separately using a third degree polynomial and values from a 

4 × 4 grid of descriptor components at which W stopped.

Prior to color deconvolution, images are color-normalized [26] to account for variability in 

staining intensity. Bright areas (background and lumens) are removed by thresholding of 

gray-level images obtained from color-normalized H&E images. This intensity threshold 

was manually optimized and set to the value of 210. The resulting binary mask of the 

background is cleaned up by removing isolated blobs with areas smaller than 50 pixels 

followed by a morphological closing with a flat disk-like structuring element with the radius 

of 7. Pixels under the background mask are excluded from analysis.

3.1.1. Intensity and texture histograms of hematoxylin and eosin stained 
images—Prediction of tissue content requires a set of descriptors–numerical features 

extracted from images that have the capacity to capture differences in tissue morphology. 

Tissue descriptors utilized in our study are divided into two groups: intensity histograms and 

joint distributions of the uniform rotation-invariant local binary patterns and rotation 

invariant local variance. The first type of histograms represents a distribution of pixel 

intensities, whereas the second histogram represents the spatial relationships (mostly 

differences) between intensities of pixels, which have a close proximity. Thus, the second 

type is an image texture descriptor.

Our approach utilizes texture and intensity based features that are extracted from 

hematoxylin and eosin images after color deconvolution (Fig. 3). For each image pixel the 

descriptors: (a) intensity histograms: Hist(H) and Hist(E) and (b) joint distributions of the 

uniform rotation-invariant local binary patterns (LBP) [27] and rotation invariant local 

variance (VAR) [27] denoted as  (H) and 

(E) respectively for hematoxylin and eosin. P and R denote neighborhood size and radius for 

LBP and VAR. riu2 stands for the uniform rotation-invariant type of LBP. To obtain the 

 descriptor the intensity and contrast insensitive histogram  is 

combined with a single value representing image contrast VARP,R. The resulting 

 descriptor is a one-dimensional histogram with length k × n, where: k 

is the number of quantizing levels of VARP,R and n is the length of the  histogram. 

Since each image pixel can contribute one  and VARP,R it makes sense to calculate 
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 for pixels in a window W. For instance, for a 10 bin long 

histogram and VARP=8,R=1 quantized as 1 the bins of  histogram are added to 

the first 10 bins of . If VARP=8,R=1 is quantized as 3, then the 

bins of  are added to the third tenth of bins in . We 

quantized VARP,R into 8 bins. After calculating all  histograms in W and sorting 

them according to values of VARP=8,R=1, the joint  histogram 

will be 8 × 10 = 80 bin long. Source codes for calculating LBP and VAR can be found here 

[28].

The Hist(H), Hist(E) and  descriptors are derived from a N × N pixel 

window W centered at each image pixel. Intensity histograms Hist(.) are sorted into 18, and 

each  into (P + 2) × 8 equally spaced bins. Paired values of P = {8,24} 

and R = {1,3}, are tested for best classification performances. For deconvoluted H and E 

images the histograms: Hist(H), Hist(E),  (H) and 

(E) are concatenated, and then used as descriptors for tissue classification.

The window size N depends on scanner resolution and needs to be chosen to provide enough 

data points to derive meaningful descriptors. According to [17] several G3 glands fit W with 

N = 64 and may be sufficient to obtain spatial precision in predicting ST and EP. Since its 

impact on epithelial stratification is unknown, we tested performance of descriptors obtained 

for N = {64, 128, 256}. The prediction of ST and EP regions is conducted using full size 

images (highest resolution). Prior to extracting the descriptors for the epithelial stratification 

(Fig. 2) the image was downsized by 50% with bicubic interpolation to reduce computation 

and storage costs.

4. Classifiers training

4.1.1. Stromal and epithelial descriptors

The first step in the proposed tissue prediction workflow (Fig. 2) is to train an algorithm to 

separate stroma from the epithelium. Training descriptors are extracted from windows W, 

which were manually and independently placed over tissue areas by two pathologists (SM, 

SB) (Fig. 4). Using a graphical user interface, the pathologists placed W over regions with 

homogenous tissues patterns of stroma (ST category) or epithelium (EP category). Stromal 

windows were placed mostly over fibroblasts between glands. Some windows were placed 

over blood vessels, erythrocytes, muscles and immune cells. To generate a training set with 

different epithelial content: BN, G3 and G4 areas were used.

After a window was placed, the interface automatically loaded up corresponding file with 

pre-calculated descriptor matrix and extracted a sample associated with the selected window. 

The sample was then labeled as either ST or EP by a pathologist. The two pathologists 

worked independently and selected respectively 92 and 60 windows with equal number of 

ST and EP components. Up to 4 ST and up 4 EP windows within a single H&E image were 

picked, and only 19 H&E images from the entire collection of 210 images were used. Two 
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training sets: ST-EP1 and ST-EP2 were formed from samples extracted by the first and the 

second pathologist. A third training set: ST-EP3 was generated by concatenating ST-EP1 

with ST-EP2. The training sets contained Hist(H), Hist(E) descriptors that together were 36 

bins long (b). Hist(H) and Hist(E) were normalized by dividing each bin by the total number 

of pixels in W. The training samples were z-transformed before training the classifier. Using 

ST-EP3 a test involving non-interpolated Hist(H), Hist(E) descriptor matrices was ran to 

compare tissue classification performances obtained for the interpolated Hist(H), Hist(E) 

descriptor matrices. Classification results were validated using the remaining 191 images 

(test set) annotated by pathologists.

4.1.2. Benign/normal and PCa descriptors

BN and PCa training samples for RF classifier training were selected in a semi-supervised 

manner. Annotations provided by pathologists were mapped onto matrices with pre-

calculated histograms to find those specific for BN and PCa (Fig. 5), and the mapping was 

continued for multiple images. Training samples found in this way were automatically 

labeled as either BN or PCa. We used the same set of 19 training images and extracted 

samples for all pixels covered by pathologist annotations. This process yielded a very large 

(6th magnitude order) training set with redundant and highly correlated samples. To reduce 

their number we randomly selected only 25% of the samples for each tissue type. We tested 

the effect of descriptor sampling variability on the tissue prediction performance (see 

Section 7).

Hist(H), Hist(E),  (H) and  (E) histograms were 

used to configure 10 different types of descriptors (Table 2) and train RF classifiers to test 

their predictive power. After the 25% reduction the remaining 561,562 samples were used to 

train the RF classifiers. The proportions of BN and PCa used for training constituted 

respectively 45% and 55% of the total number of samples.

5. Classifiers

We trained two different types of classifiers to predict prostate tissue components. For 

stromal and epithelial tissues a support vector machine (SVM) [29] was chosen. For each of 

the training sets, ST-EP1, ST-EP2 and ST-EP3, a separate SVM classifier with Gaussian 

radial basis function with width of σ = 15 was trained. The output of the SVM classifier was 

a binary image with “1” masking epithelial and “0” masking stromal pixels respectively.

To stratify epithelial pixels into BN and PCa categories a random forest (RF) classifier with 

20 trees was trained with each of the ten descriptor types from Table 2. The RF provided 

labeled binary output with “2” representing BN and “3” representing PCa. All image 

analysis tasks including classification were performed in MATLAB R2013b (Mathworks, 

Natick, MA).

6. Validation

To assess classification performance of the proposed system several measures of agreement 

that are frequently applied when a computed result (C) is compared to a manual ground truth 
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(G) were computed. The measure include the area overlap (O), Jaccard similarity coefficient 

(J) and Rand index (Ri) [30] and are defined respectively as: , 

 and  where, a is the number of pairs with elements 

that are in the same set in G and in the same set in C, b is the number of pairs with elements 

that are in different sets in G and in different sets in C and  is the total number of 

possible unordered pairs in the dataset were used. The Rand index is a widely accepted 

method for the evaluation of classification and clustering results. An O, J and Ri yield 1 for a 

perfect agreement. A score of 0 shows a complete disagreement between G and C. For this 

work the range [0 1] was linearly scaled to [0 100] to facilitate comparison with published 

results. Similarly to Salman et al. [17], the background areas including lumens were 

removed from G and C before the validation.

7. Results

7.1.1. Stroma–epithelium separation

Utilizing data from clinical images and the presented framework, we first tested the 

performance of our approach in the separation of stroma from the epithelium. Three training 

sets: ST-EP1, ST-EP2 and ST-EP3 containing respectively 50% of stromal and 50% epithelial 

samples with Hist(H), Hist(E) descriptors (descriptor 1 in Table 2) were used to train three 

separate SVM classifiers: SVM(ST-EP1), SVM(ST-EP2) and SVM(ST-EP3). Their 

classification performance was compared to a method published by Chen et al. [31] that 

predicts ST and EP based on distances of color component ratios from centroids derived 

from k-means clustering. Chen's method was retrained on our data set. Furthermore, the 

training set, similar to ours, involves areas that are manually selected by a user. Results in 

Table 3 were obtained by evaluating the significance of the differences between groups with 

the Tukey's Studentized range test with a Bonferroni correction of α = 0.056. Differences in 

JST for all classification methods were not significant. JEP from all SVM-based results was 

higher from JEP obtained by Chen's method (p < 10−4). OST from Chen's method was not 

significantly higher than OST obtained for SVM(ST-EP1). Yet, SVM (ST-EP1) and Chen's 

classification methods yielded higher values (p < 10−4) comparing to SVM(ST-EP2) and 

SVM(ST-EP3). On the other hand, SVM(ST-EP2) and SVM(ST-EP3) yielded highest OEP 

than the other two methods (p < 10−4). Ri value for Chen's method was much lower than Ri 

of any of the SVM based methods (p < 10−4). Fig. 6 shows classification results of Chen's 

and our method. Chen's method often misclassified blood vessels as glands. In addition, it 

misclassified the eosinophilic cytoplasm of glandular luminal cells as areas of stroma. 

Therefore, the overall misclassification rate was higher than with the proposed framework. 

For this comparison, Chen's method was trained using the same pathologist delineated 

images used in training of our method.

A SVM(ST-EP3) classifier that was separately trained using non-interpolated matrices of 

Hist(H), Hist(E) descriptors yielded the following rates: JST = 58.9 ± 20.32, JEP = 58.73 

± 16.74, OST = 81.13 ± 9.84, OEP = 72.36 ± 20.64 and Ri = 65.25. The calculation of the 

descriptor matrix without interpolation was 180 s versus 2 s for the calculation of an 

interpolated descriptor matrix.
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7.1.2. Prediction of benign/normal and PCa

The identification of areas with epithelial glands was tested individually using 10 different 

descriptor s (Table 2), random forest (RF) classifiers and sliding windows with three 

different sizes of 64, 128 and 256 pixels. The values for pixel-based descriptors were 

extracted and then classified to predict the tissue content. RF classifiers were trained as 

shown in Fig. 4. The prediction performance of BN and PCa was first evaluated in the 

training set containing 19 images (Table 4) and then in the test set with 191 images (Table 

5). First, the training error of the RF models was assessed on the 19 training images. Since 

only 25% of the samples were used in the training phase, the idea of measuring the 

predictive performance for all the descriptors on the training images could serve as an 

indirect assessment of prediction accuracy. Table 4 shows average performances of best and 

worst performing descriptors, whereas Table 5 shows results for all descriptors and all three 

window sizes. Fig. 7 shows one of the images as an example, after applying our method.

7.1.3. Effects of sampling variability

Building a RF classifier that involves multiple descriptors can be computationally expensive. 

To reduce the computational burden we determined the fraction of pixels that is needed for 

adequate performance of the classifier. To this point we conducted two experiments in which 

we randomly sub-sampled the training set and measured the classifier performance. In the 

first experiment, we gradually decreased the percentage of the samples used for training 

(100–5% range with 5% interval and 4.5–0.5% with 0.5% interval, respectively) and 

observed the performance of an RF classifier in the training set of 19 images by measuring 

the out-of-bag error (OOB) and the Jaccard index for BN and PCa areas (Fig. 8). OOB is the 

unbiased classification error estimated during the RF classifier training involving 

approximately 1/3 of cases that were not used to construct trees [32]. The performance 

measured for 100% of the training samples was used as a baseline. For 20 trees the OOB 

error was 1.62% and it increased to 1.65% for the sampling rate in the range of 20–100% 

(Fig. 8a). In this range JPCa and JBN increased respectively from 55.39 to 55.58 and from 

66.25 to 66.72 (Fig. 8b). A decrease of the sampling rate below 25% resulted in an increase 

of OOB and in a decrease of Jaccard indices. Second, we trained 10 RF classifiers with 10 

different sets of sub-samples, each one of only 25% of the original size. The performance 

was measured using the Jaccard index for BN and PCa. Since no statistically significant 

difference in results was noted between results from the 10 versus 20 RF classifiers (paired 

t-test yielded p < 0.05) we collectively assumed that the random selection of 25% of 

descriptors can be used to reduce the computational burden of the classifier training without 

influencing the results of the performance of tissue classification in the test set.

8. Discussion

The main goal of this study was to develop, implement and validate a machine learning 

approach for computer-assisted classification of images from histopathologic preparations of 

prostate tissues. For this purpose, we implemented a workflow with 210 images, divided into 

training and test sets and annotated by pathologists to stratify pixels in image tiles into 

stroma, benign/normal glands and prostate cancer using binary SVM and RF classifiers. The 

results from our classifications were evaluated by comparison to the manual delineation of 
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tissue structures and the performance of our classifier reported by calculating the overlap 

between the computational approach and the pathologist.

8.1.1. Prediction of stromal and epithelial areas

The proposed framework for predicting areas of epithelium in digital images from sections 

of prostate tissue differs from previous approaches in [7,8,10] in terms of image acquisition 

gold standard data (i.e., the annotation of images by a pathologist), and methodology design. 

First, studies reported in [7,8,10] utilized 40, 62 and 44 images that were acquired with 5×, 

1.25× and 4× objective magnification respectively. In contrast, we utilized a 20× objective in 

this work. Second, the main goal of previous studies was to segment and then classify glands 

based on identification of opened glandular lumens. For example, in a study by Nguyen et 

al. [8] glands without opened lumens were not included in their evaluation. Another 

approach [7] utilized luminescence image channel thereby ignoring the color information in 

the images, which resulted in gland segmentation that was solely based on the presence of 

bright pixels in opened lumens. Likewise, k-means based clustering of principal components 

of image intensity applied to detect open lumens of benign and PCa glands proposed in 

Yahui et al. [10] scored poorly, because 84% of low- and high- grade PCa glands segmented 

by this method were not accepted by pathologist. While the glandular lumens are prominent 

in the majority of BN glands and G3 cancer, they do not exist in cancer areas of non-

cribriform G4 growth patterns. Thus, as the three previously published gland-segmentation 

methods rely on opened glandular lumens, they cannot be applied for analysis of prostate 

cancer with non-cribriform G4 or G5 growth patterns. However, since only glands with 

lumens were used in the gold standard, the JEP = 66 reported by Nguyen et al. [8] is higher 

than the one calculated with our best method (JEP = 59.5) or with the one from Monaco et al. 

(JEP = 31) [7] as shown by Nguyen et al. [8]. For these reasons, a direct comparison of our 

approach with other methods that rely on the detection of glandular lumens may not be fully 

justified. For such a comparison the testing and training of all the methods should be 

performed on the same dataset.

To the best of our knowledge the only published method that does not depend on glandular 

lumens was proposed by Chen and colleagues [31]. Similarly to our approach, Chen's 

method solely requires manual training and is not affected by the scanning magnification. 

Although this method can predict stroma with OST = 75.0, the performance of classifying 

epithelial areas, as assessed by JEP, OEP, Ri, is significantly lower than the performances of 

our SVM-based classifier when applied to same set of 191 images from our collection. The 

selections of 92 and 60 windows were performed independently by two observers. Both sets 

of windows selected for training were placed away from ST-EP borders to reduce the chance 

of including descriptors from neighboring tissues of another type. Essentially, training 

windows labeled as ST did not contain EP pixels and vice versa. The performance rates 

obtained from all three sets of training windows (ST-EP1, ST-EP2 and ST-EP3) were 

generally superior to those from the reference method Chen et al. [31]. Tissue predictions by 

our as well as Chen's method are less accurate in areas that consist of heterogeneous tissue 

types or that contain glands with a small number of nuclei due to the plane of sectioning. 

Errors of this kind can also be seen in Fig. 2 of [16]. Since only the epithelial classification 
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is critical for diagnostic purposes, it is unlikely that further refinements of the Chen's method 

will provide adequate assistance for histological diagnoses.

In addition Kwak and colleagues [16] have shown very promising concordance rates based 

on ROC curves between manual and computer generated segmentations of stroma and 

epithelium in whole slide analysis using a multiresolution approach. However, it is unclear 

how this algorithm would perform in normal and cancerous glands. It is also not clear how 

the ground truth was generated and compared to the final computer-based result since 4 

different resolution scales were involved in the image processing. One has to be aware that 

the way annotations are used for evaluation (pixels versus patches) has a significant impact 

on the performance. Figure 13 in the work by Dolye et al. [15] shows that the performance 

rates derived from ROC curves calculated for a pixel-based approach are significantly lower 

comparing to those derived from patch-based analyses in the same set of images. Thus, 

considering Kwak's study as a reference, our methodological advances seem to be a good 

alternative for the research community because: (a) our method uses the highest image 

resolution (20×) for training and validation, (b) very good performance rates were obtained 

for separation of stroma from benign/normal, low and high-grade cancer and (c) we only use 

intensity features (2 intensity histograms with 36 bins total per each image pixel), which is 

computationally less expensive and faster in comparison to Kwak's approach, which uses 63 

features per pixel.

The proposed method was tested and developed on interpolated descriptor matrices. 

Performance tests involving non-interpolated descriptor matrices indicated that they are 

generally superior to those obtained from interpolated ones. However, we think that their 

high computational cost (90 times longer calculation time) outweighs benefits. Interestingly, 

the newly obtained performances demonstrate the limitation of the proposed method.

8.1.2. Prediction of benign/normal and cancer

Numbers reported in Table 4 demonstrate the overall performance of the RF classifier, when 

applied to all image tiles from the training set and without the level of detail shown in Table 

5. After the training of 30 different RF classifiers (10 for each of the three window sizes) we 

observed high predictive power for BN and good predictive rates for PCa. Although there 

were discrepancies in the performance originating from different descriptors, the average 

Jaccard index for the worst average prediction in Table 4 was above 60, indicating an 

excellent concordance between the two raters. Furthermore, the O and Ri indices were 

consistently above 76.3 and 67.7 indicating excellent tissue prediction (either BN or PCa) 

regardless of the chosen descriptor and the scanning window size. One should also note that 

the RF classifiers were trained using samples derived from 25% of all epithelial pixels 

delineated in the training set. Results in Table 4 reflect averaged performances from all 

epithelial descriptors including those selected for training and the remaining 75% that were 

not. Thus, the high prediction rates in Table 4 confirmed that descriptors and samples chosen 

for the training were suitable and therefore allowed us to test them in images uninvolved in 

the test set.

When compared to the performance in the training set, performance rates were uniformly 

lower in the 191 images from the test set. To determine the best performing descriptor type 
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amongst the 10 descriptors from Table 2, we ranked the values that were obtained with each 

descriptor in each of 3 window sizes and for each of the 5 performance measures for test set 

images. Ranking of descriptors was conducted irrespectively of the window size and ranking 

of windows irrespectively of the descriptor category, with top three results taken into 

consideration each time. The descriptor 8 formed as a concatenation of Hist(H), Hist(E), 

 (H) and  (E) was the most frequent one (6/15 

times) amongst descriptors with top three JBN, JPCa, OPCa, OBN and Ri indices. In addition, 

the largest window with N = 256 was selected 9/15 times. Surprisingly, performances of 

descriptors 5 and 9 -  (H) – which quantify the texture in the 

hematoxylin image, were collectively worse than performances of the descriptor 8. 

Similarly, under the same criteria descriptors 1 and 2 that utilized solely the pixel intensities, 

Hist(H) or Hist(H) combined with Hist(E), were overall inferior to the performances of 

descriptor 8. These results demonstrate that descriptor types utilizing both the intensity and 

texture of hematoxylin and eosin images are better suited for classification than descriptors 

based solely on a single stain image or one that quantifies either texture or signal intensity.

When we ranked the descriptors according to their performance, descriptor 8 ranked in the 

top 10% of results 6/15 times and therefore it is considered the most promising one. Since 

the evaluation of descriptor performances using established statistical methods was not 

feasible because of the absence of published statistical methods for this type of image 

analysis data, it is uncertain which descriptor performs best in a statistical sense. In order to 

develop a statistical approach for a more stringent evaluation of descriptors that takes 

advantage of the Jaccard, Overlap and Rand indices one needs to take into account the data 

structure and relationship between the indices, which include: (a) different effects of image 

tiles with a single epithelial component (n = 33 for BN and n = 118 for PCa) compared to 

tiles with data from the 2 types of epithelial components (n = 59), (b) OBN/PCa is undefined 

and JBN/PCa is 0 for image tiles that do not contain a BN or PCa component, (c) the 

positive correlations between Jaccard and Overlap indices for the same tissue component 

and (d) the nonlinearity, difference in dynamic ranges and large spread of J, O and Ri 
measurements. Based on the unique challenges that image analysis data pose, it will be 

necessary to develop appropriate statistical methods for analysis in the future.

In general, we observe a better classification performance for PCa than for BN glands (third 

column of Fig. 7). In addition, BN glands adjacent to cancer were more frequently 

misclassified as PCa compared to those farther away from PCa. Misclassification also 

occurred in small tangential sections of BN glands. On the contrary, PCa areas were 

consistently predicted with higher accuracy and lower variability than areas of BN glands. 

The large variability in the prediction of BN glands is the main reason for the large standard 

deviations in the performance measurements in Table 5. The best results that were obtained 

with descriptor 8 and N = 256 revealed an average OBN = 49.6 and JBN = 35.2 for BN 

glands. The latter is 10% higher than the Jaccard index from a paper demonstrating 

performances of an early gland segmentation technique [7] published four years ago. For 

PCa, the respective averages are higher than for BN glands. The calculated indices of OPCa = 

71.1 and JPCa = 48.9 install confidence that the proposed method is suited for classification 

of low-grade and high-grade PCa, including high grade cribriform and non-cribriform tumor 
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growth patterns. To further improve the distinction between BN glands and PCa and reach J 
indices above 60, a more powerful descriptor or a window covering a larger area needs to be 

employed. A less subjective method for selecting regions to train classifiers should also be 

sought.

8.2. Implementation—The overall computational expense with the 

 approach was much higher than calculations utilizing Hist(H) and 

Hist(E). The complexity of calculations with  particularly for P = 24 

and R = 3 results requires a high consumption of RAM, storage and CPU power. For 

instance, the descriptor 8 amounts to a length of 2*(18 + 208) = 452 and the size of the 

related single precision descriptor matrix is image_width × image_height × 

descriptor_length. Consequently, the RF classifier training demands a large amount of CPUs 

and RAM. On a PC-based workstation with 2 CPUs, each consisting of 12 cores with 2.67 

GHz clock and 24 GB of RAM, the average duration to complete the calculation of the 

descriptor 8 matrix was 40 min, the RF training time was 15 min and the tissue classification 

time was less than 40 s per image. For comparison, the average classification time by SVM 

took 15 s.

8.3. Concluding remarks—Our method to separate stroma from benign/normal glands 

and cancer in tissue sections of the prostate involved a training set and a SVM classifier. The 

classifier was tested on images that included high-grade PCa and were able to distinguish 

low-grade and high-grade cancer growth patterns from stroma, even in the absence of lumen 

formation in areas of high-grade cancer. A major advance of our technology is to first 

employ a pixel-based classification strategy to the sub-stratification of glands into benign/

normal and cancer with good accuracy. Based on the performance measures, we conclude 

that a machine learning approach that is designed to classify individual pixels in H&E 

stained tissues bears promise for evaluation of images from prostate cancer tissues.

To facilitate and encourage further advancements in this field, the full set of 210 original 

images with the gold standard annotations used in our study is made available from the 

corresponding author upon request.

9. Conclusions

We have developed and evaluated two machine learning techniques and applied them to 

identify and classify benign/normal and malignant prostate glands. The performance of the 

proposed framework was thoroughly evaluated in independent training and test sets and 

constitutes an automated and consistent approach for quantification of disease related 

histopathological parameters in microscopic images. Our method has the potential to 

improve the measurement of parameters in tissue sections that are needed for diagnosis and 

prognostication of patients with prostate cancer.

Acknowledgments

This work was performed in part with the support from the Departments of Surgery, Pathology and Biomedical 
Sciences at Cedars-Sinai Medical Center. Institutional support was provided from the Department of Surgery to AG 

Gertych et al. Page 14

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and from the Department of Biomedical Sciences to BSK. The authors would like to thank Elena Chang MD for 
selecting cases and marking tumor areas on glass slides before slide digitization and Dr Yuan Xiaopu for 
verification of ground truth annotations.

References

1. Committee ACPRW. Sawyers CL, Abate-Shen C, Anderson KC, Barker A, Baselga J, Berger NA, et 
al. AACR Cancer Progress Report 2013. Clin Can Res: J Am Assoc Can Res. 2013; 19(20 
Suppl):S4–98.

2. Fine SW, Amin MB, Berney DM, Bjartell A, Egevad L, Epstein JI, et al. A contemporary update on 
pathology reporting for prostate cancer: biopsy and radical prostatectomy specimens. Eur Urol. 
2012; 62(1):20–39. [PubMed: 22421083] 

3. Brimo F, Montironi R, Egevad L, Erbersdobler A, Lin DW, Nelson JB, et al. Contemporary grading 
for prostate cancer: implications for patient care. Eur Urol. 2013; 63(5):892–901. [PubMed: 
23092544] 

4. Oyama T, Allsbrook WC Jr, Kurokawa K, Matsuda H, Segawa A, Sano T, et al. A comparison of 
interobserver reproducibility of Gleason grading of prostatic carcinoma in Japan and the United 
States. Arch Pathol Lab Med. 2005; 129(8):1004–10. [PubMed: 16048389] 

5. Allsbrook WC Jr, Mangold KA, Johnson MH, Lane RB, Lane CG, Epstein JI. Inter-observer 
reproducibility of Gleason grading of prostatic carcinoma: general pathologist. Human Pathol. 
2001; 32(1):81–8. [PubMed: 11172299] 

6. Allsbrook WC Jr, Mangold KA, Johnson MH, Lane RB, Lane CG, Amin MB, et al. Interobserver 
reproducibility of Gleason grading of prostatic carcinoma: uro-logic pathologists. Human Pathol. 
2001; 32(1):74–80. [PubMed: 11172298] 

7. Monaco JP, Tomaszewski JE, Feldman MD, Hagemann I, Moradi M, Mousavi P, et al. High-
throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov 
models. Med Image Anal. 2010; 14(4):617–29. [PubMed: 20493759] 

8. Nguyen K, Sarkar A, Jain AK. Structure and context in prostatic gland segmentation and 
classification. Medical image computing and computer-assisted intervention: MICCAI International 
Conference on Medical Image Computing and Computer-Assiste. Intervention. 2012; 15(Pt 1):115–
23.

9. Tabesh A, Teverovskiy M, Pang HY, Kumar VP, Verbel D, Kotsianti A, et al. Multifeature prostate 
cancer diagnosis and Gleason grading of histological images. IEEE Trans Med Imag. 2007; 26(10):
1366–78.

10. Yahui, P.; Yulei, J.; Eisengart, L.; Healy, MA.; Straus, FH.; Yang, XJ. Segmentation of prostatic 
glands in histology images.. Biomedical Imaging: From Nano to Macro, 2011 IEEE International 
Symposium on; March 30 2011–April 2 2011; 2011. p. 2091-2094.

11. Yu, E.; Monaco, JP.; Tomaszewski, J.; Shih, N.; Feldman, M.; Madabhushi, A. Detection of 
prostate cancer on histopathology using color fractals and Probabilistic Pairwise Markov models.. 
Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of 
the IEEE; Aug. 30 2011–Sept. 3 2011; 2011. p. 3427-3430.

12. Fuchs TJ, Buhmann JM. Computational pathology: challenges and promises for tissue analysis. 
Comput Med Imag Graph: J Comput Med Imag Soc. 2011; 35(7–8):515–30.

13. Doyle S, Feldman MD, Shih N, Tomaszewski J, Madabhushi A. Cascaded discrimination of 
normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer. 
BMC Bioinform. 2012; 13:282.

14. Gorelick L, Veksler O, Gaed M, Gomez JA, Moussa M, Bauman G, et al. Prostate histopathology: 
learning tissue component histograms for cancer detection and classification. IEEE Trans Med 
Imag. 2013; 32(10):1804–18.

15. Doyle S, Feldman M, Tomaszewski J, Madabhushi A. A boosted Bayesian multiresolution 
classifier for prostate cancer detection from digitized needle biopsies. IEEE Trans Bio-med Eng. 
2012; 59(5):1205–18.

16. Kwak JT, Xu S, Pinto PA, Turkbey B, Bernardo M, Choyke PL, Wood BJ. A multiview boosting 
approach to tissue segmentation. 2014:90410R–90410R-90417.

Gertych et al. Page 15

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17. Salman, S.; Ma, Z.; Mohtanty, S.; Bhele, S.; Chu, Y-T.; Knudsen, B., et al. A machine learning 
approach to identify prostate cancer areas in complex histological images.. In: Piȩtka, E.; Kawa, J.; 
Wieclawek, W., editors. Information Technologies in Biomedicine, Volume 3, 283. Springer 
International Publishing; Cham, Heidelberg, New York, Dordrecht, London: 2014. p. 295-306.

18. Rizzardi AE, Johnson AT, Vogel RI, Pambuccian SE, Henriksen J, Skubitz AP, et al. Quantitative 
comparison of immunohistochemical staining measured by digital image analysis versus 
pathologist visual scoring. Diagn Pathol. 2012; 7:42. [PubMed: 22515559] 

19. Linder N, Konsti J, Turkki R, Rahtu E, Lundin M, Nordling S, et al. Identification of tumor 
epithelium and stroma in tissue microarrays using texture analysis. Diagn Pathol. 2012; 7:22. 
[PubMed: 22385523] 

20. Goode A, Gilbert B, Harkes J, Jukic D, Satyanarayanan M. OpenSlide: a vendor-neutral software 
foundation for digital pathology. J Pathol Inform. 2013; 4:27. [PubMed: 24244884] 

21. Xu, J.; Sparks, R.; Janowczyk, A.; Tomaszewski, J.; Feldman, M.; Madabhushi, A. High-
throughput prostate cancer gland detection, segmentation, and classification from digitized needle 
core biopsies. Prostate cancer imaging computer-aided diagnosis, prognosis, and intervention. 
Madabhushi, A.; Dowling, J.; Yan, P.; Fenster, A.; Abolmaesumi, P.; Hata, N., editors. Springer; 
6367. Berlin Heidelberg: 2010. p. 77-88.

22. Naik, S.; Doyle, S.; Agner, S.; Madabhushi, A.; Feldman, M.; Tomaszewski, J. Automated gland 
and nuclei segmentation for grading of prostate and breast cancer histopathology.. Biomedical 
Imaging: From Nano to Macro, 2008 ISBI 2008 5th IEEE International Symposium on; 14–17 
May 2008; p. 284-287.

23. Vidal J, Bueno G, Galeotti J, García-Rojo M, Relea F, Déniz O. A fully automated approach to 
prostate biopsy segmentation based on level-set and mean filtering. 2011:2.

24. Xu J, Janowczyk A, Chandran S, Madabhushi A. A high-throughput active contour scheme for 
segmentation of histopathological imagery. Medical image analysis. 15(6):851–862.

25. Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Analyt 
Quantitat Cytol and Histol: Int Acad Cytol Am Soc Cytol. 2001; 23(4):291–9.

26. Reinhard E, Ashikhmin M, Gooch B, Shirley P. Color transfer between images. IEEE Comput 
Graph Appl. 2001; 21(5):34–41.

27. Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture 
classification with local binary patterns. Pattern Anal Mach Intell IEEE Trans. 2002; 24(7):971–
87.

28. http://www.cse.oulu.fi/MVG/Downloads

29. Scholkopf, B.; Smola, AJ. Learning with kernels: support vector machines, regularization, 
optimization, and beyond. MIT Press; Cambridge, MA, USA: 2001. 

30. Rand WM. Objective criteria for the evaluation of clustering methods. J Am Stat Assoc. 1971; 
66(336):846–50.

31. Chen J, Toghi ES, Bova GS, Li QK, Li X, Zhang H. Epithelium percentage estimation facilitates 
epithelial quantitative protein measurement in tissue specimens. Clin Proteom. 2013; 10(1):18.

32. Breiman L. Random forests. Mach Learn. 2001; 45(1):5–32.

Gertych et al. Page 16

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cse.oulu.fi/MVG/Downloads


Fig. 1. 
Example PCa image with overlaid manual annotation by pathologist who used the dedicated 

graphical user interface (GUI) that we developed. Color coding and image transparency 

facilitated the delineation of tissue components: red color was used for G4, blue for BN and 

cyan for ST.
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Fig. 2. 
Image analysis workflow for prostate cancer tissue quantification. In the preprocessing steps, 

areas of stroma are first separated from the epithelium. Subsequently, areas of epithelium are 

stratified into benign/normal glands (BN) and prostate cancer (PCa).
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Fig. 3. 
Examples of intensity and texture pixel descriptors from deconvoluted H&E images of 

prostate cancer tissue: (a) original image with deconvoluted components, (b) pixel intensity 

histograms and (c)  × VARP=8,R=1 histograms, representing the image texture. 

Boxes in (a) indicate locations of windows W (size of window: N = 64 pixels) from which 

the descriptors were extracted. Histograms from windows in areas of stroma (ST), benign/

normal epithelium (BN) and cancer Gleason pattern 4 (G4) are shown in (b) and (c). Note, 

that background or luminal pixels found in H&E image are masked out and do not 

contribute to the histogram calculation. Histograms in (b) have 18 bins to map 0–255 gray 
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level intensity range (x-axes), whereas in (c) 80 bins are used to represent the distribution of 

local binary patterns (LBP) from low (bins 0–40) and high (bins 41–80) contrast image 

regions. Y-axes are the normalized density of pixels in each histogram bin.
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Fig. 4. 
Formation of pixel descriptors to train a SVM classifier for differentiating stroma (ST) from 

epithelium (EP). Training descriptors are extracted from matrices containing local intensity 

histograms of hematoxylin and eosin images. After a window is placed over a selected area, 

the respective descriptor is extracted by mapping the window location onto the descriptor 

matrix Hist(H), Hist(E). The descriptors are labeled based on their tissue origin that was 

assigned by a pathologist as stroma (ST) or epithelium (EP).
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Fig. 5. 
Formation of pixel-based descriptors and training set for benign/normal glands (BN) and 

prostate cancer (PCa) classification. Tissue annotations from multiple images [1. . .N] are 

mapped onto combinations of histogram matrices detailed in Table 2, to extract and label 

samples for BN and PCa. A number of descriptors reduced by random selection (to 25%) is 

used to train the random forest (RF) classifier.
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Fig. 6. 
Prediction of areas of stroma and epithelium by different methods. Tissue areas in the 

images in the first column were delineated by a pathologist using the graphical user interface 

(GUI) to generate a mask with the red color indicating epithelial areas, in this example PCa. 

The second column demonstrates our classification method applied to the same images with 

epithelial areas marked in yellow, whereas the third column demonstrates the application of 

Chen's method (reference method, white areas) [31]. Arrows point to areas where the two 

algorithms differ the most. In row 1, the arrow points to misclassified cells in or around 

blood vessels and in row 2, the arrow points to the cytoplasm of luminal cells that was not 

included in the glandular areas. Note that our approach is pixel-based whereas Chen's 

involves small image blocks. Luminal and background areas were removed prior calculating 

the performance of the predictor.
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Fig. 7. 
Classification of glandular areas from benign/normal glands and prostate cancer using the 

random forest (RF) classifier. Original H + E images in column 1 of a representative area of 

benign/normal glands (BN) and stroma (ST) (row 1) and 2 different areas of prostate cancer 

PCa Gleason pattern 4 (rows 2 and 3). The annotation of the pathologist in column 2 is 

compared to the annotation with the RF classifier in column 3. The areas marked with black 

squares are identical to the ones analyzed in Fig. 6. The epithelium was classified as BN or 

PCa using a descriptor formed by Hist(H), Hist(E),  (H), 

 (E) with P = 24 and R = 3.
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Fig. 8. 
RF classification performance for different sampling rates of pixels in the training set: (a) 

the out-of-bag error estimate calculated for the RF classifier trained with a different number 

of trees and (b) JBN, JPCa, OBN and OPCa performance measures for the RF classifier with 20 

trees.
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Table 1

Tissue images utilized in our study. Tissue components in each image were delineated by a pathologist for 

training and validation for the proposed tissue classification algorithms.

Epithelial components BN G3 G4 BN + G3 BN + G4 G3 + G4 BN + G3 + G4 Total

No. of images 33 20 54 23 15 44 21 210
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Table 2

Types of descriptors. Intensity, texture and combined intensity and texture histograms were used as descriptors 

for training machine learning models.

Descriptor Descriptor number

Hist(H), Hist(E) 1

Hist(H) 2

Hist(H), LBP8, 1
riu2 × VAR8, 1 H 3

Hist (H), Hist (E), LBP8, 1
riu2 × VAR8, 1 H , LBP8, 1

riu2 × VAR8, 1 E 4

LBP8, 1
riu2 × VAR8, 1 H , 5

LBP8, 1
riu2 × VAR8, 1 H , LBP8, 1

riu2 × VAR8, 1 E 6

Hist(H), LBP24, 3
riu2 × VAR24, 3 H 7

Hist(H), Hist(E), LBP24, 3
riu2 × VAR24, 3 H , LBP24, 3

riu2 × VAR24, 3 E 8

LBP24, 3
riu2 × VAR24, 3 H , 9

LBP24, 3
riu2 × VAR24, 3 H , LBP24, 3

riu2 × VAR24, 3 E 10
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Table 3

Comparison of epithelial tissue classification performances. Training sets ST-EP1.3 were established using 

60.152 windows from 19 images. Trained SVM classifiers were applied to 191 testing images to separate 

epitehelium from stroma. Algorithms were evaluated by Jaccard, area overlap (O) and Rand (Ri) indices to 

determine the concordance of the algorithm-based prediction with pathologist manual annotations. J and O 
indices were calculated separately for concordance of ST and EP areas, whereas Ri was calculated for ST and 

EP together. Respective columns contain mean value ± standard deviation.

J ST J EP O ST O EP Ri

Chen et al. [31] 49.9 ± 19.1 48.9 ± 13.0 75.0 ± 13.5 63.2 ± 17.7 57.6 ± 7.4

SVM(ST-EP1) 53.2 ± 18.8 55.9 ± 16.8 72.0 ± 14.2 72.8 ± 19.6 62.1 ± 8.2

SVM(ST-EP2) 49.6 ± 19.2 58.9 ± 14.8 61.9 ± 15.9 81.4 ± 12.2 61.5 ± 7.7

SVM(ST-EP3) 50.8 ± 18.2 59.5 ± 14.6 63.7 ± 14.1 81.5 ± 12.1 62.0 ± 7.5
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Table 4

Average tissue prediction performance in the training set using 25% of the total number of samples. Values 

reflect best and worst performances of descriptors from Table 2.

J BN O BN J PCa O PCa Ri

Worst average prediction 60.3 76.6 55.6 76.3 67.6

Best average prediction 68.4 81.42 56.8 77.6 68.9
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Table 5

Comparison of BN and PCa tissue prediction by different descriptors and three different scanning window 

sizes. Respective columns contain mean value ±SD of performance indices. Best three results of each index 

are bolded.

Scanning window size N = 64

Descriptor J BN O BN J PCa O PCa Ri

1 34.3 ± 24.1 51.7 ± 28.9 45.5 ± 20.7 64.4 ± 19.5 60.4 ± 7.5

2 30.4 ± 22.5 45.6 ± 28.1 45.6 ± 20.3 65.5 ± 20.0 60.0 ± 7.4

3 31.4 ± 21.2 43.4 ± 26.7 47.2 ± 18.7 69.0 ± 15.1 60.2 ± 7.1

4 33.0 ± 23.5 46.5 ± 29.6 47.4 ± 19.1 69.0 ± 15.9 60.3 ± 7.4

5 28.0 ± 18.2 40.8 ± 19.9 44.4 ± 17.1 64.4 ± 14.2 59.0 ± 7.3

6 30.9 ± 23.4 41.8 ± 29.5 47.8 ± 18.4 71.0 ± 14.8 60.2 ± 7.4

7 33.8 ± 21.6 45.6 ± 26.7 48.0 ± 18.1 70.5 ± 13.9 60.3 ± 7.2

8 35.4 ± 22.7 48.6 ± 28.7 48.4 ± 17.9 71.3 ± 14.2 60.4 ± 7.4

9 27.0 ± 15.4 37.0 ± 17.2 46.7 ± 17.0 68.6 ± 12.5 59.3 ± 7.0

10 33.2 ± 22.0 43.8 ± 26.9 48.7 ± 17.7 72.6 ± 14.4 60.2 ± 7.3

Scanning window size N = 128

Descriptor J BN O BN J PCa O PCa Ri

1 32.1 ± 24.9 47.4 ± 32.0 46.3 ± 20.2 67.1 ± 20.1 60.3 ± 7.5

2 30.5 ± 23.4 45.3 ± 29.8 46.0 ± 20.9 66.6 ± 22.3 60.2 ± 7.5

3 31.7 ± 23.3 44.5 ± 29.9 47.6 ± 19.4 69.4 ± 17.2 60.5 ± 7.3

4 31.7 ± 25.6 46.0 ± 33.5 48.1 ± 19.5 70.0 ± 16.8 60.5 ± 7.7

5 29.4 ± 20.6 42.0 ± 26.0 47.1 ± 18.8 68.6 ± 16.5 60.1 ± 7.2

6 32.1 ± 25.6 46.2 ± 33.1 48.3 ± 19.0 70.7 ± 16.3 60.4 ± 7.6

7 31.6 ± 23.7 41.4 ± 29.7 49.3 ± 18.0 73.2 ± 13.3 60.5 ± 7.2

8 33.4 ± 25.4 46.2 ± 33.0 49.1 ± 18.6 72.3 ± 15.4 60.6 ± 7.4

9 27.3 ± 18.4 38.7 ± 21.4 46.6 ± 17.4 68.0 ± 14.5 59.5 ± 7.2

10 32.9 ± 24.9 45.3 ± 32.4 49.0 ± 18.3 72.4 ± 15.3 60.4 ± 7.5

Scanning window size N = 256

Descriptor J BN O BN J PCa O PCa Ri

1 30.7 ± 24.8 44.7 ± 31.2 46.3 ± 21.0 66.5 ± 20.8 60.2 ± 7.8

2 30.4 ± 25.1 45.1 ± 33.0 46.4 ± 20.7 67.1 ± 21.3 60.3 ± 7.6

3 21.0 ± 15.0 46.2 ± 26.6 26.4 ± 19.1 36.9 ± 26.9 58.5 ± 8.2

4 35.8 ± 24.3 50.9 ± 31.2 48.5 ± 19.6 71.3 ± 17.9 60.6 ± 7.6

5 30.2 ± 21.2 44.2 ± 27.3 47.2 ± 20.2 67.4 ± 18.7 60.3 ± 7.4

6 33.3 ± 25.8 48.2 ± 32.7 48.4 ± 19.6 70.2 ± 17.9 60.6 ± 7.9

7 33.5 ± 22.9 46.4 ± 28.8 48.9 ± 18.9 71.1 ± 15.7 60.7 ± 7.2

8 35.2 ± 24.9 49.6 ± 32.0 49.5 ± 18.5 72.7 ± 14.8 60.6 ± 7.6

9 31.3 ± 21.1 44.5 ± 26.1 46.9 ± 18.2 68.0 ± 15.8 59.9 ± 7.4

10 34.3 ± 25.9 48.5 ± 33.2 49.1 ± 19.1 72.2 ± 16.4 60.6 ± 7.8
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