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Abstract

The identification of vascular networks is an important topic in the medical
image analysis community. While most methods focus on single vessel tracking,
the few solutions that exist for tracking complete vascular networks are usually
computationally intensive and require a lot of user interaction. In this paper we
present a method to track full vascular networks iteratively using a single starting
point. Our approach is based on a cloud of sampling points distributed over con-
centric spherical layers. We also proposed a vessel model and a metric of how well
a sample point fits this model. Then, we implement the network tracking as a min-
cost flow problem, and propose a novel optimization scheme to iteratively track
the vessel structure by inherently handling bifurcations and paths. The method
was tested using both synthetic and real images. On the 9 different data-sets of
synthetic blood vessels, we achieved maximum accuracies of more than 98%. We
further use the synthetic data-set to analyse the sensibility of our method to param-
eter setting, showing the robustness of the proposed algorithm. For real images,
we used coronary, carotid and pulmonary data to segment vascular structures and
present the visual results. Still for real images, we present numerical and visual
results for networks of nerve fibers in the olfactory system. Further visual results
also show the potential of our approach for identifying vascular networks topolo-
gies. The presented method delivers good results for the several different datasets
tested and have potential for segmenting vessel-like structures. Also, the topology
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information, inherently extracted, can be used for further analysis to computed
aided diagnosis and surgical planning. Finally, the method’s modular aspect holds
potential for problem-oriented adjustments and improvements.

Keywords: vascular network tracking, linear programming, vessel
characterization, medical imaging

1. Introduction

The identification of vascular networks is a topic of general interest in medical
image analysis and in particular for diagnosis of problems related to the vascular
system such as cerebrovascular accidents or thrombosis. While efficient algo-
rithms for single vessel tracking exist, the segmentation of complete vascular net-
works is still a challenge, mainly due to huge search space involved. Indeed, most
solutions are only locally optimal, very computationally intensive or both.

We refer the interested reader to ? for a detailed review of methods to tackle
the vascular segmentation problem. Many of these works are based on a propa-
gating structure emanating from a given starting point using different techniques
such as level-sets ?? or minimal paths ??. Other approaches are based on parti-
cle filters ??, Markov chain processes ?, statistical methods for tubular structures
? and multiple hypothesis testing ?. Recent works ?? have shown that global
optimization can be reliable as it finds all the vessels of the structure jointly. In
?, authors find a set of vessel candidate points and then solve the k-minimum
spanning tree (k-MST) problem to find the final structure, while in ?, the vessel
detection model needs to be specifically trained for each type of data. The latter
assumes a well behaved distribution of vessel points and a careful training.

In this paper we present a novel Linear Programming (LP) solution for track-
ing vascular networks through a fast iterative method that tracks each vessel branch
independently and is able to handle bifurcations. Our approach does not impose
any restrictions to the form of vessels offshoots. It relies on two simple assump-
tions: vessels are nearly cylindrical, having circular or elliptic cross sections, and
present a tree like structure. Contrary to most methods proposed thus far, it only
requires one starting point to track a full vessel network with arbitrary form.

1.1. Motivation and Graph Modeling
The use of directed graphs to segment tree-like structures (such as vascular

networks) is somewhat intuitive. Considering vessel point detections as graph
nodes, a vascular network can be structured as a directed graph, which allows the
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Figure 1: Modeling a vascular network in a graph using a single direction. On the left side there
is a model representing a vascular network with an identified green branch; on the right side its
respective graph with green edges indicating the green branch path, and dashed edges representing
other path possibilites.

segmentation of its branches through the analysis of graph paths, as depicted in
Figure 1.

Not very intuitive is the problem of using directed graphs to represent vascular
structures in images with voxels distributed uniformly in a given direction, such
as CT scans. Vessels usually change direction continuously and hardly follow the
direction of a single axis. Since directed graphs consist of nodes organized in
interconnected layers following a certain direction, this behaviour is problematic.
The use of a single axis to define the directed graph levels, would lead to the
impossibility of segmenting vessels whose direction goes in favor of the axis at
some point, but against it later. In other words, the directed graph modeling does
not allow a path passing through a sequence of levels N and N+1 to return to
any node on level N. Figure 2 depicts the problem. The yellow branch cannot be
entirely represented since it crosses some planes more than once.

This paper proposes a way to overcome this difficulty through the use of mul-
tiple graphs, each one modelling a portion of the vascular network that conforms
the implied sequential spatial arrangement of vessel detection. These local graphs
are created iteratively and their nodes are associated to spatial positions expressed
in a convenient coordinate system, as illustrated in figure 3. This approach pro-
vides, at least locally, a model in which the problem described in figure 2 does
not occur, so that the modelling through directed graphs becomes effective. The
proposed sampling model is formally defined in section 2.2.

Our contribution is three-fold:

• Oriented conical sampling method using vessel point detections to allow
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Figure 2: Issues of modeling a vascular network as a graph using a single direction (some edges
were hidden to improve understanding). The model on the left side has its green and blue branches
correctly modelled in the graph represented on the right side. The yellow path, though, is incor-
rectly represented - as the red line points out - due to directed graph representation issues.

Figure 3: Definition of graphs using the local vessel direction of the vascular network. The use of
vessel-driven sampling models allows the corrected use of directed graph models, overcoming the
representation issues showed in Figure 2.

tracking of each vessel along its axis.

• New formulation of the vascular network tracking problem as a min-cost
flow problem to track local vascular structures from a single seed point
while dealing with bifurcations.

• Novel optimization scheme that iteratively tracks the full vascular network
and guarantee anatomical vascular properties.

Our paper is structured as the following: in section 2 we explain in detail our
method, in section 3 we show and discuss the results, and in section 4 we present
our conclusions.
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Figure 4: Flowchart of the proposed method.

2. Materials and Methods

2.1. General Algorithm Description
The proposed method starts at a single user-defined vessel point, called initial

seed. From this seed, emerging branches of the vascular network are detected,
each one deriving a new seed and possibly new branches. Subsequent iterations
are executed until the full vascular network is segmented, as outlined in figure 4.

The full procedure involves the following steps:

1. Initial seed point definition. In this step a initial seed is defined to be used
at the starting point for the whole vascular network to be found. The defini-
tion of this point can be done manually by the user or using any automatic
procedure.

2. Sampling model creation. Here a cloud of sample points is created within a
conical neighborhood with apex at a given seed point.

3. Vessel point detection. In this step we test all sample points within the cloud
to select those very likely to belong to a vessel.

4. Vascular network identification. Here we use the vessel point candidates se-
lected in the previous step to track a local vascular network using a proposed
network flow analysis approach.

5



A 

α 

1 

2 

l 

L 

1 

M(l) 
m 

1 2 

… 

… 
s s 

s 

N(m,l) 

D 
co 

p(n,m,l) 

n 

(a) (b) 

Figure 5: Conical sampling model structured by means of a set of spherical calottes.

5. New seeds definition. In this step new seed points are created from the
vascular network branches found in the previous step.

6. Repeat steps 2 to 5 until there is no new seed to be evaluated.

Each of the steps from step 2 on is explained in detail in the following sections.

2.2. Sampling Model Creation
The sampling method is important for the procedure outlined in previous sec-

tion, as it determines the accuracy as well as the computational efficiency of our
proposal. In this section we present our procedure for this matter. It is important to
mention that any other sampling procedures that fulfill the requirements of gener-
ating a nearly uniform distribution of sample points over a conical neighborhood
emerging from a seed point, could be used.

Figure 5 describes the sampling model. The cylinder at the bottom of Fig.
5a represents a cylindrical elementary vessel section centered at the current seed,
which is taken as origin of a coordinate system having (x, y, z) as its orthonormal
basis, whereby the unitary vector z is aligned with the vessel central axis.

A conical neighborhood with apex in the origin (see fig. 5a) will be explored
for vessel points. It is defined by two parameters, namely:

• the aperture angle α, and

• the height A.
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Figure 6: The values of α and the sampling distance s define the M(l) sampling circles at a given
layer. The radius r(m, l) and the sampling distance s define the number of sample points in each
circumference m.

Instead of examining all voxels in the neighborhood, only points over spherical
calottes centered at the origin with radii equal to ls are considered (see Figure
6), where s is a user-defined parameter specifying the separation between any
adjacent calottes, and l is an integer number between 1 and L, the number of
calottes given as a further input parameter. Hence, the height A is determined by
equation 1:

A = Ls (1)

Over each calotte l, M(l) circumferences are determined as shown in Figure
5b and defined in equation 2, so that the minimum distance between any two
points lying on consecutive circumferences over the same calotte is at most equal
to s (actually a value close to it).

M(l) = dlαe+ 1 (2)

Notice that the number of circumferences determined over a calotte increases
with the calotte radius. The radius r(m, l) of the mth circumference over the lth

calotte (see Figure 6) is given by equation 3:

r(m, l) = ls cos(π2 −
m
l ) for l ∈ {1..L} and m ∈ {1..(M(l)− 1)} (3)

Notice that for m = 0, the circumference boils down to a single point lying on
the cone central axis.
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Sample points are uniformly distributed along each circumference, whereby
the arc determined by two adjacent sample points is at most equal to s. Thus, the
number N(m, l) of sample points uniformly distributed along the mth circumfer-
ence of the lth calotte is given by equation 4:

N(m, l) =
⌈
2πr(m,l)

s

⌉
=
⌈
2πl cos(π2 −

m
l )
⌉

for l ∈ {1..L} and m ∈ {1..(M(l)− 1)}
(4)

Hence, the actual arc length a(m, l) determined by adjacent sample points
along the mth circumference of the lth calotte will be given by equation 5:

a(m, l) = 2π
ml for l ∈ {1..L} and m ∈ {1..(M(l)− 1)} (5)

Recall that the unitary vector z is aligned with the conic central axis, and
x,y, z form an orthonormal basis. It can be easily demonstrated that the coordi-
nate vector p(n,m, l) of the nth sample point over the mth circumference of the
lth calotte can be given by equation 6:

p(n,m, l) =

x(n,m, l)y(n,m, l)

z(n,m, l)

 =

cos (n
a(m,l)
r(m,l) ) cos (ls)

sin (na(m,l)r(m,l) ) cos (ls)

cos (ls)

 (6)

where r(m, l) and a(m, l) are given by equations 3 and 5, respectively.
Once the basic spatial distribution of sample points has been defined, we need

a geometric transformation that places the point cloud properly on the neighbor-
hood of the seed being considered. Basically, the conic points cloud must be
rotated so that the cone central axis, aligns with vessel’s central axis at the seed
point position, and its origin shifted to the seed point position.

This is done by first multiplying the coordinates given in equation 6 by a 3x3
rotation matrix R(D) having as its third row the transpose of the unitary vector
D = [Dx,Dy,Dz]ᵀ aligned with the vessel central axis at the seed, and then, by
adding the result to the seed coordinate vector. The first and second rows ofR(D)
are arbitrary, provided thatR(D) is unitary. Hence, we defineR(D) as:

R(D) =


−Dy

|V1|
Dx
|V1| 0

−DzDx
|V2|

−DzDy

|V2|
DxDx+DyDy

|V2|
Dx Dy Dz

 (7)
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where V1 is an arbitrary unitary vector orthogonal to D and V2 = D× V1.
This procedure creates a canonical cloud of points, at each seed point, a cloud

of points in this shape is created by translating and rotating this model accordingly
fitting the seed point position and direction.

Finally, the coordinate vector p? of sample points associated to a seed located
at c, whose vessel section is oriented in the direction defined by the unitary vector
D is given by:

p?(n,m, l,D, c) = R(D)p(n,m, l) + c (8)

whereR(D) is given by equation 7 and p(n,m, l) is defined in equation 6.
The spatial distribution of sample points in the proposed model (figure 5)

presents some interesting characteristics:

• The probability that a voxel belongs to the vessel network diminishes for
layers with larger radii.

• The area of a layer grows with its distance to the seed. This complies with
the expected increase of vessel network spreading as one moves away from
the seed.

• The cone opening angle and height are related to the potential of vessel to
change direction suddenly.

Once the sample point coordinates have been defined, each of them is evalu-
ated as a vessel point candidate, using the vesselness metric proposed in the next
section.

2.3. Vessel Point Detection
This section describes the procedure to assess how well sample points qualify

as vessels. It involves two sequential steps: (a) computation of a metric, hereafter
called vesselness, to assess how well a sample point qualifies as part of a vessel;
(b) selection of points based on local characteristics, including vesselness. These
steps are described in detail in the following subsections.
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Figure 7: Gaussian mixture for cylinder fitting. The red cylinder fits the vessel at a given c point,
and the blue volume models the neighbouring area.

2.3.1. Vesselness Computation
Recalling section 1.1, sample points are associated to vessel hypotheses ac-

cording to a determinate vessel model. Different vessel models can be found in
the literature, such as elliptical cross-sections models ?, spheres ? and template
models ??.

In this work, we propose a vesselness measurement consisting of two concen-
tric cylinders Vin and Vout, comprising respectively a vessel section and its outer
neighborhood, as shown in figure 7. Let Rin and Rout, be the radii of Vin and Vout,
respectively, c the common central point andD the unitary vector representing the
orientation of their common central axis. Let also Rout be such that the volume
of Vin is equal to the volume of Vout - Vin. The cylinder height is defined as two
times the inner radius, and any value around this does not impact much the final
outcome.

It is further assumed that the voxels intensities inside and outside the vessel
can be appropriately represented by two distinct Gaussian distributions, denoted
respectively Gin(Ip) and Gout(Ip), where Ip stands for the intensity of the voxel
at coordinate p. The mean and standard deviation of each Gaussian distribution
are computed as the mean value and standard deviation of the voxels inside each
corresponding volume Vin and Vout - Vin.
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The vesselness is then given by:

Wm = min
Rin,D,c

∑
p∈Vin Gout(Ip) +

∑
p∈(Vout−Vin)Gin(Ip)

‖Vout‖
(9)

The optimization implied in the vesselness computation can be performed by
different stochastic methods. In this work we used Differential Evolution ? for
this purpose.

As byproducts of vesselness computation we obtain the optimum position c ,
the radiusRin and the directionD of the hypothesized vessel section. In particular,
the optimization procedure starts at a initial location for the vessel point and looks
for the most accurate position in its neighborhood.

2.3.2. Vessel Point Candidate Selection
Vessel point candidates are selected from sample points in two steps:

1. Vessel candidates with intensity mean value differing greatly from the mean
intensity value observed at the cone apex point are discarded and not even
submitted to the next step, to save processing time.

2. Points selected in step 1 are submitted to vesselness computation. The opti-
mal cylinder found by the implied optimization process is validated accord-
ing to the following rules:

(a) The mean intensity value of the inner cylinder must be higher than
the mean intensity value of the outer volume (see figure 7 for details).
This rule models the assumption that vessels appear as roughly bright
cylindrical structures in CT images. This rule is applied during the
cylinder fit optimization process.

(b) The vesselness of a selected sample point must be higher than a frac-
tion of the vesselness at the seed point. The variable controlling this
proportion is user defined and works as a sensibility parameter, which
allows for finding weaker vessels (at the cost of adding noise) or just
the vascular branches with stronger vesselness information.

(c) Vessel points with too small cylinder radius are discarded, assuming
these cases are noise. The threshold for the radius is configurable and
set as the image spacing by default (vessels with radius lower than
image spacing are hardly detectable).

Having detected the vessel points among sampled points, we structure them as
a directed graph as detailed in section 2.2 and analyze it for tracking the vascular
network, as explained in the next section.
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Figure 8: Vessel point detections are structured as a directed graph that allows finding vascular
network branches, as shown in different colours.

2.4. Vascular Network Identification
The vascular network tracking for a given collection of vessel point detec-

tions is composed of two steps: vascular network tracking and vascular network
validation.

2.4.1. Vascular Network Tracking
The idea for detecting vascular networks is to build and analyze local graphs

for which the nodes represent vessel detections (as found in Section 2.3), using
the sample points coordinates and their respective vesselness value. These nodes
are connected to neighboring nodes both from adjacent layers (connected by tran-
sition edges) and from the same layer (connected by toll edges). Each edge repre-
sents the relation between two nodes using a determinate cost, as explained further
in this section.

Thereby, the matching problem can be approached as a minimum-cost network
flow problem: finding the optimal set of vessels can be solved by sending flow
through the graph so as to minimize its total cost.

Let O = {oi} be a set of vessel detections comprehended by the conical
sampling volume associated to the current seed (recall Section 2.3) whereby oi =
(xi, yi, zi) represented by its 3D coordinates. A vessel branch that emanates from
the current seed brings about a set of vessel detections Vk = {ok1 ,ok2 , · · · ,okh},
laying on a sequence of layers k1, k2, · · · kh, where ki is a natural number and
|ki+1 − ki| ≤ 1 for all i = 1, ..., h − 1, as seen in Figure 5. Let V = {Vk} be
an arbitrary set of vessel branches. Then, the set of vessel branches V∗ = {Vk}

12



composing the vascular network can be defined as the set of vessel branches that
best explains the detections in O. Thus, V∗ can be found by maximizing the
posterior probability of V given the set of vessel detections O.

Assuming that the detections are i.i.d., the objective function is expressed as:

V∗ = argmax
V

P (V|O) = argmax
V

∏
i

Pdet(oi|V)P (V), (10)

where Pdet(oi|V) is the likelihood of k1, k2, · · · kh.
In order to reduce the space of V , we make the assumption that vessel branches

do not overlap, i.e., a detection cannot belong to more than one vessel). Assuming
that vessel branches are i.i.d. as well, leads to the decomposition:

P (V) =
∏
Vk∈V

P (Vk) =
∏
Vk∈V

Pin(ok1) . . . Pt(oki |oki−1
) . . . Pout(okN ) (11)

for each vessel {Vk}, represented by an ordered chain. Pin(oi) and Pout(oi) is
the probability that a vessel branch starts and ends at detection oi. Pt(oi|oj) is the
probability that oj is followed by oi in the vessel branch.

To solve the objective function implied in equation 10, we linearize it using
the network flow paradigm, where probabilities of connected nodes are repre-
sented by means of costs and flows. According to this paradigm, maximizing the
probabilities of nodes in a directed network is equivalent to finding the flows that
minimize the total flow over the network, given a set of predefined costs.

Let G = (N , E) be a directed network with costs associated to every edge
ei ∈ E . An example of such a network is shown in Fig. 9. It contains two special
nodes, the source S and the sink T . In our proposition, all flow that goes through
the graph starts at the S node and ends at the T node, and each flow represents
a vessel candidate Vk. Each vessel detection oi is represented by two nodes, the
beginning node bi ∈ N and the end node ei ∈ N (see Fig. 9), and a detection
edge connecting them.

More specifically, each vessel point detection is represented in the graph by a
pair of nodes bi and ei connected by an edge with cost Cdet(i) associated to the
vesselness measurement for the sampled point. Also, a pair of nodes (ei, bi) repre-
senting a vessel point is connected to the vessel points laying in the next layer, say
(ej , bj), by so called transition edges with cost Ct(i, j) related to the Euclidean
distance between points i and j. In this model the optimal path corresponds to the
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Figure 9: Proposed graph structure. First layer of the cone consists of node 1, second layer by
nodes 2,3,4 and third layer by nodes 5,6. Each pair of begin/end represents a node referenced by
the index associated.

minimum cost, which combines vesselness and the distance between nodes along
the path.

Below we detail four of the five different types of edges present in the graphi-
cal model. The edges associated to Ctoll(i, j) are going to be explained later.

Transition edges. Transition edges connect end nodes ei over a given layer to
beginning nodes bj of the next layers (orange edges in Fig. 9), with cost Ct(i, j)
and flow ft(i, j) = 1, if oi and oj belong to Vk, and 0 otherwise. The cost associ-
ated to transition edges relates to the distance of adjacent vessel detections. Since
nearby points are more likely to belong to the same vessel, we define the costs to
be a decreasing function of the distance between neighboring vessel detections,
assuming a distance Dmax:

Ct(i, j) = − log

(
Dmax − ‖(oj − oi)‖

Dmax

)
(12)

Detection edges. These edges (plotted in green in Fig. 9) connect the beginning
node bi and end node ei, with flow fdet(i) = 1 if oi belongs to Vk, and 0 otherwise.
It is worth noting that, if all edge costs are positive, the solution of the minimum-
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cost problem is the trivial null flow. The trick in our model is to represent each
vessel detection oi with two nodes and a detection edge in between with negative
cost Cdet(i) = log (1− Pdet(oi)). The higher the likelihood of a detection Pdet(oi)
the more negative the cost of the detection edge. Hence true detections are likely
to be in the path of the flow so as to minimize the total cost.

Entrance and exit edges. Entry edges (purple in Fig. 9) connect the source S to
all end nodes ei, with cost Cin(i) = 1 and flow fin(i). Similarly, exit edges con-
nect the start node bi with sink T , with cost Cout(i) = 1 + Cdet(i), to ensure that
a trajectory ends at a detection with high probability, and flow fout(i). The flows
are 1 if the trajectory Vk starts/ends at oi. It is interesting to notice that these con-
stants were arbitrarily set, since the flow optimization would find the same paths
independently on their specific values.

Now equation 10 can be rewritten in terms of costs and flows, as usual in the
network flow paradigm. First, we apply negative log-likelihoods to the equation
10 to derive equation 13:

V∗ = argmin
V

[− logP (V) +
∑
i

− logPdet(oi|V)] (13)

then, denoting each of the probability terms in equations 13 and 11 as a prod-
uct of costs and flows, we derive equation 14, which computes the set of flows
F∗ that minimizes the global network flow. Since maximizing the probabilities in
the graph is equivalent to finding the nodes that minimize the total flow over the
network, we find V∗ indirectly: the set of Vk vessels of the optimal vascular net-
work V∗ corresponds to the set of paths of minimum flow in F∗. All the related
symbols are intrinsically related to the graph shown in Figure 9.

F∗ = argmin
fin,ft,fout,fdet

[
∑
i

Cin(i)fin(i) + (
∑
i,j

Ct(i, j)ft(i, j)) + Cout(i)fout(i) + Cdet(i)fdet(i)]

(14)

subject to the following constraints:

• Edge capacities: we assume that each detection belongs either to one vessel
or to none, i.e., flows can assume 0 or 1 values, or 0 ≤ f(i) ≤ 1 in its
linearly relaxed form.

15



• Flow conservation at the nodes: the entering flow of a node equals its exiting
flow.

fin(i) + fdet(i) =
∑

j ft(i, j)
∑

j ft(j, i) = fout(i) + fdet(i) (15)

By now we have fully defined a linear program for finding F∗ and conse-
quently V∗. This linear problem can be solved using many of the Linear Program-
ming solvers proposed thus far by the optimization community, such as Simplex
or k-shortest paths ?. However, equation 14 is very computationally intensive. We
propose a fast iterative procedure to compute V∗, which finds the global solution
for each vessel sequentially and also identifies the network topology.

The first vessel V1 is found by solving Eq. 14, allowing entering flow only at
the seed point (the cone apex) and setting the maximum flow going out of node
T to be 1. A further condition is imposed in order to avoid multiple paths repre-
senting a single vessel. Specifically, the vessel must be distant enough from V1,
in order to be included in V∗. To represent such condition in the graph structure
a new type of edge is proposed, which connects vessel detections. Edges of this
type are associated to a penalty cost, hereby called “toll”. They are represented
by the thick black edges in Fig. 9. This ”toll” cost is defined as:

Ctoll(i, j) = Ktoll · exp
(
−‖(oi − oj)‖

Dradius

)
(16)

where Ktoll stands for a weight, and Dradius stands for a maximum penalty distance
in millimeters.

For all vessel detections oj which are at a distance Dradius or less to any vessel
detection found thus far in vessel branch V1, we compute a corresponding Ctoll,
which will be included to Eq. 14 as a positive penalty. We privilege this way
the detection of branches other than V1, since too similar paths will be penalized
through the summation of toll costs. We found out empirically that W Ktoll = 5 is
a proper choice.

For detecting bifurcations and their corresponding branches a simple solution
is adopted. We update the flow conditions, allowing any point of the detected Vk
to be the starting point of a new vessel branch, as shown in Fig. 10. Formally this
is done by allowing fin to range between 0,1 for such vessel points, and by setting
it to zero for all the other vessel detections. This solution handles bifurcations, and
new branches are found iteratively. fin and toll costs are updated accordingly, until
the cost of finding a new vessel branch becomes positive, i.e., until the positive
costs outweigh the negative costs in the minimum flow corresponding to the new
path.

16



(a) (b) (c) (d)

(e)

Figure 10: Proposed optimization method example of synthetic images. (a) Initial point marked
in orange. First path found is the one with minimum cost (red). In the next step, sources will be
added along the path (black arrows). (b,c,d) Paths found iteratively, sources of each path marked
by colored arrows. (e) 3D view of the vascular network.

2.4.2. Vascular Network Validation
A final vascular network validation procedure is performed to ensure that the

final outcome (figure 11) conforms to vascular anatomy, specifically:

1. Vessel branches cannot be too close to each other along their length, in
which case, the detected branches are very likely to represent the same ves-
sel. This condition is implemented by imposing a minimum distance be-
tween branches found at each iteration. If this value is lower than a thresh-
old, one of them is discarded.

2. In order to avoid loops, vessel branches are not permitted to reconnect to the
so far segmented vascular network. This is implemented by computing the
minimum distance between the branches found and the already segmented
network. If this value is lower than a threshold, the branch forming a loop
is discarded.

It is important to mention that those threshold values are relative to the esti-
mated radius. In this way, the absolute threshold values change dynamically dur-
ing the segmentation process, so as to avoid misconnections, while still keeping
the ability to find small vessels.
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(a) (b)

Figure 11: Post processing impose some anatomical constraints for a vascular network. The red
’X’ shows the branches which would be eliminated following each rule (a) and (b) described in
section 2.4.2.

[0.34; 0.3; 0.4; … ; 0.28] 
[0.32; 0.3; 0.4; … ; 0.48] 

Figure 12: Definition of the seeds for the next iteration.

2.5. Next seeds definition
The final step consists in defining new seeds from the detected branches to be

used in the iterative method. A simple procedure is defined to find the best seed of
each branch: we seek for the vessel point detection with the best vesselness value
in the ending part (30% last points) of each branch found, and define it as a new
seed, as depicted in figure 12.

Each new seed derives a new vascular network tracking process at its location,
until no more seeds are found. An overview of the proposed method is shown in
Algorithm 1.
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Algorithm 1 Iterative vessel network tracking
while ‖S‖ > 0 do

1. Get a seed from S and find the vessel direction

2. Compute a sampling cloud of points as shown in section 2.2

3. Build the graph from the sample points

4. Compute vesselness measurements at sample points given Eq. 9

while C(Vn) < 0 do
5. Find vessel Vn with minimum cost

6. Compute the toll charges (Eq. 16) and new flow conditions.

end while
6. Define new seeds S

end while
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3. Results and Discussion

3.1. Results
Experiments have been conducted to evaluate the proposed method. The

scarcity of public data sets with reference information has prevented a thorough
and objective experimental comparison among (semi) automatic methods for vas-
cular segmentation proposed thus far. In fact, to our best knowledge, for this
reason none of these works managed to perform an objective performance com-
parison with alternative approaches for vessel network segmentation.

Some authors tried to circumvent this difficulty either by relying on synthetic
data (e.g. ????) or by limiting themselves to visual evaluations (e.g. ????).
The analysis reported hereafter follows one or the other strategy depending on the
characteristics of the test data.

In some experiments we used a data set created for conference challenges,
which contain references. In those cases the following accuracy metrics were
used (detailed in ?):

• The overlap Dice similarity index for 3D volumes.

• Root mean squared (RMS) distance between reference and segmented 3D
surfaces.

• Hausdorff distance between reference and segmented 3D surfaces.

Concerning the processing time, it is important to mention that the iterative
nature of the method can derive very variable amount of time to run depending on
the complexity of the segmented network. Just to give an idea of processing time,
an iteration with 5000 points can take between 5 and 10 minutes approximately.
Depending on the complexity of a network, the number of cones needed in the
iterative process to segment the whole network vary a lot.

It is worth mentioning that the optimization procedure implied in the vessel-
ness computation was done using the differential evolution ? method.

In the following we report the experiments conducted to evaluate the proposed
method.

3.1.1. Synthetic data 1
The first experiment was based on a data set available in ?. It consists of a sim-

ple planar vascular like structure modeled as sinusoidal shapes with bifurcations.
The data set is affected by Gaussian noise artificially added to the raw data.The re-
sult obtained with this data-set is shown in figure 13. Clearly, the vascular network
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Figure 13: Synthetic data segmentation using sinusoidal shaped vascular-like structures. On the
left side the input data; on the right side the segmented vascular network in green.

was fully segmented. Even though no reference is available, a visual inspection
indicates that the method was successful in this case.

3.1.2. Synthetic data 2
In these experiments a more complex synthetic data-set provided by ?? has

been used. The data-set of a network of three-dimensional synthetic blood ves-
sels generated by so called stochastic Lindenmayer systems (L-systems) relying
on grammars that represent blood vessel architectures so as to produce nearly re-
alistic vascular networks. Nine different sequences were used in our experiments,
each of them with different morphological characteristics. Our method achieved
maximum accuracies ranging from 98% to 100% according to the overlap Dice
similarity index described in ?.

Figure 14 shows the results of experiments to assess the sensibility of our
method to its parameters.Two of them were the sampling distance (s) and aperture
angle (α) of the conical sampling cloud described in section 2.2. Two other pa-
rameters related to the Linear Programming optimization described in section 2.4
have also been tested, corresponding to Dradius from equation 16 and Dmax from
equation 12. We used the overlap Dice similarity index to compare the volume
found during the segmentation process and the one of the original image.

Figure 14(a) shows the average overlap measure computed over all nine se-
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Figure 14: Parameter study ofDradius in mm,Dmax in mm, aperture angle α in radians and sampling
distance s in mm (see sections 2.2 and 2.4). In each graph we see the performance achieved using
different pairs of parameters values.

quences for varying values ofDradius. It is possible to notice that on averageDradius

must be kept small (from 3 to 5), otherwise bifurcations are not detected because
toll costs are too high, causing the drop in accuracy. In figure 14(b) we make a
similar study for the aperture angle α parameter. Interestingly, this parameters is
related to anatomical characteristics of the vascular network (or part of it) to be
segmented, which might spread more or less widely. This fine tuning is necessary
because if the angle is too small bifurcations cannot be properly followed because
they do not fall inside the cone; on the other hand, if the angle is too large, sur-
rounding structures are included in the conical volume and spurious paths can be
found.

Figure 14(c) presents the relationship between Dradius, the aperture angle α
and the resulting average overlap measure. As the α value used gets higher, the
optimum Dradius also increases, so as to avoid that too many false bifurcations are
found. Nonetheless, the results are very stable with a wide range of parameters
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Figure 15: Synthetic data segmentation using L-Systems. It is possible to see the reference in
yellow and the results achieved in pink.

configuration. Finally, the plot of figure 14(d) shows the relation between Dmax

and the sampling distance s. Clearly, the optimum value of Dmax increases with
the sampling distance s. This is not unexpected, since Ct is related to the distance
of the corresponding vessel points, which are clearly affected by the sampling
distance. A sampling distance of 1-1.5 mm gave in our experiments good and
stable results.

Figure 15 shows the outcome and provides a visual evaluation of its accuracy.
Since the paths are composed by sampling points, the pink part was artificially
filled, and this is the reason of the split observed in the bottom model.

3.1.3. Pulmonary Data
This dataset was provided by the Extraction of Airways from CT 2009 (EX-

ACT09) challenge ? and contains pulmonary vessels inside the lungs.
The goal of this challenge was to compare the results of various algorithms to

extract the airway tree from CT scans using a common dataset and performance
evaluation procedure. The challenge provides training and testing datasets, and
there is also a reference data available for the pulmonary airways but not for the
pulmonary vascular network, so, our evaluation in this case was qualitative.

Figure 16 shows the results produced by our method on this data set. It can be
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Figure 16: Vascular segmentation for pulmonary real dataset. We see the results in the axial,
coronal and sagittal views and the 3D model generated.

seen that most of the vascular network, including bifurcations, were found. Even
though this kind of evaluation is not numerical, the results show the potential of
the method, specially if one takes into consideration that a single seed point was
used.

3.1.4. Coronary Data
In this experiment we tested our method for cardiac vessels segmentation. To

evaluate our algorithm for such application, we used the coronary dataset provided
for the MICCAI ”3D Segmentation in the Clinic: A Grand Challenge II ?. This
database contains thirty-two cardiac CT datasets with reference data available for
the four main coronary vessels. It is important to notice that the reference is
composed by four single vessel segmentation, and therefore does not test the full
potential of our method since they do not form a full vascular network. Nonethe-
less, it is a very interesting dataset and the available references can be used as
guidance for visual assessment.

Figure 17 shows that the reference single vessel is among the branches seg-
mented (in green) using our method, which segmented other two extra branches
as well.

Considering the single vessel reference available for this dataset, an interest-
ing effect is noticed. Since we use a single start point for segmenting the vascular
network, a so-called ”blind effect” is observed. Even though the segmentation
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Figure 17: Vascular segmentation for coronary real dataset. We see the results in the axial, coronal
and sagittal views and the 3D model generated.

process segments the network and includes the reference single vessel, it also seg-
ments other branches, and therefore would be badly evaluated by the competition
evaluation tool. If we restrict the algorithm to find a single path, then it is not
possible to ensure a-priori which of the three detected branches would be chosen.
Figure 18 depicts the effect.

3.1.5. Carotids Data
Carotids are the vessels that irrigate the brain, and therefore are very important

for many medical conditions such as the cerebrovascular accidents, commonly
known as strokes. We also tested our algorithm in segmenting the carotid ves-
sels, using the dataset ? created for the 3rd MICCAI Workshop in the series ”3D
Segmentation in the Clinic: a Grand Challenge III”.

The reference data available for this challenge concerns the identification of
the carotid bifurcation. Even though the carotid vascular network reference is
not available, it is possible to assess visually the outcome, since these vessels
are morphologically simple, usually having a single main bifurcation. Figure 19
shows that both vessels and the bifurcation are found.
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Figure 18: This figure shows what we called the blind effect using an axial view and the 3D model
generated. It is possible to visually understand that since our algorithm does not take into account
a specific vessel end point to follow a vessel path, it will not necessarily find a desired vessel, but
segment all the vessels connected to the given start point.

3.1.6. Olfactory Projection Fibers (OPF)
The OPF dataset is actually not from a vascular system, but from a nervous

fibers network of the olfactory system. This, of course, hinders the detection of
the vascular network (the use of a more appropriate model for vesselness would
be advisable), albeit good results were achieved. The dataset is available at the
DIADEM (short for Digital Reconstruction of Axonal and Dendritic Morphology)
challenge website ?, which was a competition for evaluating algorithmic methods
for automated neuronal tracing.

OPF are network-like structures, but the inner part, corresponding to the lu-
men in vessels, are not exactly homogeneous and therefore the Gaussian mixture
model proposed for vesselness evaluation, delivers low likelihood values. Still,
it is possible to take advantage of the structure and segment at least part of the
network.

We used this non-vascular network dataset in our experiments mainly because
of its reference data, which allowed us to evaluate our method quantitatively. For
this, we used the evaluation tool proposed for the DIADEM challenge.

The obtained results are summarized in Table 1, which allows for a compar-
ison of our method with other works. In the table we compare with ??, but the
interested reader can refer to the challenge website to check other methods results.
The results obtained are comparable with the ones obtained by methods designed
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Figure 19: Vascular segmentation for carothids real dataset. We see the results in the axial, coronal
and sagittal views and the 3D model generated.

for segmenting nervous fibers networks. This is encouraging and we believe that
a more suited metric for nervous fibers (instead of the proposed vesselness) would
improve substantially the results, even though this is not in the scope of this paper.
Figure 20 gives a visual feedback of the results obtained in one of the available
datasets.

Exam1 Exam3 Exam4 Exam5 Exam6 Exam7 Exam8 Exam9

k-MST
Tretken11

– – 0.865 – 0.898 – 0.722 –

HGD-QMIP
Tretken12

– – 0.923 – 0.911 – 0.722 –

Proposed
method

0.800 0.818 0.745 0.833 0.843 0.692 0.327

Table 1: OPF database results. The table shows the results obtained for each exam available in the
website. The metric is the one made available for the competition, therefore we have a straight
comparison with other methods.
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Figure 20: Segmentation results for OPF dataset. We see the results in the axial, coronal and
sagittal views and the 3D model generated.
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3.2. Topological Description
Our method delivers not only the vascular network segmentation but its topol-

ogy as well. It is possible to detect vascular branches and identify connecting
points, which are assumed to be bifurcations (even though the exact point of a
bifurcation is not very accurately determined).

We have not evaluated nummerically the results for topology with the datasets
used, but some visual feedback is given in figure 21. It is possible to visualize
branches in different colours and therefore inspect visually the vascular network
topology. The results are coherent with visual inspection.
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Figure 21: Extracted topology for synthetic data, where each color represents a different branch.
In each row a different synthetic model is showed, the first a 2D synthetic model, and the second
a 3D model, as referred previously.
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4. Conclusions

This paper presents a method to segment full vascular networks through an
iterative procedure that starts at a single vessel point provided by the user. A
cloud of samples is defined within conical volume having at its apex the current
vessel point. The decision whether or not a sample is a vessel point is based on
a metric of how well the sample fits a vessel model. The vascular network is
modeled by a directed graph. The final vascular network connecting the detected
vessel points is obtained by solving a a flow problem using linear programming.
This procedure finds branches of vessels iteratively until no new branch is found.

We tested our method using several datasets. An extensive performance com-
parison of our method with alternative approaches could not be done in the present
work, due the lack of a public data set for full vascular network segmentation. All
publicly available data sets just contain single vessel branches, or non vascular
network structures, such as a nervous fiber network.

Synthetic data was correctly segmented even for datasets with many bifur-
cations and vessels with different diameters. The method also produced visu-
ally coherent vascular networks for different organs. A dataset of pulmonary CT
images containing vascular networks with high capillarity, was reasonably seg-
mented, specially if one considers that a single seed point was used. Datasets of
carotid and coronary CT scans stressed the algorithm due to the very nature of
their data with many different structures surrounding the vessels, some of them
sharing vascular textures and densities. Nevertheless, the results obtained were
visually coherent with an specialist expectancy. Finally, we tested our algorithm
using an OPF dataset, which, despite not being a vascular dataset but a nervous
fibers network, provided a reference with which we could evaluate numerically
our method. Even though the vesselness measurement is not very suited for eval-
uating nervous fibers, good results were obtained and the olfactory fibers network
was segmented properly. The results obtained show the potential of the proposed
method to segment and extract the topology of different vascular networks.
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