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Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder that progressively hampers the brain 

functions and leads to various movement and non-motor symptoms. However, it is difficult to 

attain early-stage PD diagnosis based on the subjective judgment of physicians in clinical routines. 

Therefore, automatic and accurate diagnosis of PD is highly demanded, so that the corresponding 

treatment can be implemented more appropriately. In this paper, we focus on finding the most 

discriminative features from different brain regions in PD through T1-weighted MR images, which 

can help the subsequent PD diagnosis. Specifically, we proposed a novel iterative canonical 

correlation analysis (ICCA) feature selection method, aiming at exploiting MR images in a more 

comprehensive manner and fusing features of different types into a common space. To state 

succinctly, we first extract the feature vectors from the gray matter and the white matter tissues 

separately, represented as insights of two different anatomical feature spaces for the subject’s 

brain. The ICCA feature selection method aims at iteratively finding the optimal feature subset 

from two sets of features that have inherent high correlation with each other. In experiments we 

have conducted thorough investigations on the optimal feature set extracted by our ICCA method. 

We also demonstrate that using the proposed feature selection method, the PD diagnosis 

performance is further improved, and also outperforms many state-of-the-art methods.
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1. Introduction

Parkinson’s disease (PD) is an overwhelmingly neurodegenerative disorders which often 

starts at 40 years’ old and with the age-related deterioration. It also progresses slowly. With 

PD, patients’ movement, balance, and muscle control would be affected. It is still not clear 

about what causes PD, and there is limited effective treatment. However, the clinical 

diagnosis of PD is usually prone to subjective biases since it mostly relies on evaluating 

substantial symptoms of the patients (Calne et al., 1992). As an alternative, machine learning 

technique can be used as a solution to analyze medical data intelligently and produce the 

diagnosis automatically. Therefore, there are a lot of studies focus on computer-assisted 

diagnosis solution for PD, which is able to take advantage of all available data to diagnose 

and identify biomarkers related to PD (Goebel et al., 2011; Tsanas et al., 2012).

There are several studies in the literature aiming at distinguishing PD from normal control 

(NC), as well as other similar neural disorders. Goebel et al. (2011) analyzed the single-

photon emission computed tomography (SPECT) images, and developed an observer-

independent method to classify PD from multiple system atrophy Parkinson (MSA-P), 

progressive supranuclear palsy (PSP), and normal control automatically. Tsanas et al. (2012) 

proposed a novel speech signal processing algorithm to compute dysphonia measures, which 

contribute to better differentiating PD patients from healthy controls. Wenning et al. (2000) 

evaluated various clinical features (including response to levodopa, motor fluctuation, 

rigidity, dementia, speech) for distinguishing multiple system atrophy (MSA) from PD. 

Singh and Samavedham (2015) proposed a novel synergetic paradigm that integrates 

Kohonen self-organizing map (KSOM) to extract features from magnetic resonance (MR) 

images for individual-level clinical diagnosis of neurodegenerative diseases. Highly accurate 

diagnosis is then achieved with the least-square support vector machine (LS-SVM). Chen et 

al. (2013) proposed an effective and efficient system using fuzzy k-nearest neighbor (FKNN) 

for PD diagnosis on biomedical voice measurement data. Their experimental results 

demonstrate that the FKNN system greatly outperforms the SVM-based approaches and 

other methods in the literature.

Most of the existing works for computer-assisted PD diagnosis study on clinical data or 

voice measurements, rather than neuroimaging data. Few of them utilize sophisticated 

machine learning tools to select features and build models for PD diagnosis and biomarker 

identification. Our goal in this paper is finding a non-invasive and low-cost solution to early 

PD screening using T1-weighted MR images, which is more available in less-developed 

areas with limited access to healthcare resources. Our main contribution is to propose a 

novel iterative canonical correlation analysis (ICCA) based feature selection method to 

optimize the diagnosis process. Specifically, we commence by extracting features from the 

T1-weighted MR images, which are associated with individual regions-of-interest (ROIs). 

The ROIs are divided into two sets, corresponding to white matter (WM) and gray matter 

(GM), respectively. Therefore, the extracted features can be naturally separated into two 

groups, corresponding to the descriptions of the patients from the WM and GM perspectives. 

Next, we adopt canonical correlation analysis (CCA) and propose the iterative CCA (ICCA) 

method, in order to transform the WM and GM features into an optimal common feature 

space. The WM and GM features are transformed and then selected in a common space with 
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ICCA. Finally, the selected optimal features are used for establishing a robust linear 

discriminant analysis (RLDA) model, which classifies PD patients from normal subjects for 

disease diagnosis.

Feature selection has proven its importance in tackling problems in translational medical 

studies including computer aided PD diagnosis. For example, in (Ozcift, 2012), a feature 

selection scheme based on support vector machine (SVM) was used to help train the rotation 

forest (RF) ensemble classifiers to improve the diagnosis of PD. The records of voice 

measurements where each record includes 22 features were treated as input. They firstly 

selected 10 most important features using linear SVM, and then trained 6 classifiers with the 

selected features. Subsequently, RF ensemble classification strategy was used to generate the 

final result. Though the method can get good performance in PD diagnosis, abundant 

features extracted from medical imaging that prove to be effective and convenient for disease 

diagnosis are largely ignored (Aël Chetelat and Baron, 2003). In (Adeli et al., 2016), 

magnetic resonance imaging (MRI) data was used to diagnose PD by the joint feature-

sample selection (JFSS) method, which learned the robust and reliable diagnosis model on 

the selected optimal subset of samples and features only. The JFSS model can discard poor 

samples and redundant features, where it is difficult to be applied to the small sample 

problem. In (Cao et al., 2017), multiple heterogeneous features were extracted from medical 

images, and a multi-kernel framework for feature selection and unevenly distributed data 

learning was proposed for computer-aided detection of lung nodules. The proposed 

framework solved the challenging, which were the multiple heterogeneous and high 

dimensional irrelevant features and the imbalanced distribution between nodule and non-

nodule classes, in the field of recognition of nodule. In (Ye et al., 2012), complementary 

phenotypes for AD including neuroimaging, demographic, genetic and cognitive measures 

were used for the diagnosis and prognosis of AD. The sparse logistic regression technique 

(Ye and Liu, 2012) was applied to find the optimal set of features. In (López et al., 2009), 

principal component analysis (PCA) was used to reduce the dimension of feature space to 

assist the diagnosis of Alzheimer’s disease using single photon emission computed 

tomography (SPECT) and positron emission tomography (PET). In (Avants et al., 2010), 

sparse canonical correlation analysis (SCCA) was proved to be a valuable method to 

distinguish differences between neurodegenerative conditions. With SCCA, authors found 

that white matter integrity measured by fractional anisotropy (FA) from diffusion tensor 

imaging (DTI) reduced and cortical thickness measured by high resolution T1-weighted 

imaging decreased in Alzheimer’s disease (AD) and frontotemporal dementia (FTD). 

Besides, minimal-redundancy-maximal-relevance (mRMR) proves to be an efficient feature 

selection method in four different datasets including handwritten digits, arrhythmia, NCI 

cancer cell lines, and lymphoma tissues (Peng et al., 2005). Nie et al. (2010) proposed a 

robust feature selection method by minimizing the joint l21 -norm-based metric during the 

optimization. The proposed method has shown high performance in five publicly available 

microarray datasets and also one Mass Spectrometry dataset.

In this paper we further explore the CCA technique, which is capable of establishing the 

relationship between two high-dimensional vectors of features, and implementing linear 

mapping to transform them to a common feature space (Zhu et al., 2014). Note that the two 

feature vectors in our study are extracted from WM and GM regions respectively, 
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representing two views of different anatomical feature spaces from each patient/normal 

subject. These two feature vectors thus need to be transformed to a common space, where all 

features can be evaluated in accordance to their contributions toward PD classification 

jointly and fairly. Specifically, after linearly transforming the two views of features to a 

common space estimated by CCA, we learn a regression model to fit the PD/NC labels of 

the training subjects based on the transformed feature representations. The regression model 

not only predicts the unknown labels of new test subjects, but also helps identify the 

importance of relevant features for PD classification. The identified features are often 

perceived as important biomarkers, which help researchers better understand the mechanism 

and evolution of the disease potentially. In this paper, we extracted features as the volumes 

of 90 pre-defined regions of interest (ROIs) within the anatomical automatic labeling (AAL) 

atlas. Note that our proposed method is not restricted by these extracted features – it is 

applicable to many other features, including those extracted from different ROIs of different 

atlases, fiber tracking results from diffusion tensor imaging, etc.

In addition, we argue that only a few brain ROIs, as well as associated features, are relevant 

for computer-assisted PD diagnosis. The redundancy within initially extracted features can 

be high, which make it difficult to estimate the common feature space by a one-shot CCA 

transformation. The inaccurate estimation of CCA common space is also inaccurate to the 

selection of a limited number of optimal features and the subsequent learning of regression 

model. To this end, we develop the ICCA method for feature selection, in which we 

iteratively optimize the estimation of the common space and gradually discard the irrelevant 

features (Liu et al., 2016). Specifically, in the first iteration of ICCA, we transform the 

features of WM/GM views into a tentative common space, and build the PD regression 

model accordingly. The regression coefficients of the model measure the contributions of 

individual features, and guide us to eliminate the most irrelevant features for PD 

classification. The subsequent iterations will update the common space based on the 

tentatively preserved features, which will be further selected once the common space is 

updated. In the final, the two feature vectors of WM/GM views are transformed to the 

common space, while only the limited number of the optimal features is preserved. Though 

the framework in this study is similar with our previous work in (Liu et al., 2016), we further 

optimize the feature selection strategy in this study. Specifically, we adopt different strategy 

to discard the redundant features iteratively in order to ensure that the discarded features are 

insignificant to subsequent diagnosis. We also provide more details and experiments to 

analyze the performances of our method and its impact to computer-aided PD diagnosis.

The ICCA-based feature selection reveals the optimal common feature space for multi-view 

learning of neuroimaging data. We then utilize robust linear discriminant analysis (RLDA), 

which is an extension of robust regression for classification since classification problems can 

be cast as a particular case of binary regression (Huang et al., 2016), to complete the PD 

classification task based on the selected features. The RLDA can solve the small-sample-size 

problem and also the bias problem caused by outliers at the same time. In the next Section, 

we will give more details about robust regression and RLDA. Note that, with the linear 

transformation of the features in CCA, our ICCA provides locally linear feature 

transformation capabilities that contribute to sophisticated feature selection across two 

different anatomical views. The remaining parts of the paper are organized as follows. In 
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Section 2, we provide related works on feature selection as well as robust regression, since 

the RLDA classifier used in this paper is an extension of robust regression for classification. 

In Section 3, we present details about the design of our classification framework, especially 

the ICCA feature selection method. The experimental results of the proposed method and 

the comparisons with state-of-the-art feature selection approaches are provided in Section 4. 

The top features selected by the proposed method for PD classification are also discussed. 

Finally, we conclude the paper in Section 5.

2. Related work

2.1. Feature selection methods

Based on whether using label information in the training data, feature selection can be 

divided into the supervised and unsupervised methods (Zhao and Liu, 2007). Feature 

selection techniques which rely on features only and without considering the class labels of 

the training subjects are in general belonging to the unsupervised feature selection category, 

including PCA, t-test, etc. These methods are simple and hence widely used in many 

applications. For instance, Song et al. (2010) exploited the eigenvectors of the PCA 

covariance matrix to evaluate the significance of each individual feature component in the 

original data. With the evaluated feature components, their method only takes a few 

eigenvectors into account. Their experimental results on face recognition show that their 

method could select an appropriate amount of features without jeopardizing the recognition 

accuracy. Zhou and Wang (2007) modified the t-test ranking measure and used it to discover 

the significant single Nucleotide polymorphisms (SNPs).

In addition to the above, there are some popular filter-based feature selection methods, 

which rank features with various criteria and then select them. The criteria include 

information gain (Azhagusundari and Thanamani, 2013), Fisher score (Gu et al., 2012), 

ReliefF (Robnik-Šikonja and Kononenko, 2003), Laplacian score (He et al., 2005) and Trace 

Ratio (Nie et al., 2008), all of which have been extensively studied in different fields. 

Azhagusundari and Thanamani (Azhagusundari and Thanamani, 2013) proposed an 

algorithm that combines discernibility matrix and information gain to select features. They 

demonstrated that better results, in terms of the number of selected features and 

classification accuracy, can be achieved than applying the two criteria separately. Gu et al. 

(2012) presented a generalized Fisher score by reformulating the feature selection problem 

as a quadratic constrained linear programming. They overcame the shortcoming of the 

conventional Fish score feature selection method, in which each feature is independently 

considered. The selected suboptimal subset of features is shown to outperform the 

conventional Fisher score and many state-of-the-art feature selection methods, including 

Laplacian score, Hilbert Schmidt Independence criterion, and Trace Ratio criterion. In 

(Robnik-Šikonja and Kononenko, 2003), authors thoroughly investigated Relief and ReliefF, 

and demonstrated their robustness as well as tolerance to noises.

The class labels of the training subjects can contribute to supervised feature selection 

methods. In this way, the selection of features is perceived as part of learning upon the 

training data, which can usually be modeled by optimizing an objective function. Some 

popular examples are sparse learning (Ye and Liu, 2012) and Least Angle Regression 
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(LARS) (Efron et al., 2004). In (Tsanas et al., 2010), the Least Absolute Shrinkage and 

Selection Operator (LASSO) is used to perform feature selection. LASSO minimizes the 

class label regressed from the features from its ground truth, while the regression 

coefficients measuring the contributions of individual features are penalized by the l1-norm. 

The l1-norm penalization encourages many coefficients to vanish, while only the most 

useful features are selected to contribute to the regression of the class labels. Wang et al. 

(2011) proposed a novel Sparse Multi-tAsk Regression and feaTure selection (SMART) 

model, in which they included both l1-norm and l2,1-norm regularizations for selecting 

features. In (Nie et al., 2010), Nie et al. proposed to measure both the loss function and the 

regularization of coefficients with the l2,1-norm jointly. The l2,1-norm based loss function is 

robust to outlier subjects, while the l2,1-norm regularization selects features across all 

subjects with joint sparsity. In (Armanfard et al., 2016), Armanfard et al. proposed a novel 

localized feature selection (LFS) method where the optimal feature subset is associated with 

each region of the sample space. In (Li et al., 2017), Li et al. proposed a granular feature 

selection method for multi-label learning with a maximal correlation minimal redundancy 

criterion based on mutual information to select a more relevant and compact feature subset 

as well as explore the label dependency.

The performance of feature selection can be limited especially when dealing with complex 

data, in which features are highly correlated and thus redundant. For instance, Peng et al. 

(2005) presented a two-stage feature selection algorithm based on maximal statistical 

dependency. By combining minimal-redundancy-maximal-relevance and other sophisticated 

feature selectors, they demonstrated promising results over several classifiers and datasets. 

In (Senawi et al., 2017), Senawi et al. proposed a maximum relevance-minimum 

multicollinearity (MRmMC) method in which relevant features are measured by correlation 

characteristics based on conditional variance while redundancy elimination is achieved 

according to multiple correlation assessment using orthogonal projection scheme. In 

(Naghibi et al., 2015), Naghibi et al. proposed a parallel search strategy on semidefinite 

programming, which can search through the subset space in polynomial time, with mutual 

information between features and class labels considered as measure function. In (Zhu et al., 

2014), Zhu et al. proposed a novel canonical feature selection method, which efficiently 

integrates the correlation information between structural and functional neuroimaging data 

into a sparse multi-task learning framework. They assumed that the structural and functional 

feature descriptors of a single subject are highly redundant. By projecting the features of 

these two different modalities (and thus two views) into a common space with CCA, they 

were able to maximize the correlation between features and also conduct task-related feature 

selection.

2.2. Robust regression

In this study, we use RLDA for classifying subjects with selected features. RLDA can be 

considered as a special case of robust regression (Huang et al., 2016). As also confirmed in 

the literature, regression methods can be extended for the challenging classification tasks 

(Naghibi et al., 2015; Wang et al., 2010; Huang et al., 2011). Nevertheless, the lack of 

robustness against noise is one of the major drawbacks of most existing regression 

approaches, especially when the outliers affect the normal distribution of subjects within 
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high-dimensional feature space (Huang et al., 2016). Therefore, robust regression methods 

(Rousseeuw and Leroy, 2005; Van Huffel and Vandewalle, 1991) have developed during the 

past decades. In (Huber, 2011), Huber introduced M-estimation for regression, which shows 

robustness for outlier subjects. Rousseeuw and Leroy (2005) developed Least Trimmed 

Squares, which can find a data subset that minimizes the squared residual sum. However, 

these methods can only remove outliers among subjects, and therefore they cannot deal with 

outliers within subjects, or in other words noises in the feature values. Hence, Error-In-

Variable (EIV) approaches (Van Huffel and Vandewalle, 1991) are proposed to deal with 

noises in the features, even though the existing EIV approaches rely on strong assumptions 

on classification errors.

Robust regression methods are further extended for robust classification applications. A 

robust extension of Linear Discriminant Analysis (LDA) is proposed in (Croux and Dehon, 

2001), in which authors substituted their robust counterparts for the empirical estimation of 

the class mean vectors and covariance matrices. In (Kim et al., 2005; Zhang and Yeung, 

2010), authors proposed a worst-case Fisher Discriminant Analysis/Linear Discriminant 

Analysis (FDA/LDA) to increase the separating ability between classes in unbalanced 

sampling by minimizing the upper bounds of LDA cost function. It is worth noting that these 

classifiers are only robust to outliers among the subjects, yet not robust to the intrinsic noises 

in extracted features. To deal with this problem, Fidler et al. (2006) modified LDA and made 

it robust to outliers within subjects through application of PCA on the training data. A 

robustly estimated basis is computed to replace the minor PCA components, after which 

they combined these two bases into a new one, and then the data was projected onto the 

combined basis. Finally, the LDA is calculated in the training phase. In the testing phase, the 

coefficients of the test data on the recombined basis are estimated, and the class label(s) for 

the test data are determined by mapping the learned LDA on the estimated coefficients. This 

method can suppress the outliers outside the PCA subspace, but it cannot deal with the 

problem of learning LDA with outliers in the PCA subspace of the training data. Zhu and 

Martinez (Jia and Martinez, 2009) extended the SVM algorithm, denoted as Partial Support 

Vector Machine (PSVM), to make it applicable for the cases with missing features in the 

subjects. They have indicated that their method is also robust to some levels of noises. Of 

note, the robust LDA (Huang et al., 2016) used in this study is an extension of the robust 

regression study, which is inspired by existing work on robust PCA (De La Torre and Black, 

2003). It enjoys the following advantages compared to the aforementioned methods: 1) it is a 

convex approach; 2) except for sparsity, there is no assumption imposed on the noise in the 

data; 3) it automatically cleans the noise in the features when learning a classifier. More 

implementation details about robust LDA classifier will be provided in Section 3.

3. Method

The framework of our proposed method for PD diagnosis in this paper can be illustrated as 

follows: suppose that we get two feature vectors (feature vector 1 and feature vector 2) 

already. These features are then fed into the ICCA feature selection framework, where the 

two feature vectors are transformed onto their common feature space using CCA. The new 

canonical representation of each feature vector is computed in this common space. Next, we 

build a linear regression model to fit the PD/NC labels of the training subjects based on the 
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canonical representations of their features. The regression model then yields the coefficients 

that describe the contributions of the canonical representations, from which the importance 

of the original features can be computed. We thus conduct conservative selection upon the 

features, by discarding just 5 gray matter and 5 white matter features in the early 50 

iterations and then only eliminating the least important gray matter and white matter features 

in the later iterations. The rest of the features are fed into the next iteration of feature 

selection, as the features are transformed to the updated common space and then selected 

accordingly. This iterative procedure (or ICCA) ends when only a small set of optimal 

features are remaining. Finally, we build a robust classifier based on the selected features, 

and further apply it to diagnose the new test subject with unknown PD/NC label.

3.1. Canonical correlation analysis (CCA)

CCA is a method to exploit the correlated relationship between two multi-dimensional 

feature sets. Specifically, CCA intends to find a pair of basis vectors, such that the 

correlation between the two sets of feature vectors is maximized after they are transformed 

following the basis vectors, respectively. The transformed features are highly correlated and 

thus perceived to be within the common feature space (Zhu et al., 2014).

Consider two multivariate feature vectors of the form (x1, x2). Suppose we are given n 

subjects X = x1
1, x1

2 , …, xn
1, xn

2 . Let X1 denote x1
1, …, xn

1  and X2 denote x1
2, …, xn

2 . Define 

a transform matrix B1 to project X1, and B2 to project X2. The projected X1 and X2 are 

computed as Z1 = 〈B1, X1〉 = B1′X1, and Z2 = 〈B2, X2〉 = B2′X2, where 〈•, •〉 denotes the 

Euclidean inner product. The new representations Z1 and Z2 are called the canonical 

representations for X1 and X2, respectively. In CCA particularly, we determine a pair of B1 

and B2 to maximize the correlation between the canonical representations Z1 and Z2, which 

can be formularized as the following:

ρ = max
Z1, Z2

corr  Z1, Z2 = max
Z1, Z2

Z1, Z2

Z1 Z2 = max
B1, B2

B1′X1, B2′X2

B1′X1 B2′X2 . (1)

If we use Ê [f (X1, X2)] to denote the empirical expectation of f (X1, X2), where 

E f X1, X2 = 1
n ∑i = 1

n f xi
1, xi

2 , then the correlation expression can be rewritten as:

ρ = max
B1, B2

E B1, X1 B2, X2

E B1, X1 2 E B2, X2 2 = max
B1, B2

E B1′X1X2′B2

E B1′X1X1′B1 E B2′X2X2′B2

= max
B1, B2

B1′E X1X2′ B2

B1′E X1X1′ B1B2′E X2X2′ B2 .

(2)

Now note that the covariance matrix of (X1, X2) is
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C X1, X2 = E
X1

X2
X1

X2

′
=

C
X1X1C

X1X2

C
X2X1C

X2X2
=

Σ11 Σ12
Σ21 Σ22

. (3)

Hence, we can rewrite the function ρ as:

ρ = max
B1, B2

B1′Σ12B2

B1′Σ11B1B2′Σ22B2 . (4)

The maximal canonical correlation coefficient vector is, equivalently, the maximum of ρ 
with respect to B1 and B2.

3.2. CCA-based feature selection

Given n subjects, their d -dimensional feature vectors are considered as individual columns 

in X1 ∈ Rd×n and X2 ∈ Rd×n, which correspond to the views of WM and GM, respectively, 

in our application. The class labels for the subjects are stored in y ∈ Rn×1, where each entry 

is either “1” (PD) or “0” (NC) to indicate the class label that a subject is associated with. Let 

X = [X1, X2] ∈ Rd×2n, and Σ =
Σ11 Σ12
Σ21 Σ22

 be its covariance matrix. CCA can find the basis 

matrices B1 ∈ Rd×d and B2 ∈ Rd×d to maximize the correlation between the transformed X1 

and X2. The two basis vectors B1 and B2 can be estimated by solving the following 

optimization problem:

B1, B2 = argmax
B1, B2

B1′Σ12B2

B1′Σ11B1 B2′Σ22B2 . (5)

Note that the generalized Eigen-decomposition in (Zhu et al., 2012) gives the optimal 

solution of (B1, B2). Therefore, the canonical representations of all features in the common 

space are obtained by Zm = Bm′Xm, m = {1,2}.

Next, we build a sparse linear regression model based on the canonical representations, 

aiming to fit the class labels with the latest canonical representations. Specifically, the non-

zero weights are assigned to a limited number of the canonical representations following:

w = argmin
W

1
2 ∥ y − ZTw ∥F

2 + β‖w‖1 + γ‖ w ‖CCA
2 . (6)

Here, Z = [Z1, Z2] ∈ R2d×n is the canonical representation matrix, w = [w1; w2] ∈ R2d×1 is 

the regression coefficient matrix, and β and γ are the trade-off scalar parameters. The l1 -
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norm penalty ||w||1 tends to yield sparse coefficients for the canonical representations. And ||

w||CCA denotes the following canonical regularizer (Nie et al., 2010):

‖w‖CCA
2 = ∑

i = 1

d 1 − λi
λi

wi
2 + w

i + d2 . (7)

Note that {λ1, …,λd} denotes the set of the canonical correlation coefficients, and wi and 

wi+d are the weights corresponding to the same feature index (and thus ROI) of the two 

views (i.e., GM and WM). In the feature selection process, more correlated canonical 

representations across the two views, which means with large canonical correlation 

coefficients, tend to be selected and vice versa.

It is worth noting that the canonical regularizer finds canonical representations that are 

highly correlated across the GM/WM feature views simultaneously. Besides, it can also be 

considered that the higher λi comes with the increases of wi and wi+d after optimization. In 

the conventional methods, the feature matrix in the original space is generally used to build 

the regression model, find the relationship between feature matrix and output, and use this 

kind of relationship to select features. These methods are able to select significant features 

and remove redundant features. However, when there are complex relationships among 

features, it is really hard to discard redundant features. The CCA-based feature selection 

uses canonical representations for regressors, which are highly correlated but mutually 

independent within each representation. Therefore, it is more convenient to identify 

redundant information in the canonical space, and thus the CCA-based feature selection 

would be more predictive than the traditional sparse feature selection methods (Zhu et al., 

2014).

3.3. ICCA-based feature selection

As stated in Section 3.2, the feature selection method by CCA is more powerful in 

predicting the response variables (i.e., the PD/NC labels) than the conventional sparse 

feature selection methods, since CCA considers the correlation between the two sets of 

features from two different views, as well as the correlation between features and response 

variables. Even though there are many advantages of the CCA based feature selection, its 

main limit lies in the inaccurate one-shot estimation of the common feature space. As all 

features are linearly transformed to the common space and selected accordingly, it might be 

not precise enough to identify and preserve the optimal features. Therefore, we propose a 

novel ICCA feature selection method, in which we iteratively update the estimation of the 

common feature space and discard the most irrelevant features for iterative feature selection. 

In this way, we are able to acquire the best features by approximating locally linear 

operation upon the input feature vectors.

In the Eq. (6), we can get the regression coefficient matrix w = [w1; w2] in the tentatively 

estimated common/canonical space, which present the weights for canonical representations 

Z = [Z1, Z2] in canonical space. From the equation, Zm = Bm′Xm, m = {1,2}, we can see 

that canonical representations Z (Z = [Z1, Z2]) are linear combinations of X (X = [X1, X2]) 
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(WM/GM features in the original feature space) warped by B (B = [B1, B2]). Therefore, the 

weights in w (w = [w1; w2]), which learned from Eq. (6), are also linearly correlated with 

the importance of X (X = [X1, X2]) (WM/GM features). Then, the importance or weights of 

the original WM/GM features X (X = [X1, X2]) can be computed by wm = Bm −1wm, m = 

{1,2}, where wm records the weights of the m -th view of the original features for 

discriminant PD from NC. Given the estimated w1 and w2, the least important WM or GM 

features for discrimination in the original feature space can be eliminated. Note that we 

optimize feature selection here in a more effective way compared to our previous work in 

(Liu et al., 2016). In (Liu et al., 2016), we discarded one most insignificant feature from 

WM and GM feature vectors, respectively, which is time consuming and ineffective. In order 

to solve this problem, we improve feature selection strategy in this study. In the first a (a = 

50) iterations, we discard b (b = 5) WM and GM features, respectively. The values of a and b 
are determined by experiments. Then, in the following iterations, we discard a pair of WM 

and GM features. With the updated WM/GM features in the original space in each iteration, 

X (X = [X1, X2]), CCA is applied to update the common feature space and transforms the 

updated WM/GM features to refined canonical representations in the common space 

accordingly. This transforming-eliminating scheme is iteratively executed until the number 

of the iterations exceeds a predefined threshold, or our desired number of features is 

obtained.

In conclusion, our proposed ICCA-based feature selection method consists of the following 

five steps:

1. Compute basis vectors B1, B2 using CCA via Eq. (5);

2. Transform the original feature matrices X1, X2 into the canonical space (Z1, Z2) 

by Zm = Bm′Xm, m ={1,2};

3. Compute the coefficient vectors w1, w2 in the canonical space, which are stored 

in w (w = [w1; w2]), using Eq. (6);

4. Compute the feature importance vectors in the original feature space (i.e., w1 and 

w2), by wm = Bm −1wm;

5. Discard features from w1 and w2 based on the optimized strategy mentioned 

above, and update the feature matrices X1, X2;

6. Repeat Steps 1–5 until the stopping criterion is attained.

3.4. Robust linear discriminant analysis classification

As previously stated in Section 2.2, in this paper we incorporate the RLDA technique for the 

PD/NC classification work, using the optimal feature subset selected by the proposed ICCA 

method. RLDA can be seen as a special case of robust regression (RR) method (Huang et al., 

2016), since binary classification can be treated as a special case of regression.

Given X ∈ Rn × d as the input matrix, which consists of d -dimensional samples with noises. 

LDA learns a linear transformation, which maximizes the inter-class variance while 
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minimizing the intra-class variance. However, when learning upon the high-dimensional 

data, LDA cannot overcome the small sample size problem. In order to solve this problem, 

LDA can be formularized as a least-squares (LS) problem (Huang et al., 2016), in which X is 

directly mapped to the class labels represented by an indicator vector. Thus, LS-LDA 

reduces to:

argmin
t

η
2 yTy

− 1
2(y − Xt) 2

2

. (8)

The normalization factor (yTy)−1/2 compensates for different sample size per class and 

t ∈ ℛd × 1 represents a regression vector. However, when X is corrupted by the noise, the 

LS-LDA suffers from a biased estimation of t. The robust LDA (RLDA), by explicitly 

decomposing the data matrix into a noise-free data matrix and the error matrix, partially 

resolves the problems above.

In RLDA, by modeled the data as X = D + E, where D is the underlying noise-free or clean 

component and E contains the noise or error in the data, the noise in data can be partially 

considered and removed. The formula of RLDA is shown in Eq. (9), where H = (In−11T/n) 

is a centering matrix and t ∈ ℛd × 1 is the mapping matrix that learned from the centered 

clean or noise-free data HD only. From the Eq. (9), we can see that, in RLDA, t is mapped 

from X to fit the class labels in y ∈ Rn×1, and X is decomposed into D and E, thus the 

mapping t is computed using the noise-free data D, which yields the desired effect that we 

can partially decrease the influence of noise on data X.

argmin
𝔱, D, E

η
2 yTy

− 1
2(y − HDt) 2

2

+ ‖D‖* + λ‖E‖1 s. t.  X = D + E, (9)

Since X is decomposed into clean (noise-free) data D and noise, and mapping matrix t is 

only learned from the clean data. Therefore, unlike traditional method (e.g., LDA, LS-LDA), 

it avoids projecting the noise E in the estimation, and thus conduce to an relatively unbiased 

noise-free estimation. After t is learned in the training phase, a testing data, Xtest, is 

projected by t and a k-Nearest Neighbor (k-NN) algorithm is used to determine the class 

label of the test data. The above RLDA formulation can be easily solved by augmented 

Lagrangian multipliers method. For more details, please refer to (Huang et al., 2016).

4. Experiments

In this section, we apply the proposed ICCA method to the PD/NC diagnosis to demonstrate 

its validity. Here we employ the Parkinson’s Progression Makers Initiative (PPMI) dataset 

(Zhu et al., 2012) for the evaluations. The T1-weighted MR images were acquired using 3 T 

SIEMENS MAGNETOM TrioTim Syngo. There are 112 subjects (56 PD, and 56 NC) 

Liu et al. Page 12

Comput Med Imaging Graph. Author manuscript; available in PMC 2019 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



randomly selected from the PPMI dataset for this study. The parameter settings are given as 

follows: acquisition matrix = 256 × 256 mm2, 176 slices, voxel size = 1 × 1 × 1 mm3, echo 

time (TE) = 2.98 ms, repetition time (TR) = 2300 ms, inverse time = 900 ms, and flip angle 

= 9°.

All T1-weighted MR images are pre-processed by skull stripping using a learning-based 

algorithm for brain extraction and labeling, which performs multiple complementary brain 

extractions on a given testing imaging by using a meta-algorithm (Shi et al., 2012), 

cerebellum removal, and tissue segmentation into WM and GM using a hidden Markov 

random field model proposed in (Zhang et al., 2001). Then, the anatomical automatic 

labeling (AAL) atlas with 90 pre-defined ROIs is registered to the native space of each 

subject, using multi-modal affine registration (FLIRT) in FSL (Smith et al., 2004), followed 

by HAMMER registration algorithm (Shen and Davatzikos, 2002). For each ROI, we 

estimate the WM/GM tissue volumes as the WM/GM feature, respectively. In this way, we 

extract 90 WM and 90 GM features for each subject. The features are naturally grouped into 

two vectors, to be handled by the ICCA based feature selection and then the RLDA based 

classification. Fig. 1 shows the pipeline of our proposed ICCA based feature selection 

algorithm for PD diagnosis.

4.1. Evaluation protocol

In order to evaluate our proposed method, we compare our method with state-of-the-art 

feature selection methods, including PCA (López et al., 2009), FSASL (unsupervised feature 

selection with adaptive structure learning) (Du and Shen, 2015), CCA (Zhu et al., 2014), 

sparse feature selection (Ye et al., 2012), Elastic Net (Zou and Hastie, 2005), robust feature 

selection method (Nie et al., 2010) and minimal-redundancy-maximal-relevance (mRMR) 

(Peng et al., 2005). To this end, we use the same nested cross-validation to evaluate the 

performances of individual methods on classifying PD patients from NC. Specifically, in the 

outer layer of the nested cross-validation, an 8-fold scheme is adopted to partition the dataset 

into 7 training folds and 1 testing fold. In the inner layer of the nested cross-validation, we 

further conduct 10-fold analysis toward the 7 folds of training data. The inner 10-fold cross-

validation is used to tune the parameters automatically. With a fixed subset of features that 

are selected in the inner 10-fold cross-validation, the diagnostic ability is tested in the outer 

8-fold cross-validation. Note that with 12 CPU cores (2.76 GHz) and 48 GB memory size, it 

takes about 2 s for each inner loop, 1 h in the training stage with parallel computing, and 

about 25 s to test a new subject. The implementations are all done in MATLAB.

4.2. Comparisons with the state-of-the-art feature selection methods

In this study, we compare the PD/NC classification performance of all the configurations 

along with the alternative methods available. Specifically, we compare our ICCA-based 

feature selection with several popular feature selection or feature reduction methods, 

including PCA (López et al., 2009), FSASL (unsupervised feature selection with adaptive 

structure learning) (Du and Shen, 2015), CCA (Zhu et al., 2014), sparse feature selection (Ye 

et al., 2012), Elastic Net (Zou and Hastie, 2005), robust feature selection method (Nie et al., 

2010) and mRMR (Peng et al., 2005). No feature selection (NoFS) is also compared here, 

where all features are input to the RLDA classifier without any feature selection. For Elastic 
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Net, a function namely “lasso” in MATLAB is used for implementation. For the sparse 

feature selection method, we use the l2,1 -norm regularization, instead of the l1 -norm 

regularization, as in the traditional lasso regression model. In PCA-based feature selection, 

only the top 1% principal components are preserved, which result in much fewer yet more 

powerful features. The details about the one-shot CCA feature selection are described in 

(Zhu et al., 2014). The details of the FSASL method can be found in (Du and Shen, 2015), 

where the code is also available online.

Alternatively, we also measure the performance when selecting upon the canonical 

representations rather than the original WM/GM features. State succinctly, we directly 

eliminate the least important canonical representations in every iteration of ICCA, instead of 

using the inverse-transform and elimination steps in the original WM/GM features. The 

remaining canonical representations are used for re-estimating the new common space by 

CCA and further selected. We consider this configuration as “cascaded-CCA”, that several 

CCA based feature selection steps are cascaded rather than iteratively executed.

The classification results are presented in Table 1., which shows that the proposed ICCA 

based feature selection method achieves better performance than the competing methods. In 

particular, our method improves by 11.5% on ACC and 16% on AUC, respectively, 

compared to the baseline (NoFS). Moreover, compared to feature selection through Elastic 

Net, PCA, SFS, CCA, FSASL, RFS and mRMR, our method achieves 6.2%, 5.3%, 5.4%, 

4.4%, 5.2%, 4.4% and 3.8% accuracy improvements, respectively. Also, our methods 

achieve 6.5%, 11.3%, 6.6%, 6.7%, 4.7%, 7.1%, 5.5% AUC improvements, compared to 

Elastic Net, PCA, SFS, CCA, FSASL, RFS, mRMR respectively. It can also be observed 

from the last two lines in Table 1 that the proposed ICCA based feature selection 

outperforms the cascaded-CCA scheme. We attribute this to the observations that the CCA 

mapping to the common space is unsupervised and, after CCA mapping, the two feature 

vectors become highly correlated in the canonical space. This leads to the redundancy 

occurred in the canonical representations, which further mislead the feature selection and 

thus influence the subsequent classification. It is also concluded that such limitation can be 

solved by inversely transforming the representations back to the original feature space before 

conducting feature selection in the ICCA strategy.

4.3. The Most discriminant regions

Recently, there are a lot of works to study the WM/GM changes on PD patients. They also 

identify several significant brain regions that are affected by PD mostly. For example, the 

WM lesions are associated with some motor and cognitive deficits in PD (Bohnen and 

Albin, 2011). Significantly increased WM density in occipital lobes, posterior cingulate 

gyrus, and paracentral lobule are found in PD with olfactory dysfunction compared with the 

normal controls (NC) (Ding et al., 2011). GM volumes are found to be significantly 

decreased in the patients with PD compared with NC (Xia et al., 2013). And reduced gray 

matter volumes in PD patients are observed in the temporal lobe, occipital lobe, right frontal 

lobe, left parietal lobe, and some subcortical regions (Burton et al., 2004).

In this section, we intend to evaluate these optimal feature subsets by ICCA, which are 

expected to be the biomarkers of PD that correspond to their specific WM/GM regions. Note 
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that we further select the most discriminative regional features, which are available in at 

least 60% of feature subset in all the cross-validation folds. Fig. 2 presents these selected 

regional features, which have ‘precuneus’, ‘thalamus’, ‘hippocampus’, ‘superior temporal 

pole’, ‘postcentral gyrus’, ‘middle frontal gyrus’, and ‘medial frontal gyrus’.

It is worth noting that the most discriminative regional features shown in Fig. 2 fit with the 

PD pathology, which is also proven by the previous clinical researches. As reported in 

(Hanakawa et al., 1999; Halliday, 2009), the PD patients reveal under-activation in 

precuneus and temporal cortex, and the pathology in thalamus also contribute to the 

abnormal neural activity characteristic of PD. In additional, temporal pole and hippocampal 

atrophy are reported as an early sign of PD in (Burton et al., 2004; Potgieser et al., 2014; 

Camicioli et al., 2003). In (González-Redondo et al., 2014) bilateral areas of atrophy in 

middle frontal gyrus and bilateral GM loss in medial-superior frontal are reported in PD 

patients. It is found in (Beyer and Aarsland, 2008) that the areas of reduction in the absolute 

amount of GM are bilateral in the medial frontal gyrus, right precuneus, inferior parietal 

lobule, and so on. In (Song et al., 2011), gray matter densities are found significantly 

decreased in bilateral temporal, right postcentral, and some other brain regions in PD of 

dementia patients.

We also conduct t-tests for the statistical analysis on GM/WM volumes computed from the 7 

significant ROIs between PD and NC, with a p-value of 0.05 as the threshold for the 

statistical significance. One interesting finding is that only three regions show significant 

differences between PD and NC, namely ‘precuneus’ (p = 0.0065), ‘hippocampus’ (p = 

0.0164), and ‘middle frontal’ (p = 0.0429). This implies that the GM/WM volumes extracted 

from brain regions may not be simply used for prognosis. Instead, when combining them 

together and using the highly efficient machine learning tools for the analysis, we can 

achieve high prognosis capability.

Except for our proposed ICCA based feature selection method, we also explore the most 

discriminant features selected by the traditional feature selection method (mRMR) and state-

of-the-art (CCA-based feature selection), with their performances shown in Section 4.2. The 

most significant features selected by mRMR include “middle occipital gyrus”, “putamen”, 

“medial orbitofrontal cortex”, “caudate nucleus”, “superior frontal gyrus (orbital part)”, and 

“anterior cingulate gyrus”. Four out of the six significant regional features selected by 

mRMR are in line with the existing studies such as “caudate nucleus” (Corrigan et al., 

1998), “superior frontal gyrus (orbital part)” (Zhang et al., 2017a), “putamen” (Kish et al., 

2007), and “anterior cingulate gyrus” (Allman et al., 2001). The most discriminant regional 

features selected by CCA includes “precentral gyrus”, “anterior cingulate and paracingulate 

gyri”, “hippocampus”, “precuneus”, “caudate nucleus”, and “postcentral gyrus”. Similarly, 

most of the extracted regional features are in line with the existing studies such as 

“hippocampus” (Burton et al., 2004; Potgieser et al., 2014; Camicioli et al., 2003), 

“precuneus” (Beyer and Aarsland, 2008), “caudate nucleus” (Corrigan et al., 1998), and 

“postcentral gyrus” (Song et al., 2011).

We have also conducted t-test to explore the statistical significance of the selected features 

by mRMR and CCA, and obtain a p-value of 0.05. For the most significant regional features 
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selected by mRMR, there is no significant difference found between GM/WM volumes 

computed from the 6 significant ROIs from PD and NC, respectively, which is consistent 

with the finding metioned above. With regard to the most discriminant features selected by 

the CCA, only two regions show significant differences between PD and NC, which are 

“precuneus” (p = 0.0065) and “hippocampus” (p = 0.0164). All these experiments shown 

above prove an interesting phenomenon – although it seems like that these features don’t 

have diagnosis abilities when used separately, when used together with modern machine 

learning methods, their joint diagnosis ability can be carved out.

5. Conclusion

In this paper, we present the novel ICCA based feature selection method for the PD 

diagnosis. Extended from the CCA based feature selection approach, our proposed ICCA 

based feature selection method is not only capable of locally linear mapping ability, but also 

able to explore the relationship among features and underlying structure that deeper into the 

feature space. It is also worth noting that the two view of feature vectors in the canonical 

space (i.e., canonical representations) would become closer and closer, when iterations of 

learning in ICCA feature selection framework is increased. This property also results in the 

decreased number of the selected features. We also conduct extensive PD/NC classification 

experiments for performance comparison between the proposed method using our ICCA 

strategy and the state-of-art approaches. The results show that our method achieves the 

highest accuracy output, which demonstrate its validity in improving the PD diagnosis 

process using the T1-weighted MR images.

As previously stated in Section 3, in each iteration of ICCA method, we discard the least 

important features from GM and WM, respectively. Note that here the number of discarded 

features are set up conservatively in order to avoid missing the potential features that maybe 

important for PD/NC classification. A smarter dropping out way could be used in the feature 

selection strategy to optimize the whole feature selection framework in our future work. 

Besides, another limitation of our proposed ICCA based feature selection method is that it 

can only explore relationships between two views of features one time. Thus, we will also 

find the solution to extend the proposed method so that it can handle more than two views of 

features simultaneously, which can make it more feasible in the feature selection domain.

Except for the further optimization on the efficiency and performance of proposed ICCA 

based feature selection method, another future work is improving the classification method 

for PD diagnosis, which is currently implemented using RLDA classifier in this paper. 

Although RLDA is able to achieve favorable classification performance which has been 

validated in Section 4.1, it is not able to model the nonlinear relationship between features 

and labels since RLDA is a linear classifier. Therefore, using a nonlinear classifier in the 

classification would make the proposed method be able to utilize feature information in the 

different way, which may conduce to at least equal or better than linear classifier. Finally, 

there is only structure information in T1 MR images used in this study. Thus, we will also 

turn to other modalities for the PD diagnosis apart from the T1-weighted MR images, such 

as diffusion tensor imaging (DTI) and function MRI (fMRI). The integrated feature 

information from multi-modality images can provide more comprehensive details, which can 
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be utilized by the proposed framework for better classification performance. We will also 

incorporate alternative machine learning techniques in the fields of image segmentation 

(Zhang et al., 2016, 2017b), image super-resolution (Zhang et al., 2017c) and classification 

(Zhang et al., 2017d; Chen et al., 2017), and seek further performance improvements in PD 

diagnosis.
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Fig. 1. 
Pipeline of the automatic diagnosis system with the proposed ICCA based feature selection. 

We extract ROI based gray matter (GM) and white matter (WM) tissue volumes as the 

features. The GM and WM feature vectors per subject (or matrices for the dataset) are 

transformed into the canonical space by CCA. Then, we use the regression model to map the 

canonical representations, corresponding to the features transformed into the canonical 

space, toward the PD/NC labels. Finally, the regression coefficients are transformed back 

into the original GM and WM feature spaces, where feature selection is conducted according 

to the importance of the original features. The above procedure is iterated, and the finally 

selected features are used for classification-based PD diagnosis.
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Fig. 2. 
Visualization of the most discriminative ROIs used for automatic diagnosis of PD.
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Table 1

PD/NC classification comparison (ACC: Accuracy; AUC: Area Under ROC Curve).

Method ACC(%) AUC(%) SEN(%) SPE(%)

NoFS 58.0 55.1 32.5 82.5

Elastic Net 64.3 64.6 54.1 87.8

SFS (with (l2,1 norm) 65.1 64.5 57.1 73.2

PCA 65.2 59.8 48.2 82.1

FSASL 65.3 66.4 56.2 77.6

CCA 66.1 64.4 53.6 78.6

RFS 66.1 63.9 53.6 89.3

MRMR 66.7 65.6 52.9 61.7

Cascaded-CCA (Proposed) 68.8 69.3 62.5 71.6

ICCA (Proposed) 70.5 71.1 62.5 78.6
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