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Abstract—Polyps in the colon can potentially become malignant 

cancer tissues where early detection and removal lead to high 
survival rate. Certain types of polyps can be difficult to detect even 
for highly trained physicians. Inspired by aforementioned 
problem our study aims to improve the human detection 
performance by developing an automatic polyp screening 
framework as a decision support tool. We use a small image patch 
based combined feature method. Features include shape and color 
information and are extracted using histogram of oriented 
gradient and hue histogram methods. Dictionary learning based 
training is used to learn features and final feature vector is formed 
using sparse coding. For classification, we use patch image 
classification based on linear support vector machine and whole 
image thresholding. The proposed framework is evaluated using 
three public polyp databases. Our experimental results show that 
the proposed scheme successfully classified polyps and normal 
images with over 95% of classification accuracy, sensitivity, 
specificity and precision. In addition, we compare performance of 
the proposed scheme with conventional feature based methods and 
the convolutional neural network (CNN) based deep learning 
approach which is the state of the art technique in many image 
classification applications.  
 

Index Terms— Colonoscopy, computer-aided detection, shape 
and color feature, dictionary learning, polyp classification, sparse 
coding. 

I. INTRODUCTION 
Colorectal cancer (CRC) is the third leading cancer to cause 

deaths in United States in both men and women. In 2016 a total 
of 49,190 deaths were due to CRC [1]. CRC arises from 
adenomatous polyps. These colonic polyps are growths of 
glandular tissue at colonic mucosa. Even though most polyps 
are initially benign, they can be malignant over time.   
Therefore, detection of polyps in their early stage is very 
important to prevent the CRC [2][7]. 

Colonoscopy (or endoscopy) is considered as gold standard 
for screening polyps. Studies show that colonoscopy 
successfully contributed to a 30% decline in the incidence of 
CRC [3]. However, conventional polyp detection using 
colonoscopy is fully operator dependent procedure where polyp 
miss-detection rate is known as about 25% [4]. The miss-
detected polyps can lead to late diagnosis of CRC having 10% 
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survival rate [5]. Miss-detection seems due to lack of notable 
characteristics for human vision and insufficient attentiveness 
of clinician during long colon examination [13].  

Recently, wireless capsule endoscopy (WCE) has been 
proposed to avoid discomfort associated with colonoscopy 
examination [2][6]. WCE, an electronic pill, consists of image 
sensor, LED lights, wireless transmitter, and battery. When 
swallowed by a patient it travels using the peristaltic movement 
in the gastrointestinal tract. The transmitted images are received 
by an antenna array placed around the waist of the patient. WCE 
has advantages that patients can avoid cross infection and suffer 
no pain. However, the captured images for one patient are 
known as over 50,000 frames and it needs long time 
examination by the experienced physician to find abnormalities 
[2]. Therefore, automatic polyp detection methods are helpful 
to improve the human detection performance. Due to there is no 
public WCE polyp dataset available, this study therefore 
focuses only on analysis of normal colonoscopy datasets.  

Over last two decades, many strategies for computer-aided 
detection (CAD) of polyp are proposed to increase polyp 
detection rate and to reduce time costs of clinicians [7]-[15]. In 
the initial stages, color and texture based features such as color 
wavelet and local binary pattern (LBP) are used for detection of 
polyp region [7][8][39]. In [9], elliptical shape fitting based 
polyp detection method is suggested. However, these methods 
introduce similar feature pattern between polyp and non-polyp 
part that causes performance decrease.   

More recently Bernal et al. proposed a polyp localization 
method by modeling polyp appearance using the valley 
information of polyp boundaries [10][11]. In [45], image part 
based edge cross-section profiles was used for precise polyp 
detection. An imbalanced learning and discriminative feature 
learning scheme was proposed for a balanced training between 
polyp and non-polyp images [12]. In [13], they used shape and 
context information to improve discriminative power of polyp 
with other polyp-like structures. However, due to a large intra-
class variation of polyp appearances, hand-craft feature type 
based polyp localization is a difficult task. 

With the recent success of deep learning in many image 
recognition applications, convolutional neural network (CNN) 
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based deep learning feature has been proposed for polyp 
detection [14][15]. Furthermore, [44] reports that several teams 
used CNN approaches for the polyp detection challenge in 2015 
international conference on Medical Image Computing and 
Computer Assisted Intervention (MICCAI). In [48], pre-trained 
CNN with a proper fine-tuning approach is used for polyp 
detection. These methods focus on the automatic polyp 
localization– find the exact position of polyps within an image. 
However, precise polyp localization seems very challenging 
due to a variety of types of polyp appearances, i.e., in terms of 
size, shape, texture and color. In addition, changing of camera 
viewpoint, lighting condition and reflection during the 
colonoscopy are major obstacles for polyp localization. As we 
will discuss in Section III-F, polyp miss-detection rate of recent 
automatic polyp localization studies is still high, and it will be 
a limiting factor to be considered in a clinical colonoscopy 
diagnostic system.  

Alternatively, in this study, we focus on computer-aided 
polyp screening framework. Thus, we aim to classify image 
frames which include polyp parts from normal (non-polyp) 
image frames. We expect that higher classification performance 
of the computer-aided polyp screening will have advantages to 
the clinician to improve performance in colonoscopy diagnosis. 
Figure 1 shows the concept of the computer-aided polyp 
screening within the normal colonoscopy diagnosis procedure 
by a skilled clinician. This Computer-aided polyp screening can 
be helpful to find missed polyp image frames by the clinician. 
This will help to reduce the polyp miss-detection rates. Using 
the automatic polyp screening framework, the skilled clinician 
can focus more on the automatically classified polyp image 
frame instead of the whole video and find the exact location of 
polyps without too much effort. This will facilitate faster 
diagnosis leading to remove all polyps. 

 

 
Figure 1. Computer-aided polyp screening in clinical 
colonoscopy procedure 

 
Sparse representation (or sparse coding) has received a lot of 

attention in various signal processing fields [16]-[19]. In the 
sparse representation, signal is represented by linear 
combination of a few atoms in a dictionary using L1 
minimization algorithms. This compact representation has 
successfully applied and shown good performance in many 
image processing fields such as image denoising [16], super-
resolution [17], compressive sensing [18], and classification 
[19]. For some image signal, predefined dictionary such as 
wavelet [20] can be used. However, learned dictionary from 
input images by using the dictionary learning scheme has 
shown to provide improved results in many applications 

[21][22][23]. The dictionary learning scheme has been also 
applied into polyp and lung nodule detection using CT 
(computed tomography) image dataset [24]. Moreover, in [6], 
dictionary learning scheme is applied to wireless capsule 
endoscopy (WCE) image classification. However, they 
demonstrated only organ classification instead of polyp 
classification.     

In this study, we propose a combined feature based 
dictionary learning scheme for automatic polyp screening 
method. To capture polyp characteristics precisely, we use a 
sliding window based image patch method and combined 
feature scheme using shape and color features. HOG (histogram 
of oriented gradient) and hue histogram method are used for 
each shape and color feature extraction. In addition, dictionary 
learning scheme is used for fitting the combined feature of 
training images and final feature is formed by sparse coding 
using the learned dictionary. We also suggest a two-step 
classification scheme, i.e., patch based classification using a 
linear support vector machine (SVM) and whole image 
classification by a simple threshold based method. For reliable 
evaluation, we assign different datasets for training and testing 
using three public colonoscopy datasets. Thus, training and test 
datasets are obtained separately by different patient, date, and 
recording system. We compare classification performance of 
the proposed scheme with the CNN based deep learning 
approach using same image patch based polyp screening 
framework. Furthermore, we examine classification 
performance of the polyp localization studies where same 
colonoscopy datasets were used with this study.  

The rest of the paper is organized as follows. In Section II, 
proposed whole framework and each methodological step are 
introduced. In Section III, image datasets, experimental setup 
and results are explained. Furthermore, we provide some 
important discussions. Finally, we conclude this study in 
Section IV.  

II. METHODOLOGY 
In this study, we propose a combined feature based 

dictionary learning scheme for polyp image classification. 
Image patches are obtained via sliding window and used for 
feature extraction. The whole classification procedure is shown 
in Figure 2. For training, we make a combined feature including 
shape and color information of endoscopy image patch. Then, 
we use dictionary learning and sparse coding, where a SVM 
classifier is trained for patch classification. For testing, same 
feature extraction and sparse coding step are performed by 
using the learned dictionary from the training part. Then, SVM 
classification step is executed for each test image patch. Finally, 
threshold based whole image classification is performed to 
identify polyp existence inside the whole image frame. Each 
part of the whole procedure is explained in the following 
subsections.  

A. Image Preprocessing and Patch Extraction 
For each endoscopy image which includes polyp or non-

polyp (normal), we first remove the black background area in 
the four corners of the image frame. This area is not related with 
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Figure 2. Proposed polyp screening framework    

 
captured endoscopic image from inside a human organ and will 
not affect the next steps. Since images obtained from different 
databases (see Section III-A) had different sizes, we resized the 
spatial resolution to 384 × 384 pixels. For patch based image 
processing, we extract image patches from each image frame 
using a sliding window technique. Due to the different size and 
position of polyps in each image frame, sliding window is an 
efficient method for polyp extraction. The size of each patch is 
set to 128 × 128 where the sliding factor is 64. This means for 
each endoscopy image frame 25 image patches are extracted.  

From the training image set, polyp image patches which 
include polyp parts are collected for further processing. Polyp 
parts are determined by the ground truth of the polyp image 
dataset (see Section III-A for detailed information). For normal 
image patches, except extracted polyp parts, non-polyp parts 
are only collected for normal training set. From the extracted 
polyp and normal image patches, some poor quality image 
patches due to the very low image resolution or strong light 
reflection were excluded from the training set. Some image 
patches including very small parts of the polyp were also 
excluded. From the test image set, same patch extraction step is 
performed for further feature extraction and classification tasks.       

B. Feature extraction  
In this study, HOG (histogram of oriented gradient) and hue 

histogram method is used as each shape and color feature 
extraction respectively and both are combined for further 
processing. We use HOG feature to capture polyp 
characteristics effectively. HOG feature (or descriptor)  is well 
known shape-feature type in various object recognition fields 
due to its robustness against noise and illumination change of 
the object [25][26]. Recently, HOG feature is also applied to the 
polyp detection problems [12][27].   

HOG feature was initially proposed by Dalal and Triggs for 
a specific human detection application [25]. The HOG feature 

is computed based on the image gradient ( , )f x y∇  of each pixel 
point ( , )x y by using simple derivative mask [-1, 0, 1] and is 
intended to capture the typical edge structure of the local shape. 
Using magnitude ( , )f x y∇  and orientation ( , )x yθ  of the 
image gradient, histogram for orientation is calculated in local 
image cell. Here, the orientation is quantized to n bin size within 
ranges of 0 180−  . Finally, overlapped square block which 
consists of 2 × 2 cells is used for normalization purpose. This 
means for nine bin (n = 9) histogram, 36-dimensional HOG 
feature is extracted for each cell. For obtaining HOG feature, 
the bin size n and cell size s are pre-determined parameters. 

Second, we consider HSV (Hue, Saturation and Value) color 
space for color feature extraction of colonoscopy image. Hue 
represents the base color, Saturation specifies the purity of the 
color, and Value represents the brightness of the color [28]. 
HSV color space is widely used in various image processing 
applications such as image segmentation [29], eye localization 
[30], face detection [31] and also endoscopy image processing 
[32]-[34]. HSV model is known as less sensitive to illumination 
variations compared to the RGB model [33]. 

In HSV model, hue, i.e., base color information, can be 
separated from the colorfulness and brightness [34]. Similarly, 
[35] shows that hue component is invariant to viewing 
orientation, illumination direction, intensity and highlight. As 
we mentioned in Section I, illumination and view point change 
are one of the main obstacles for polyp classification during the 
colonoscopy recording. Therefore, in this study, we focus on 
the Hue component as a robust color feature extraction. The 
Hue component describes the main color information in the 
form of an angle between [0, 360] degrees. 0, 120 and 240 
degree represents red, green and blue color respectively. For 
each image patch, we obtained HSV color components from the 
RGB model by simple transformation [30]: 
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where, H, S and V represents each Hue, Saturation and Value 
component respectively. The value of H is ranged from 0 to 
360. After transformation, we compute a hue histogram with 16 
bins for each image pixel to form a final color feature.  

C. Combined Feature 
Here, we examine combined feature to capture polyp 

characteristics effectively. We use shape and color feature by 
combining above mentioned HOG and hue histogram features. 
As shown in Figure 2, for each polyp and normal image patch, 
HOG and hue histogram features are separately extracted. Then, 
both features are concatenating into a single vector. This means 
the dimension of one feature vector is simply the dimension of 
the HOG feature plus dimension of the hue histogram feature. 
The combined features obtained by the training image patches 
are used as input for further dictionary learning process.   

Figure 3 shows the example of polyp and normal part in the 
colonoscopy polyp images. Polyp parts represented by red line 
exhibit unique characteristics in terms of shape, i.e., polyp has 
an elliptical shape. However, some parts represented in blue 
lines in Figure 3, show the similar shape of the polyp part. 
Especially, blue line in right figure of Figure 3 is the colon 
lumen which has the similar elliptical shape with polyp. It can 
be a major cause for polyp miss-classification if we only use 
shape based feature. Therefore, we expect that the combined 
feature of shape and color information is robust for polyp 
classification task.     

 
Figure 3. Similar shape between polyp and non-polyp parts in 
colonoscopy images 

D. Dictionary Learning for Sparse Coding 
Sparse coding exhibits efficiency capturing learned features 

from a dictionary which is learned by input training data. 
Concretely, using the dictionary learning process, atoms 

(columns) of the dictionary are adapted to input combined 
feature of the patch image. Then, sparse coding step is 
performed with the learned dictionary to form a final feature 
vector. This section introduces the dictionary learning and 
sparse coding steps.   

Let X is a m-dimensional training feature (combined 
features) set: 1 n[ ,..., ]m n×∈ =X x x . We consider following 
optimization problem for dictionary learning procedures: 

2

2 1, 1

1 1min ,
2

n

i i i
in

λ
=

 − + 
 

∑D h
x Dh h     (2) 

where D is the dictionary in m k× , h is the k-dimensional 
coefficient vector, and λ  is a regularization parameter. Also, 
there is a common constraint that each column of D to have   
unit norm for prevention of large D in (1). Note that equation 
(1) is not jointly convex with D and h simultaneously, but 
convex with respect to each of them when the other one is fixed. 
Therefore, most algorithms for dictionary learning process 
[21]-[23] follow the alternate way, i.e., optimize h for fixed D 
and update D for obtained h. 

First, for the sparse optimization part, i.e., optimization of h 
for fixed D, we use a homotopy algorithm to solve the following 
unconstrained optimization problem 

2

2 1

1min .
2 i i iλ− +

h
x Dh h     (3) 

For initial fixed D, random initial values or k columns from 
input training features can be used [23]. Homotopy method is 
one of the greedy algorithms in sparse signal recovery. This 
approach is well known for elegant solution paths and fastness 
with a higher accuracy in many applications [23][36][37]. 
Therefore, in this study, we adapt the homotopy method to 
obtain sparse vector h. The homotopy algorithm iteratively 
traces the final solution starting from the initial point by 
successively adjusting the homotopy parameter λ . Thus, when
λ → ∞ , the solution set 0λ

∗ =h  and λ
∗h converging to the 

solution of (2) when 0λ → . For mathematical details and 
implementation of homotopy algorithm, please see the 
reference [36][38]. 

Second, after obtaining h by the homotopy method in (2), 
(1) can be rewritten as follows with the unit norm constraint of 
D 

2

2 2

1min . . 1, 1, 2,...,
2 i i js t d j k− = =

D
x Dh   (4) 

where, jd is the each column of the dictionary D. Equation (3) 
can be solved by conventional gradient descent method. 
However we use the efficient block coordinate decent algorithm 
proposed in [23]. This method is known as parameter-free and 
does not require any learning rate tuning. For each ,ix each 
column, i.e., jd  (block), of the dictionary D is sequentially 
updated by the block coordinate decent algorithm [23]: 

 ( )
,

1
j j j j

j j

d d← − +B DA
A

,      (5) 
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where 1 1,T T
i i i i i i i i− −← + ← +A A h h B B x h . 

Finally learned dictionary D is obtained by alternating above 
mentioned sparse optimization and dictionary update steps for 
each ix until D is converged. In this study, we set the number of 
iteration t as 100 to find the converged dictionary.  

We summarize the dictionary learning algorithm as follows: 
Input: training feature m n×∈X  , initial dictionary 

0
m k×∈D  , 0 00, 0= =A B . 

1. while D  hasn’t converged (1, 2,…, t)   

2.    for 1 to i n=   

3.        Compute the ih in (2) using homotopy. 

4.       1 1,T T
i i i i i i i i− −← + ← +A A h h B B x h . 

5.        Update D using block coordinate decent algorithm                               
       in (4). 

6.    end for 

7. end while 

Output: learned dictionary D 

 

Using a learned dictionary D, new ih can be obtained by 
sparse coding of each ix  and the new ih is a form of a final 
feature vector for further training process of the SVM classifier. 
We expect that the learned dictionary D which is built from the 
combined feature of training image patches can be considered 
as important basis of the input training features. For any new 
test feature newx , newh is obtained by the sparse coding step 
with the same learned D and newh  is an input test feature vector. 

E. Polyp Classification using Whole Image Frame 
Regardless of whether it is polyp or normal test image frame, 

we apply the same preprocessing and patch extraction steps are 
explained in Section II-A. This means 25 image patches are 
extracted for each test image. For each image patch, combined 
feature newx is obtained and transformed into a final feature 
vector newh using the sparse coding step with the learned 
dictionary.  The newh for each image patch is then classified by 
the trained SVM. SVM is a well-known classification method 
in various applications of pattern recognition field including 
polyp detection [2][39]. SVM is recognized for its excellent 
generalization performance, i.e., small error rate for test data. 
In this study, we use a linear SVM trained with a MATLAB 
SVMtrain algorithm [40] and set the default regularization 
parameter as C = 1.  

After image patch-classification, we introduce a threshold 
value (represented as Th in Figure 2) for the purpose of whole 
image frame-classification task. From those 25 image patches, 
polyp parts may appear at least in one patch within polyp image 
frame. On the contrary, for the normal image frame, normal 
parts should be in all patches ideally. However, due to the use 
of sliding window (polyp can be extracted in a few patches), 
size of the polyp and noise (any undistinguishable part between 

polyp and normal parts) the threshold value for the whole image 
classification need to be set. 

Figure 4 shows an example of polyp image frame (left 
figure) and the extracted 25 image patches (right figure) by the 
sliding window. We observe that the polyp parts are shown in a 
few patches of the central part in the right figure. We will 
discuss more about the relationship between varying the 
threshold value and classification performance in later Section 
III-E. 

 
Figure 4. Example polyp image and extracted image patches 
using sliding window 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experiment 
To evaluate the proposed polyp screening framework, we use 

three public datasets [42], CVC-Clinic [11], ETIS-Larib [41] 
and Asu-Mayo database [13]. We understand that there are 
similar image frames within the same colonoscopy dataset. If 
we use one dataset and divide that into training and testing sets, 
then exaggerated classification performance can be obtained. 
Therefore, for more reliable evaluation, we assign above 
mentioned different datasets into training and testing set 
separately. Thus, CVC-Clinic dataset is used as the training set. 
ETIS-Larib and Asu-Mayo datasets are used for each polyp and 
normal testing sets.  

CVC-Clinic dataset consists of 612 polyp endoscopy images 
with 576 ×  768 pixel resolution. All the images were extracted 
from 31 different videos and contained at least one polyp. The 
position of polyp part in each image is provided by expert video 
endoscopists from the corresponding associated clinical 
institution. ETIS-Larib dataset comprises 196 polyp images 
which are generated from 34 videos. The size of each image is 
1225 × 966. This dataset contains 44 different polyps with 
various sizes and appearances. Asu-Mayo dataset comprises ten 
different recording times of colonoscopy videos and consists of 
normal (without polyp) frames. From ten videos, to avoid 
similar image frame, we extract 170 images using down 
sampling. The size of each image is 712 × 480.  

Training set  consists of 561 polyp patches and 964 normal 
patches extracted from CVC-Clinic dataset by using the patch 
extraction step explained in Section II-A. Testing set consists of 
196 polyp images from ETIS-Larib dataset and 170 normal 
images from Asu-Mayo dataset.   

To evaluate classification performance, we use some widely 
used statistical parameters such as sensitivity (recall), 
specificity, precision, and classification accuracy. The 
definition of each parameter is as follows: 
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Figure 5. Example test images for miss-classification cases from the results of proposed method 

 
Sensitivity (Recall): number of correctly classified polyp 

images/ total number of actual polyp images.  
Specificity: number of correctly classified normal (non-

polyp) images/ total number of actual normal images. 
Precision: number of correctly classified polyp images / total 

number of classified polyp images (test results are polyp). 
Accuracy: number of correctly classified images/ total 

number of images. 

B. Experimental results 
We first evaluate the detailed classification results of the 

proposed scheme by using the confusion matrix. Confusion 
matrix summarizes the classification performance in terms of 
actual and predicted results of each polyp and normal test image 
sets. Note that using the confusion matrix we can also obtain 
above mentioned statistical parameters. 

Table 1 lists the confusion matrix for two-class (polyp/ 
normal) classification problem using the proposed scheme. The 
results show that 188 actual polyp images among 196 ETIS-
Larib test images are correctly classified as polyp images by the 
proposed method. The number of miss-classification case, i.e., 
classified as normal images, is 8. In the case of normal test 
images from 170 Asu-Mayo dataset, 163 images are correctly 
classified as normal images. Only 7 images are classified as 
polyp images. Overall classification accuracy is 95.9 % which 
is obtained by (188+163)/366. Other statistical classification 
performances, i.e., sensitivity, specificity and precision are 
given in the last row in Table 2. 

For the results of Table 1, cell size (s) of 64 and bin size (n) 
of 12 are used for HOG feature extraction, and 70 dictionary 
size is used for dictionary learning process. Furthermore, the 
threshold value (Th in Figure 2) of 3 is set for whole image 
classification. We will discuss more about the effect of these 
HOG parameters, dictionary size, and the threshold value in 
Section II-C, D and E respectively. 

 
 

TABLE 1. CONFUSION MATRIX FOR POLYP CLASSIFICATION RESULTS USING 
PROPOSED SCHEME  

 
 Predicted 

Total 
 Polyp Normal 

Actual 
Polyp 188 7 195 

Normal 8 163 171 

Total 196 (ETIS) 170 (MAYO) 366 
 Overall accuracy: 95.9% 

 
In Figure 5, we show some examples of miss-classification 

cases from the results in Table 1. The top figure shows the three 
examples among eight miss-classification cases in Table 1. In 
this case, the actual label of these images is polyp and exact 
location of each polyp is represented by the red circle in Figure 
5. However, as we can see, it is very difficult to find exact polyp 
parts in terms of shape and color. Therefore, they are miss-
classified as normal images by the proposed scheme. On the 
other hand, in bottom figure, some actual-normal images (but 
classified as polyp) are shown. These images are example 
among seven miss-classification cases represented in Table 1. 
For these images, though the actual label is normal, we can see 
some parts show more similar shape and color with polyp than 
normal parts, and they are miss-classified by the proposed 
scheme. However, these images exhibit a reasonable doubt 
about the polyp existence. In addition, it will be helpful to 
clinician to decrease polyp miss-detection rate by carefully 
examining in the colonoscopy diagnosis. 

For evaluation of the proposed combined feature with 
dictionary learning scheme, we compare classification 
performance of proposed framework with other different 
feature types in Table 2. Each color feature by the hue 
histogram, shape feature by the HOG, and combined color and 
shape feature by both methods are compared with the proposed 
whole framework classification. 
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TABLE 2. COMPARISON OF CLASSIFICATION PERFORMANCE FOR DIFFERENT METHODS 

Methods Sensitivity  Specificity Accuracy  Precision 

Color feature (Hue histogram) 0 0.9765 0.4536 No 

Shape feature (HOG) 0.7041 0.8176         0.7568 0.8166 

Combined feature 0.8673 0.8118 0.8415 0.8416 

Dictionary learning (Homotopy)  
with Combined feature 0.9592 0.9588 0.9590 0.9641 

Dictionary learning (BP)  
with Combined feature 0.8469 0.9059 0.8743 0.9121 

Dictionary learning (FISTA)  
with Combined feature 0.9847 0.9235 0.9563 0.9369 

TABLE 3. COMPARISON OF CLASSIFICATION PERFORMANCE FOR DIFFERENT PARAMETERS OF HOG FEATURE 

Cell size (s), Bin size (n) Sensitivity  Specificity Accuracy  Precision 

8, 9 0.6173 0.9059 0.7513 0.8832 

16, 9 0.8214 0.8765 0.8470 0.8846 

32, 9 0.8571 0.9059 0.8798 0.9130 

64, 9 0.9847 0.9235 0.9563 0.9369 

128, 9 0.9388 0.7471 0.8497 0.8106 

64, 3 0.9031 0.7529 0.8333 0.8082 

64, 6 0.9541 0.9118 0.9344 0.9257 

64, 12 0.9592 0.9588 0.9590 0.9641 

64, 15 0.8776 0.9000 0.8880 0.9101 

For a fair comparison, we set the same threshold value 3 and 
use a linear SVM for patch classification in all methods. In 
addition, we use the same HOG parameters such as cell size (s) 
of 64 and bin size (n) of 12, for all HOG based methods, and a 
dictionary size of 70 (same as in Table 1) for dictionary learning 
process. 

The results show combined features have improved 
classification performance than independent feature based 
method for color and shape. This is due to the color and shape 
features are in mutually complementary, where a combined 
feature seems beneficial. Moreover, the proposed dictionary 
learning scheme with combined feature have shown superior 
classification performance. All four parameters of the 
classification performance, i.e., sensitivity, specificity, 
accuracy, and precision are over 95%. This shows that the 
dictionary learning and sparse coding steps efficiently train and 
capture the input combined features and provide important 
foundation for classification.  

In our dictionary learning process, the L1 minimization 
algorithm has the role to solve the sparse optimization of 
training data so that important training features are adapted in 
the updated dictionary. As mentioned in Section II-D, we adopt 
the homotopy algorithm for sparse optimization. However, 

different L1 minimization algorithms can be used for the sparse 
optimization purpose. Therefore, we compare classification 
performance of the dictionary learning for different L1 
minimization algorithms in the last three rows of Table 2. We 
consider one widely used general purpose basis pursuit (BP) 
algorithm based on a standard linear programming method 
[18][36] and one advanced L1 minimization method which is 
called fast iterative shrinkage-thresholding algorithm (FISTA) 
[36][49]. The results indicate that regardless of L1 
minimization algorithms, the dictionary learning framework 
shows improved classification accuracy than the without 
dictionary learning method. The efficient fast L1 minimization 
algorithms, i.e., homotopy and FISTA, outperform the BP 
algorithm within the dictionary learning framework and this 
result is consistent with other sparse representation applications 
in the literature [36][49].  

We also evaluate the running time of the proposed method. 
We use the MATLAB commands tic and toc for measuring the 
start and stop time of the algorithm. For dictionary learning of 
training dataset, it takes 664.4 sec for 100 iterations. We also 
compute a classification time for each test image frame and 
averaged over all test images. The mean classification 
processing time is about 0.095 sec per frame (0.0038 sec per 
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image patch). Note that the running time of algorithm depends 
on the hardware systems. We use the MATLAB (R2018a) in 
the CPU with 16 GB of memory and 3.40 GHz processor. 

C. Effect of HOG parameters 
In this section, we evaluate classification performance of the 

proposed scheme by varying the parameters of the HOG 
feature, i.e., cell size (s) and orientation bin size (n) of the 
histogram.  The two parameters are the hyperparameters to use 
the HOG feature. It means that normally the optimal parameters 
are depend on the application datasets and should be determined 
empirically. In our experiment, using the grid search manner, 
we first optimize the cell size (s) while fixing the same bin size 
(n) as 9 which is optimized for pedestrian detection in the 
original HOG paper [25]. Then, using the selected optimal cell 
size (s), we vary the bin size (n).  

Table 3 lists the comparison results of classification 
performance. For this comparison, we set the same dictionary 
size 70 and the threshold value 3 so that our focus will be only 
on the effect of HOG parameters.  

First five rows in Table 3 list varying cell size (s) with the 
same bin size of 9, where we can note that  s = 64 with 9 bins 
has the best result. In initial HOG paper [25], the cell size of 8 
with 9 bins had the best classification performance for the 
specific human detection application. Since size of human 
subjects is very similar and subjects are always upright in 
images [25], smaller cell size could create more effective local 
features for classification. However, in this study, larger cell 
size (s = 64 or 128) shows better performance than smaller one. 
It might be because in this study, polyp position and size are not 
aligned. In addition, we already extract small patch image 
including polyp part in the patch extraction step. Therefore, 
smaller cell size for extracting local feature in the HOG method 
causes difficulty to capture whole polyp characteristics using 
the extracted patch image in our framework. This might be the 
reason for degraded classification performance with small cell 
size in Table 3. 

For the bin size (n), i.e., the last 4 rows and the fourth row in 
Table 3, the bin size n = 9 or 12 with s = 64 shows improved 
performance than smaller bin size. The accuracy difference 
between the bin size 9 and 12 is very small (0.0027) and 
negligible. However, if we choose too small bin size, e.g., n=3 
in Table 3, it may not be able to represent enough orientation 
information and results in accuracy decrease. On the other hand, 
too large bin size, e.g., n=15, may lead to overfitting problem. 

D. Effect of dictionary size 
In the dictionary learning scheme explained in Section II-D, 

dictionary size, i.e., the number of columns in the dictionary, 
should be initially determined to solve equation (2). It depends 
on the size of feature dimension, the number of classes, and 
application data. Normally, it is determined empirically [23].  

Figure 6 shows the classification results by varying the 
dictionary size in the proposed scheme. Here, we compare 
classification accuracy for two different setups of HOG 
parameters (s = 64, n = 9 and s = 64, n = 12). We note that too 
small number of atoms in the dictionary show poor 

classification accuracy. It because if the number of bases (atoms) 
in dictionary is too small, new test feature cannot be represented 
well with similar features in the dictionary. Therefore, it 
resulted in low discrimination power. Figure 6 from 60 to 80 
shows good classification performance for both HOG 
parameter cases (red and blue lines). On the other hand, if the 
number of atoms is too large, it is possible to include 
undistinguishable training features for both classes in the 
dictionary. In addition, computation time is also increased with 
large dictionary size. 

 

 
Figure 6. Comparison of classification accuracy for different 
dictionary size  

 

E. Effect of threshold value in polyp classification 

 
Figure 7. ROC curve analysis for threshold value 

 
As we mentioned in Section II-E, we introduce a threshold 

value (Th) for the purpose of whole image classification. In this 
subsection, we examine the effect of the threshold value. Figure 
7 indicates the ROC (receiver operating characteristic) curve 
when the threshold value is varied between 0 and 6. ROC curve 
represents both sensitivity and specificity simultaneously when 
its discrimination threshold is varied. It is well known as an 
effective tool for evaluation of diagnostic tests [43]. Figure 7 
shows that the optimal threshold value is 3 for a balanced 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

9 

performance of both sensitivity (0.9592) and specificity 
(0.9588). Here, we use HOG parameters s = 64, n = 12 and 
dictionary size of 70. 

Note that in some medical diagnostic applications such as 
polyp or cancer detection, higher sensitivity with reasonable 
specificity is more important. This is because finding abnormal 
parts is the main goal of a clinical diagnostic system. Therefore, 
for obtaining higher sensitivity, i.e., correctly classified polyp 
images over total number of actual polyp images, a bit 
decreased specificity can be allowed. This decreased specificity 
leads to miss-classification case that some normal images 
having undistinguishable polyp parts are classified as polyp 
images. However, within the computer-aided polyp 
classification procedure (shown in Figure 1) this miss 
classification case might be acceptable although clinician will 
spend some time for searching to find those difficult-to-find 
polyps.  

As shown in Figure 7, we can control the trade-off 
relationship between sensitivity and specificity by changing the 
threshold value (Th) in the proposed scheme. For example, we 
can set the threshold value to 2 (see Figure 7). This means the 
sensitivity is improved (0.9796) with a bit decreased specificity 
value (0.9176). This control function might be helpful for 
clinical diagnostic applications in practice. 

F. Comparison with CNN based approach 
The CNN-based deep learning approach is considered as 

state-of-the-art technique in many image recognition 
applications including polyp detection [14][44][47]. In this 
section, we aim to compare proposed method with the CNN-
based deep learning approach by applying the same image patch 
based polyp screening framework.   

CNN learns features from raw image pixels without any 
information about the images. Essential steps for CNN are 
convolution and pooling layer. In the convolution layer, spatial 
convolution between predefined filter and pixel values in a local 
region is performed. In the pooling layer, subsampling is 
performed for summarizing feature responses around 
neighboring pixels. Pooling operation makes learned features 
spatially invariant to the location of object images. Usually max 
pooling operation is widely used in CNN based image 
classification [14][47]. For CNN-based polyp screening, we use 
the same image preprocessing and patch extraction methods 
which are mentioned in Section II-A. Then, the 3-channel (RGB) 
based raw image pixels are used for training of CNN for the 
purpose of patch image classification. 

Figure 8 shows the CNN architecture used in this study. In 
the CNN architecture, there are tunable hyperparameters such 
as the number of convolution filters, size of convolution filter 
and size of pooling area. In this study, we performed exhaustive 
gird search for optimization of CNN hyperparameters. 
Furthermore, we also optimize the number of convolution-
pooling layers by varying from shallow to deep. Three 
convolution-max pooling layers are adopted followed by a fully 
connected layer with 256 nodes. We use 32 convolution filters 
for each convolution layer with 5 × 5, 3× 3 and 3 × 3 filter size. 
For the max pooling operation, 3 × 3, 2× 2 and 2 × 2 pooling 

area is chosen for each layer. The Adamax optimizer is used for 
CNN optimization with a default learning rate of 0.002 [46]. 

 

 
Figure 8. Three convolution-pooing layer based CNN 
architecture 

 
After the image patch-classification using CNN framework, 

whole image frame-classification is performed by the same 
threshold based method introduced in Section II-E is performed. 
The number of epochs to train is set to 100. 

Table 4 lists the comparison results between the proposed 
method and the CNN-based approach. Proposed combined 
feature based dictionary learning framework shows better 
classification performance, i.e., sensitivity, specificity, 
accuracy and precision, than the CNN-based deep learning 
method.  
  
TABLE 4. COMPARISON OF CLASSIFICATION PERFORMANCE BETWEEN 
PROPOSED METHOD AND CNN-BASED DEEP LEARNING METHOD 

Methods Sensitivity  Specificity Accuracy  Precision 

Proposed method 0.9592 0.9588 0.9590 0.9641 
CNN-based deep 

learning 0.9184 0.9235 0.9208 0.9326 

 
Note that normally huge training dataset is used for training 

of CNN in image classification applications [46][47]. However, 
in the medical domain, annotated public dataset is limited and 
not always available. In this case, the proposed hand-craft 
feature based dictionary learning scheme might be a good 
machine learning tool for computer-aided detection.  

G. Comparison with polyp localization studies 
As mentioned in Section I, finding the exact location of 

polyps in an image frame is a very challenging task. In 2015 
there was a competition for automatic polyp localization in 
colonoscopy [44]. This grand challenge was conducted at the 
2015 International conference on Medical Image Computing 
and Computer Assisted Intervention (MICCA) [42]. For this 
competition on frame analysis, they used the same dataset like 
us; CVC-Clinic dataset for the training stage whereas ETIS-
Larib for testing stage.  

The results summarized in [44] were for seven teams where 
they showed the best classification performance was obtained 
using the CNN-based approach. Their results were 72.3% 
precision and 69.2% sensitivity (recall). This means with this 
performance on localization, it cannot be directly used as a 
clinical colonoscopy diagnostic tool. Because our study is on 
the screening of polyp image frame, the performance of the 
proposed method in this paper cannot be directly compared with 
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those in [44]. However, finding polyps in early stage is very 
important to prevent CRC. We expect that with high 
classification performance the proposed automatic polyp 
screening method can be useful for clinical colonoscopy 
diagnostic tool to reduce polyp miss-detection rate and enhance 
the clinician’s performance. 

IV. CONCLUSION 
In this paper, we propose a dictionary based learning scheme 

for automatic polyp screening in colonoscopy image data. 
Small patch image is extracted from the whole image frame by 
using a sliding window method in combination with a combined 
color and shape feature to effectively capture polyp 
characteristics. Furthermore, combined feature based 
dictionary is obtained by the dictionary learning procedure, 
where the dictionary is used to extract the final feature vector 
using the sparse coding step. A linear SVM is applied for patch-
image classification and a simple thresholding performs the 
final whole-image classification. The proposed polyp screening 
framework is evaluated using three public colonoscopy 
datasets. Our experimental results show that the proposed 
combined feature based dictionary learning scheme 
outperforms individual shape and color feature based method 
and also combined feature based method without dictionary 
learning procedure. Furthermore, the proposed hand-craft 
feature based dictionary learning scheme shows better 
classification performance than the CNN based deep learning 
approach within the same patch image based polyp screening 
framework.  
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