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Abstract

The deep inferior epigastric artery perforator (DIEAP) flap is the most common

free flap used for breast reconstruction after a mastectomy. It makes use of

the skin and fat of the lower abdomen to build a new breast mound either

at the same time of the mastectomy or in a second surgery. This operation

requires preoperative imaging studies to evaluate the branches - the perforators

- that irrigate the tissue that will be used to reconstruct the breast mound.

These branches will support tissue viability after the microsurgical ligation of the

inferior epigastric vessels to the receptor vessels in the thorax. Usually through

a Computed Tomography Angiography (CTA), each perforator, diameter and

direction is manually identified by the imaging team, who will subsequently draw

a map for the identification of the best vascular support for the reconstruction.

In the current work we propose a semi-automatic methodology that aims at

reducing the time and subjectivity inherent to the manual annotation. In 21

CTAs from patients proposed for breast reconstruction with DIEAP flaps, the

∗Corresponding author
Email address: ricardo.j.araujo@inesctec.pt (Ricardo J. Araújo)
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subcutaneous region of each perforator was extracted, by means of a tracking

procedure, whereas the intramuscular portion was detected through a minimum

cost approach. Both were subsequently compared with the radiologist manual

annotation.

Results showed that the semi-automatic procedure was able to correctly

detect the course of the DIEAPs with a minimum error (average error of 0.64

mm and 0.50 mm regarding the extraction of subcutaneous and intramuscular

paths, respectively). The objective methodology is a promising tool in the

automatic detection of perforators in CTA and can contribute to spare human

resources and reduce subjectivity in the aforementioned task.

Keywords: breast reconstruction, deep inferior epigastric artery perforator

flap, computed tomography angiography, vessel detection

1. Introduction

Worldwide, there will be about 2.1 million newly diagnosed female breast

cancer cases in 2018, accounting for almost 1 in 4 cancer cases among women.

The disease is the most frequently diagnosed cancer in the vast majority of

the countries and is also the leading cause of cancer death in over 100 coun-

tries (Bray et al., 2018). Women who were diagnosed with breast cancer have

higher chance of suffering from anxiety and depression resulting from the fear

of recurrence, body image disruption, sexual dysfunction and mortality con-

cerns (Hewitt et al., 2004). Although breast conservative methods have recently

shown a survival rate superior to mastectomy, especially in early breast cancer

cases (Gentilini et al., 2017), the latter is still a highly recurrent procedure and

has even been increasing in some institutions (Dragun et al., 2012, Mahmood

et al., 2013). Mastectomy is conducted in cases where the relation between the

size of the resected breast and the global volume of the gland is too large to

allow a conservative procedure, in cases where radiotherapy is contra-indicated,

and also when the patient does not desire breast conservation.

Reconstruction methods allow to recreate the breast mound, improving the
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Figure 1: Representation of a DIEAP flap procedure.

way women feel about themselves and their image after their breast(s) was(were)

removed. There are different techniques for breast reconstruction but basically

two major groups can be defined. Reconstruction with implants and recon-

struction with autologous tissues. The deep inferior epigastric artery perforator

(DIEAP) flap has become the state-of-art technique for autologous tissue based

breast reconstruction (Cina et al., 2010). It makes use of the skin and fat of the

lower abdomen to build a new breast either at the same time of the mastectomy

(immediate reconstruction) or in a second surgery after the initial procedure

(delayed reconstruction). The transposition of the lower abdominal skin and

fat is free of any attachment to the end anatomic structures of the donor site -

the abdomen. Micro-surgical connections are done at the recipient site between

the vessels of the transposed skin and fat, and the vessels of the thorax, where

the new breast will replace the void left by the mastectomy (see Figure 1). A

scheme with the abdominal anatomy of interest for conducting a DIEAP flap is

shown in Figure 2.

Before a DIEAP flap, preoperative imaging studies are performed to evalu-

ate the branches - perforators - of the deep inferior epigastric artery (DIEA),

which are the vessels responsible for the vascularization of the tissue that will

be used in the reconstruction of the breast mound. The viability of the new

3



Figure 2: Sagittal representation of the anatomy of the anterior portion of the abdominal

wall, between the pelvic and umbilicus regions.

breast is related to several features of the included perforators (Phillips et al.,

2008). Through Magnetic Resonance Imaging (MRI) or Computed Tomography

Angiography (CTA), the perforators are manually identified and characterized

by a radiologist. This manual map guides the surgeon during the reconstructive

procedure. The before mentioned task of identifying and characterizing the 3D

course of the perforators is subjective and time consuming. As a result, inco-

herencies between the preoperative studies and the surgical findings often exist,

and can lead to the need of modifying the strategy intra-operatively. For that

reason, Computer Aided Detection algorithms may play an important role in

supporting the activity of radiologists who are responsible for the preoperative

study, reducing the subjectivity and time involved in the process. Moreover,

more precise and complete descriptions may be achieved, as it is common to

find segments of the perforators whose signal is almost absent, rendering the

manual analysis very difficult. Other authors have developed plugins for medi-

cal software trying to render the manual analysis of the perforators faster (Lange

et al., 2017) and used virtual tools to facilitate the communication of the man-

ual findings with the surgical team (Gómez-Ćıa et al., 2009). In this paper,

we propose a methodology for the semi-automatic extraction of the course of

4



the perforators in CTA scans, by means of a vessel centerline extraction tech-

nique particularly designed to address the challenges involved in detection of

these small vessels. Our goal is to reduce the time involved in the pre-operative

planning of DIEAP flaps and increase the overall objectiveness.

1.1. Related work

To the best of our knowledge, there is no algorithm in the literature focusing

the segmentation of the deep inferior epigastric perforators. Still, vessel segmen-

tation algorithms usually follow common principles and assumptions that stand

true for different types of vessels. Even though it does not include the most

recent work, a thorough description of the main types of approaches regarding

3D vessel segmentation is available (Lesage et al., 2009). Supervised learning

techniques have seen very limited applicability in this scenario, as obtaining

annotations of the vasculature in 3D scans is a very expensive and difficult task.

This goes against the trend that can be currently observed in many domains

of Computer Vision and Medical Image Processing, such as the case of vessel

segmentation in 2D retinal fundus images (Liskowski and Krawiec, 2016), where

databases with annotations are available (Staal et al., 2004, Budai et al., 2013).

A myriad of unsupervised methods have been proposed to address the ves-

sel segmentation problem in different 3D scenarios, such as angiograms (Cruz-

Aceves et al., 2016) and CTA scans (Metz et al., 2009, Friman et al., 2010) of the

coronary arteries, CT scans of the lung (Zhai et al., 2016), and MRA (El-Baz

et al., 2012) and CTA (Babin et al., 2013) scans of the brain. The characteris-

tics of the proposed methodologies is often related with the complexity of the

vessel network in each case. Centerline tracking approaches are more commonly

applied to networks where only a small number of vessels needs to be extracted,

as is the case of coronary vessels. More intricate networks, such as the lung and

brain vessel trees, are usually segmented by means of more global frameworks,

like level sets and graph cuts (Zhai et al., 2016). The DIEAPs resemble the

case of coronary vessels, in what concerns the complexity of the vessel network.

Additionally, the extraction of characteristics from these networks is relevant in

5



a clinical point of view, making centerline based approaches very interesting, as

they allow to easily extract several local features of each vessel segment as the

vessel is traversed.

Vessel centerline extraction is usually achieved via tracking methodologies

or minimum cost path approaches. Centerline tracking schemes iteratively tra-

verse the vessel, allowing for its simultaneous extraction and local character-

ization. These schemes differ from each other according to the strategy they

employ to locally estimate the vessel direction. Recent works track vessels by

iteratively finding the best approximation for their cross section (Kumar et al.,

2015). However, relying in such information is not adequate in a scenario where

vessel diameter spawns across very few voxels, thus leading to poor definition

of the vessel boundary, as is the case of many epigastric perforating vessels

in CTA. Other approaches use the complete 3D local intensity information to

track tubular-like patterns, by fitting priorly designed filters (Friman et al.,

2010), being more robust when tracking small vessel signals. Minimum cost

path schemes use geometrical features in order to find voxels which more likely

belong to vessel patterns (Metz et al., 2009). After deriving the costs from

those features, the vessel centerline is extracted at a single step. Nonetheless,

it is straightforward to have a second scheme for lumen characterization. It

is also possible to enhance vessels by means of geometrical-based enhancement

followed by thresholding and skeletonization to obtain vessel centerlines (Yang

et al., 2012). However, such approach is easily affected by local noise, and set-

ting a threshold that works well in every case is not a trivial task. There is

an interest in completely automatic centerline extraction approaches (Oliveira

et al., 2016), but this may have more disadvantages than advantages in scenarios

where structured noise may be easily mistaken as a vessel, thus inducing false

positives. Moreover, semi-automatic approaches do not constitute a significant

burden when only few vessel segments need to be studied, especially when com-

pared with the high cost of manual analysis, as is the case of the perforators

targeted in this study.
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1.2. Contributions and structure of the paper

The contributions of the current work are the following:

• the proposal of a methodology to extract in an accurate and objective

manner the complete course of the DIEAPs;

• the proposal of a tracking procedure for extracting the subcutaneous por-

tion of the perforators based on the local gradient field of a vessel enhanced

volume;

• the validation of an A* based path search using costs derived from a vessel

enhanced volume to extract the intramuscular course of the perforators.

The structure of the paper is as follows: section 2 describes the database

we have available and the methods used to accomplish the contributions of this

work, section 3 contains a view over the results obtained and their discussion

and, finally, section 4 details the conclusions we take on the topics we have

addressed.

2. Materials and Methods

In this paper, we aim at extracting both subcutaneous and intramuscular

courses of the perforators, since they have impact in the pre-operative plan-

ning of DIEAP flaps. There is a higher contrast between the vessels and the

background in their subcutaneous portion, since the rectus abdominis muscle

also responds significantly to the CTA image acquisition. This motivated us

to pursue different strategies when addressing the extraction of the subcuta-

neous and intramuscular courses of the perforators. Anatomically, those regions

are separated by the anterior fascia of the rectus abdominis muscle. Unfortu-

nately, that tissue layer is not distinguishable in CTA scans. Nonetheless, it

can be approximated as the edge that exists between the subcutaneous region

and the muscle. In a previous work (Araújo and Oliveira, 2017), we have pro-

posed a methodology to segment this layer, thus enabling the employment of a
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divide-and-conquer strategy to extract the complete course of the perforators.

In this section, we start by describing the dataset that we have available and

the anatomical region of the volumes we consider for analysis. Afterwards, we

propose a novel centerline tracking approach for the extraction of the subcu-

taneous portion of a perforator, from the initial manually given point to the

fascia segmentation. Finally, we describe a minimum cost path based approach

to extract the intramuscular path, which is a more complex task.

2.1. Dataset

Volumetric data of 21 patients were obtained using the CTA imaging tech-

nology, in accordance with the Declaration of Helsinki. The volumes were ac-

quired on a Philips Brilliance Big Bore 16 slice CT scanner following a particular

angiography protocol, where a contrast bolus with a volume of 120 ml and a

concentration of 350 mg/ml was intravenously injected at a preferential rate of 4

ml/s. The images were taken at the ideal bolus tracking phase, as determined by

the workstation. Each acquisition consists of several axial slices perpendicular

to the long axis of the body, covering the entire abdominal area from the pelvic

region to a little above the umbilical region. We converted the Hounsfield units

(HU), a measure of radiodensity, into working units according to the parame-

ters stored in the Digital Imaging and Communications in Medicine (DICOM)

format of the volumes. Window center, window width, rescale intercept, and

rescale slope had values of 60 HU, 400 HU, -1024 HU and 1 respectively. The

voxel spacing differs from volume to volume. The axial voxel spacing goes from

0.55 to 0.98 mm, whereas the spacing in the long axis of the body varies from

0.40 to 1.50 mm. In the left column of Fig. 3, example axial slices acquired with

the described protocol are shown.

2.2. Volume of interest

The CTA scans used in this study cover the entire abdominal region of the

patients, however, it is known that the perforators arise in the anterior portion

of the abdominal wall, such that we can consider only a small part of the entire
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Figure 3: Example axial slices of a CTA scan with the region of interest delimited by the

white rectangles (left), and corresponding close up of those regions (right). The identified

structures are: 1 - DIEAs, 2 - rectus abdominis muscle, 3 - subcutaneous region, 4 - skin,

5 - subcutaneous course of a perforator, 6 - intramuscular course of a perforator.

data, which we designate as volume of interest from now on. This volume

should include the location where each DIEA enters the posterior rectus sheath

and the complete perforator courses. Thus, our methodology requires a manual

initialization by the user, by indicating two points at the end of each perforator

and the locations where the DIEAs perforate the posterior rectus sheath. We

believe such effort is minimal when compared to the current manual analysis

that technicians and radiologists face. The region of interest and the structures

which exist there are exemplified in Fig. 3.

2.3. Subcutaneous course extraction

2.3.1. Vessel direction estimation

The local intensity gradient vector field has been analyzed in the past for

addressing the design of local vessel enhancement filters (Agam et al., 2005).
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Following that contribution, here we incorporate those principles in a tracking

procedure. Given a gradient vector field inside a local window, we estimate the

local vessel direction vi as the direction which minimizes the squared projection

of the local gradient vectors into vi:

E(vi) =
1

n

n∑
k=1

(gT
k vi)

2 = vT
i

(
1

n

n∑
k=1

gkgT
k

)
vi (1)

where n is the number of gradient vectors inside the local window, and gk is the

kth gradient vector. By denoting G ≡ (1/
√
n)[gk, . . . , gn], (1) becomes:

E(v) ≡ vT
i GG

Tvi (2)

where GGT is a 3 × 3 correlation matrix. As proven by Agam et al. (2005)

the minimum of (2) is obtained by the eigenvector of GGT having smallest

eigenvalue. In the ideal vessel case, the gradient vectors are normal to the long

axis of the vessel. In the non-ideal scenario, noise will distort the gradient vector

field. Even then, for adequate sizes of the local window, it is expected that the

underlying vessel signal has the biggest contribution to the gradient vector field

structure.

Nonetheless, since vessels spawn across very few voxels, it is unreliable to

directly use intensity information to obtain the gradient vector field. Thus, we

propose that the gradient field is obtained from a vessel enhanced volume, by

using Frangi’s vesselness (Frangi et al., 1998) measure:

ν(s) =

0 if λ2 > 0 or λ3 > 0(
1− e

−RA
2

2α2

)
· e

−RB
2

2β2 ·
(

1− e
−S2

2c2

) (3)

where s is a given voxel of our data domain, and λ1, λ2, λ3, are eigenvalues of

increasing absolute value of the Hessian matrix. The constants α, β, and c

control the sensitivity of the vesselness function to the terms RA, RB , and S,

which are eigenvalue-based ratios accounting for, respectively, the distinction

between line-like and plate-like structures, the deviation from a blob, and the
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amount of structure present:

RA =
|λ2|
|λ3|

(4)

RB =
|λ1|√
|λ2λ3|

(5)

S =
√
λ21 + λ22 + λ23 (6)

2.3.2. Ridge-based correction

Although the methodology described until this point allows to find the local

direction of a vessel which goes through the window, it does not guarantee that

the estimated centerline point is near the center of the vessel. To address this

problem, an additional measure is taken every N iterations, which is responsible

for correcting deviations to the center of the vessel due to error accumulation.

It relies on the assumption that voxels on the center of the vessel have higher

intensity in the vessel enhanced data, and that it decreases as the distance to the

center increases. In a 2D image of the cross section of a vessel, it is then expected

that the center location can be found by analyzing the divergence of the gradient

vector field. After predicting the position of the new centerline point X̃i+1 using

the local gradient vectors information, the plane which contains that point and

is orthogonal to the vessel direction vi is obtained. It is expected that this plane

includes a roughly circular brighter region which is the 2D cross section of the

vessel enhanced data (see the left image in Figure 4). The gradient vector field

is calculated (Oliveira et al., 2014) and its similarity to the template represented

in Fig. 4 is assessed through cross-correlation:

(f ∗ g)[η]
def
=
∑
m

f∗[m]g[η +m] (7)

where f and g represent the gradient orientation vector field and template

vector field, respectively, f∗ is the complex conjugate of f , and η is the displace-
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Figure 4: Ridge-based correction framework. From left to right: example cross sectional image

with gradient vector field imposed; template for finding the center; cross-correlation result;

and the detected ridge. Images are interpolated for improved visualization.

Figure 5: Direction variation restriction between consecutive iterations. α controls the

smoothing factor.

ment. The center location estimation corresponds to the maximum response

location (see the right image in Fig. 4).

2.3.3. Smoothness properties

To assure smoothness throughout the tracking procedure, one option would

be to use a Kalman filter (Kalman, 1960). This approach would allow to fuse

the estimates of the direction estimator and the ridge-based corrector, and also

tune the degree of belief in each of them. Even then, we found it was sufficient

to simply set an upper bound on the direction variation allowed at consecutive

iterations. This may be interpreted as obligating vi to lie on a spherical cap

centered at vi−1, as represented in Fig. 5. The higher we allow the direction

variation to be, the larger is the spherical cap.
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2.4. Intramuscular course extraction

The intramuscular course of the perforators is commonly hard to detect

as the muscle signal is also significant in a CTA acquisition, turning general

tracking procedures not adequate for this task. Hence, we propose the use of a

minimum cost path method to find the intramuscular vessel pathway between

the site where the perforator reaches the fascia and the manually given DIEA

landmark. Thus, the problem becomes constrained to finding a path that con-

nects two voxels, leading to a decrease in the computational effort required. In

this work, we propose the use of the A* search algorithm (Hart et al., 1968), as

it includes a heuristic to improve the search performance. At each iteration, the

A* search algorithm expands the path which minimizes the following expression:

f(s) = g(s) + h(s) (8)

where s is the last node on the path, g(s) is the cost of the path from the start

node to s, and h(s) is the heuristic that estimates the cost of the cheapest path

from s to the goal. In this work, the Euclidean distance between s and the

target voxel is used as the heuristic function. The cost of travelling from one

node to another is given by the following expression:

cs1,s2 = C(s2) · d(s1, s2) (9)

where s1 is the current node, s2 is a neighbor node, d(s1, s2) is the Euclidean

distance between those nodes, and C(s2) is the terrain cost of the neighbor

node.

To find the desired pathways, lower costs must be given to vessel voxels. In

this work, we analyze the usefulness of a function that has been used for the

detection of coronary arteries (Metz et al., 2009):

C(s) =
1

νN (s) · T (s) + ε
(10)

where νN (s) is Frangi’s Vesselness (3) at voxel s normalized to the range [0, 1],

ε is a small constant to avoid division by zero, and T (s) is a sigmoid function
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of the intensity:

T (s) =
1

1 + eas(I(s)−bs)
(11)

with I(s) being the intensity at voxel s, and as and bs constants controlling the

shape of the sigmoid function.

The expression (10) produces low costs at voxels which have high probability

of belonging to a vessel, according to (3), and which have relatively high radio-

density, according to the parameterization of (11). Note that (10) gives costs

in the range [1,∞[, guaranteeing that the heuristic of the A* is admissible.

3. Results and Discussion

In order to evaluate the proposed methodology, a radiologist provided man-

ual annotations of the existing perforators in the database described in section 2,

by defining some landmarks belonging to the centerlines of those vessels. Across

the 21 volumes, a total of 98 subcutaneous and 50 intramuscular perforator

pathways were identified. Since the annotations are sparse when compared to

the extracted paths, we consider the Euclidean and Hausdorff distances from

the Ground Truth annotations to the extracted paths, as metrics indicating the

precision of the vessel detection methodologies. The Euclidean distance mea-

sures the average distance from the path to the manual annotation, whereas the

Hausdorff distance accounts for the maximum distance. Additionally, as the

minimum path approach designed for intramuscular path extraction may take

a noticeable amount of time to run, we also evaluate the time efficiency of the

proposed methodology for that task.

3.1. Subcutaneous course extraction

Our proposed methodology for extracting the subcutaneous portion of per-

forators is now assessed in terms of the metrics described before, and compared

to the tracking algorithm of Friman et al. (2010), which was tailored for the

robust detection of small vessels.
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Table 1: Results of the proposed method and the approach of Friman et al. (2010), concerning

the subcutaneous course extraction, when comparing to the ground truth annotations.

Method
Path error (mm)

Euclidean distance Hausdorff distance

proposed 0.64 ± 0.25 1.17 ± 0.88

Friman et al. (2010) 1.01 ± 0.60 2.38 ± 2.17

Regarding the implementation of our approach, we empirically set the step

δ to 1 mm, the side length of the local window to 4 mm, took a correction

measure every 3 iterations, restricted the direction variation to 60 degrees, and

obtained the vessel enhanced data (3) with α = 0.5, β = 10, and c = 500. In

order to obtain the results from the approach of Friman et al. (2010), we used

their implementation in MeVisLab (MeVis Medical Solutions AG, 2017), and

tuned the parameters for this particular application, by setting the minimum

and maximum radius to 0.5 and 1.5 mm, respectively, the step length to 1 mm,

and the maximum step angle to 60 degrees. The initialization of both perforator

tracking procedures was made at the Ground Truth landmark which was closer

to the end of the perforator. Table 1 summarizes our findings.

Our methodology proved to be more adequate to the subcutaneous tracking

of perforators, as the average Euclidean and Hausdorff distances were signifi-

cantly lower when using it. In fact, our methodology reached subvoxel accuracy

for most of the volumes in our database. The increased performance was mainly

due to the fact that our approach is able to neglect more the presence of the

muscle when tracking the vessel, as we do it in the vessel enhanced data. In

contrast, the methodology of Friman et al. suffered more from this. The aver-

age Hausdorff distance gives information about how well the methods are able

to correctly track the perforator until it reaches the fascia, as it is near this

region that the tracking procedure faces more difficulties, especially when the

perforator has a substancial overlap with the muscle signal. Again, the pro-
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Figure 6: Tracking the subcutaneous course of a perforator using our approach (left) and the

method proposed by Friman et al. (2010) (right). The latter is more prone to terminating

sooner when the vessel evolves near the fascia.

posed method behaved better in such circumstance, thus being more adequate

for determining the location where the perforators leave the fascia. Fig. 6 shows

a comparison between the methods in an example subcutaneous path having a

segment close to the fascia.

3.2. Intramuscular course extraction

Concerning the extraction of intramuscular paths, we seek to find how ap-

propriate is the volume given by (10) when used as terrain costs inside a min-

imum path framework such as A*. Note that by appropriate, we refer to path
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accuracy but also time expended, as minimum path approaches may become

prohibitively slow when there is a need to visit many neighbors, especially in

a 3D environment. To obtain νN (s), we empirically set α = 0.5, β = 0.5, and

c = 100. Regarding T (s), we considered 42 different parameterizations, as given

by the possible combinations of taking as from 7.5 to 45 with a step of 7.5, and

bs from 0.5 to 0.8 with a step of 0.05 (radiodensity was mapped into the range

[0, 1] as described in section 2). Besides the metrics considered in the case of

subcutaneous extraction evaluation, Euclidean and Hausdorff distance between

the Ground Truth annotations and the retrieved paths, we also measured the

time expended. Table 2 presents the results of our experiments. For the sake

of readability, we show only the average value of the metrics of interest. The

performance manifold, concerning each of the metrics, is visually represented in

Figure 7.

The manifolds allow us to conclude that the influence of parameters as and bs

on the overall performance is not linear. Instead, it is a particular combination

of both that may lead to a reasonable volume of costs. This was somewhat

expected, as as dictates the steepness of the sigmoid function, hence the intensity

compression, and bs sets the threshold of the sigmoid, controlling the range

of intensities that produce lower costs. The parameterizations highlighted in

bold in Table 2 were the ones reaching better compromises in what concerns

path detection accuracy and time expended. In a clinical setting like the one

described in this paper, where the manual analysis of the data may easily reach

a couple of hours, having a semi-automatic algorithm that takes a dozen of

seconds to detect an intramuscular path is not problematic. Even then, our

methodology was able to reach very interesting compromises. For example, the

parameterization (as = 45, bs = 0.60) was able to attain one of the best path

accuracies (Euclidean and Hausdorff distances of 0.51 ± 0.14 mm and 1.00 ±

0.39 mm) and also be very fast (3.50 ± 6.5 s). An example of an extracted

intramuscular path using this configuration is present in Fig. 8.

Thus, for appropriate parameterizations, this minimum cost path approach

is able to extract the intramuscular pathways at subvoxel accuracy, and taking
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Table 2: A* performance when retrieving the intramuscular courses of the perforators, us-

ing (10) to obtain the volume of costs. Each cell contains the performance of a parameteri-

zation (as, bs) regarding the average Euclidean and Hausdorff distances between the Ground

Truth annotations and the retrieved paths (mm), and the average time expended (s), respec-

tively.

bs

0.50 0.55 0.60 0.65 0.70 0.75 0.80

as

7.5

0.62

1.40

36.1

0.62

1.38

39.5

0.62

1.38

40.8

0.62

1.37

41.8

0.61

1.36

42.2

0.61

1.36

41.1

0.61

1.36

40.1

15

0.61

1.32

60.8

0.60

1.30

64.2

0.60

1.29

56.1

0.59

1.27

26.7

0.56

1.13

12.7

0.54

1.06

7.48

0.52

1.01

7.90

22.5

0.60

1.32

56.7

0.59

1.28

51.2

0.57

1.22

19.6

0.52

0.99

6.70

0.52

0.99

4.80

0.50

0.96

17.1

0.51

0.96

109

30

0.61

1.38

53.4

0.58

1.22

41.3

0.64

1.38

7.10

0.52

0.98

3.70

0.50

0.95

28.7

0.69

1.31

1340

1.53

3.11

843
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Figure 7: Manifolds showing the average A* performance when using (10), and how it varies

according to the parameterization (as, bs). Logarithmic scales were used for the sake of clarity.

very little time to do so. This makes us more confident that these algorithms

are suitable to be incorporated into a CAD tool aiming to support the DIEAP

flap preoperative planning task. The detection of the perforators is also a step

towards the efficient creation of 3D models which may be of great relevance to

the surgical team. In Fig. 9, we show a representation of one of the DIEAP

trees extracted by the methodology presented in this paper.
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Figure 8: Example intramuscular course extracted by the proposed minimum cost path

method, for as = 45 and bs = 0.60.
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Figure 9: 3D representation of the fascia and the extracted vascular network of one hemiab-

domen.

4. Conclusions

In this paper, we proposed a semi-automatic approach for the detection of

the DIEAPs requiring minimal user intervention, mainly when compared with

the long and tedious manual analysis that technicians and radiologists face.

For the best of our knowledge, this is the first CAD dedicated to these small

abdominal vessels. We believe that it may reduce the overall time that the

characterization of the DIEAPs takes and, additionally, that it supports a more

objective and error-free analysis.

After knowing the location of the anterior fascia of the rectus abdominis

muscle, we divided the DIEAPs detection problem into two independent chal-

lenges: the extraction of the subcutaneous and intramuscular courses. The first

was achieved via a centerline tracking procedure employing local analysis of the

gradient vectors of vessel enhanced data to find the local vessel direction. Ro-

bustness was increased by incorporating a correction framework based on ridge

detection in cross sectional images of the vessel. The average Euclidean and

Hausdorff distances between the Ground Truth annotations and the extracted

subcutaneous paths were 0.64 and 1.17 mm, respectively. The extraction of the

intramuscular path was addressed by a Frangi Vesselness based minimum cost

path approach. Among the considered parameterizations of the cost funtion,
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the one achieving the best compromise between accuracy and time reached av-

erage Euclidean and Hausdorff distances of 0.51 and 1.00 mm, respectively. It

took, in average, 3.50 s to perform the task, using an Intel Core i7-4500U CPU

@ 1.80 GHz 2.40 GHz with 8 GB of RAM.

Nonetheless, some topics deserve attention. Considering the subcutaneous

tracking procedure, attention should be given to the perforators which present a

significant course along the fascia. This makes the tracking method unstable at

that region due to the corrupted local gradient vectors and it commonly stops

earlier than it should, not allowing for a correct retrieval of the coordinates of

the region where the perforator leaves the fascia. In the future, we will address

caliber and tortuosity estimation after the detection of the DIEAPs, in order

to further support the activity of technicians and radiologists involved in the

pre-operative planning of DIEAP flaps.
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