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Abstract

Generative adversarial networks (GANs) are currently rarely applied on 3D

medical images of large size, due to their immense computational demand. The

present work proposes a multi-scale patch-based GAN approach for establishing

unpaired domain translation by generating 3D medical image volumes of high

resolution in a memory-efficient way.

The key idea to enable memory-efficient image generation is to first generate

a low-resolution version of the image followed by the generation of patches of

constant sizes but successively growing resolutions. To avoid patch artifacts and

incorporate global information, the patch generation is conditioned on patches

from previous resolution scales. Those multi-scale GANs are trained to generate

realistically looking images from image sketches in order to perform an unpaired

domain translation. This allows to preserve the topology of the test data and

generate the appearance of the training domain data.

The evaluation of the domain translation scenarios is performed on brain

MRIs of size 155× 240× 240 and thorax CTs of size up to 5123. Compared

to common patch-based approaches, the multi-resolution scheme enables better

image quality and prevents patch artifacts. Also, it ensures constant GPU

memory demand independent from the image size, allowing for the generation
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of arbitrarily large images.

Keywords: Multi-scale GAN, Memory-efficient, High Resolution, 3D Medical

Images

1. Introduction

Generative adversarial networks (GANs) [1] have shown to be well suited

for the generation of photo-realistic images [2, 3]. Many medical image analysis

and processing applications could also benefit from artificial datasets of realistic

images, e.g. by generating ground truth data for augmentation purposes [4, 5],

image reconstruction [6], or domain translation [7]. The generation of high-

resolution images using GANs is, however, still a significant hurdle. Especially

in recent years, the development of GANs towards generation of high-resolution

images has been progressing rapidly. In [8], Karras et al. developed a training

procedure for GANs that starts with a low resolution and progressively adds

more and more details until the highest resolution level is reached. In this way,

they are able to generate highly detailed 1024×1024 images. In [2] even a larger

size of 2048×1024 was reached by using one network to generate low-resolution

images and a second one to increase the resolution. However, those training

methods already require 16 respectively 24 GB of GPU RAM, which indicates

that larger images would require special and expensive hardware. Thus, despite

the impressive results achieved on 2D photo-realistic images, the task of gen-

erating large 3D images is still rather complex. However, most medical image

applications use large-scale 3D images such as thorax CTs and brain MRIs,

hence due to size limitations, GANs are currently impractical for medical appli-

cations. In [9], Shin et al. claimed to be forced to use only the half of the image

size (128×128×54) due to memory restrictions, even though dedicated hardware

(NVIDIA DGX system) was used. The largest 3D output size of a GAN found

in literature is 1283 [10], which is far from the actual image size of many medical

datasets (e.g. BRATS [11]: 155 × 240 × 240, LPBA40 [12]: 181 × 217 × 217,

COPDgene [13]: 512 × 512× > 100, VISCERAL [14]: > 800 × 512 × 512 ).
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A common approach to overcome the computational restraints is the patch-

/slice-based generation of images [15, 16]. However, when patches or slices are

generated independently, artifacts appear on the non-continuous transitions be-

tween them. Usually, applying patch overlaps and averaging the values in the

overlapping regions would help prevent artifacts, but leads to blurry results.

An intuitive idea to prevent inconsistencies would be to introduce more

global intensity information to the patches. Thus, [17] proposed to additionally

observe a larger area around each patch of the input image to cope with this

issue. Even though this approach is shown to be well suitable for segmentation

and would probably improve patch artifacts in strictly paired image translation

(e.g. CT to MR), it cannot be applied to image generation from scratch (or

sparsely conditioned), and its effect is limited when the image size drastically

exceeds the chosen patch size.

In this work, we propose a memory-efficient multi-scale GAN approach for

the generation of large high-resolution 3D medical images. Here, the advantages

of a multi-scale approach and patch-based image generation are combined. Our

method is designed to first learn a low-resolution version of the whole image.

In a second step, patches of higher resolutions are generated in a multi-scale

manner, achieved by conditioning the patches of each current scale on patches

of the previous level. In this way global information from previous scales is

propagated up, and no artifacts appear. Moreover, by only learning a simple

task in each step, it is possible to achieve images of higher resolutions.

The proposed GAN-based method is applied in an unpaired domain trans-

lation use-case scenario. The key idea is similar to [18], where the edges of the

training images are extracted and used as an input of the GAN. Thus in the

training phase the GAN learns to generate a realistically looking appearance

where the topology of the input edges is preserved. In test phase, this results

into keeping the topology of any source edge image, but adopting the appear-

ance of the training data domain (Fig. 1). An additional advantage features the

possibility to explicitly integrate and model pathologies as shown in Fig. 1.

The abilities of our method are demonstrated on different datasets, including

3



Figure 1: Unpaired domain translation. The extracted edges reassure that the topology of an

arbitrary image is preserved and the training dataset defines the output appearance. Also it

is possible to explicitly model pathologies.

3D thorax CTs of sizes up to 5123 and brain MRIs of sizes up to 155×240×240.

Furthermore, we show that the presented method has a constant memory de-

mand with growing side length of an isotropic 3D image, whereas other popular

methods have an at least cubic growth of the memory demand. Our application

features unpaired image domain translation. This is achieved by additionally

conditioning the GANs on the image edges to ensure topology preservation of the

source image, but allow appearance transfer from the target training data. Un-

like conventional paired methods, this approach does not require corresponding

images from two domains for training and inference and enables the translation

from arbitrary domains to a target domain. To underline those properties, our

experiments do not only show standard domain translation tasks ( e.g. between

different MRI sequences or CT images reconstructed with different kernels),

but also domain translation of data acquired with completely different devices,
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settings, and patient populations.

Compared to the preliminary version of this work presented at a conference

[19], herein the following contributions are made: we include a detailed descrip-

tion of the architecture, training and augmentation strategy as well as extended

discussions. Furthermore, we improved the network such that the patches at

higher scales consider more contextual information from the lower scales. This

results in even more realistic images. Additional experiments investigate the

influence of edge and multi-scale information in our approach. We also demon-

strate the ability of our method to be used for advanced data augmentation

techniques by explicitly integrating varying pathologies into the generated im-

ages, thus underlining the benefits of unpaired domain translation. For the

first time, experiments for unsupervised domain translation of brain MRIs are

included and a quantitative comparison to state-of-the-art paired domain trans-

lation methods confirm the quality of the generated images.

This work is organized as follows: After the introduction section, sec. 2

contains a theoretical description of the proposed multi-scale patch-based GAN

method, followed by concrete implementation details. In the next section the

experiments and results are presented, starting with experiments showing the

need for memory efficient methods for medical images. In sec. 3.2 domain

translation experiments on lung CT and brain MRI data are introduced, where

both quantitative and qualitative results are shown. At the end, the work is

summarized and discussed in sec. 4.

2. Methods

GANs are generative models able to generate realistic images of higher qual-

ity compared to other generative methods such as (variational) autoencoders

[18]. GANs learn to map a random noise vector z to an output image y using

a generator function G : z → y [1]. To ensure that the generator produces

realistically looking image (y) that cannot be distinguished from real ones (ỹ),

an adversarial discriminator D is enclosed in the training process, aiming to
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Figure 2: An overview of the proposed GAN. Generate the whole image with a low resolution

(LR) GAN, then subsequently increase the resolution by generating patches with multiple

high resolution (HR) GANs conditioned on the previous scales. Blue: an input patch at the

current resolution scale; red: a generated patch of a subarea of the green patch at the next

higher resolution scale; green: the reception field of the current generated red patch.

perfectly distinguish between real images and generator’s fakes. In an alternat-

ing manner, the generator tries to fool the discriminator by generating more

realistic images, while the discriminator learns to differentiate better between

real and fake images. The better the discriminator distinguishes the images,

the more the generator is pushed to generate more realistic images. This results

in a so-called minimax game, where G minimizes the log probability that D

recognizes the generated data as fake and D maximizes the log probability to

assign real and fake data correctly (eq. 1).

min
G

max
D

V (D,G) = Eỹ[logD(ỹ)] + Ez[log(1−D(G(z)))] (1)

An extension of regular GANs are the conditional GANs (cGANs), that

learn the mapping from an observed image x additionally, G : {x, z} → y. A

widespread application of cGANs is style and domain transfer [18, 2], where

the generator takes an image x as input and is trained to generate the style-

transferred image y as output G(x) ≈ y. In this case, the discriminator takes

a pair of images as input and learns to determine between real pairs (x and y)

and fake pairs (x and G(x)). In this work, the focus lies on unpaired topology-

preserving domain translation, thus x is an image containing edge information

of y. This enables preserving the topology described by the edges and learning

the characteristic gray value distribution of the training image domain. Hence,

by simply extracting the image edges in the inference phase, it is possible to

translate an image of any domain to the domain of the training data.
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2.1. Multi-scale Patch-based Conditional GANs

The idea of using multiple resolution scales to achieve crisper and more

detailed results at the highest resolution scale has shown to be successful in pre-

vious works. For example, in [20], Denton et al. use an approach based on the

Laplacian pyramid by training several GANs for each pyramid level and show

the efficacy of such methods. In [8], Karras et al. developed a new progres-

sively growing training procedure based on training successive resolution levels

iteratively and achieved impressive results. Even by using only two resolution

scales, like in [2], much higher image resolutions are possible. The intuition

behind using a multi-scale approach is that at each level a rather simple task

is learned – by taking the global image information into account, only a resolu-

tion refinement is required in each step. However, those methods assume that

at a certain stage the whole full-resolution image is produced and propagated

through the network. The memory demand for storing a large 3D image on

the GPU is already enormous and the network propagation steps further aggra-

vate the problem. To cope with this issue, a multi-scale patch-based approach

(Fig. 2) is proposed in this work.

The main idea is to first generate the whole image in a very low resolution by

using a low-resolution conditional GAN (LR GAN). Assume this is scale s0 of

the multi-resolution approach, while scale sn is the last scale at the highest res-

olution. To reach sn a succession of n conditional high-resolution (HR) GANs is

trained for each resolution level in the following manner: For HR GAN i, i > 0,

a patch from the image at scale si−1 serves as input. The output is a patch of

the same size at scale si representing the center of the input patch in a higher

resolution. Since the patch size stays the same and the resolution grows, the

receptive field of the output patch is much smaller than the input patch. For

example, at level s0 the image size is 643 and at s1 the image size increases to

1283. If an input patch of size 323 is chosen for HR GAN 1 (Fig. 2 blue patch),

then the output patch of size 323 views only a sub-region (red patch) of the

input since it would have the size 643 at s1 (green lines). In this way, the global

information from scale s0 is propagated to the following scales. Also by gener-
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ating only a sub-region of the input low-resolution patch, each patch receives

neighborhood information preventing inconsistencies at the patch borders.

To also involve the previously mentioned style transfer application, we use

additional conditioning on the image edges. The LR GAN receives the low-

resolution image edges of the whole image, and HR GAN i receives the edges of

the patches of scale si additionally to the low-resolution patch of scale si−1.

More formally, the objective of the learning process can be expressed as in

eq. 2. For multiple conditional images x0 . . . xn with resolutions 0 . . . n, output

images y0 . . . yn are generated using separate generators G0...n and discrimina-

tors D0...n with the objectives

LcGAN (G0, D0) =

Ex0,y0
[logD0(x0, y0)] + Ex0,z[log(1−D0(x0, G0(x0, z)))];

LcGAN (Gi, Di) =

Expi
,ypi

[logDi(xpi
, ypi−1

, ypi
)] + Expi

,z[log(1−Di(xpi
, ypi−1

, Gi(xpi
, ypi−1

, z)))].

(2)

Here, xpi
and ypi

are patches of the conditional image xi and the generated

image yi, respectively, with i ∈ [1, n], where yn represents the final output

image. To improve training stability, it is beneficial to mix the cGAN objective

with a pixel-wise loss for the generator, thus we integrate the L1 distance into

the objective. In our experience, leaving the pixel-wise loss out leads to a

rather unstable training process since the discriminator learns much faster than

the generator and thus the gradient propagated through the generator rapidly

decreases, which is also consistent with [18]. Also, L1-loss is preferred over L2-

loss as it prevents blurriness [21]. Further, more elaborate pixel-wise losses such

as SSIM [22] can be considered, however the performance of the L1-loss here is

evaluated as sufficient and more complex losses slow down the backpropagation

process significantly.

2.2. Architectures and Training Details

In an effort to demonstrate the effectiveness of the proposed method and to

decouple the performance gain due to architectural search, we adopt two com-
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Figure 3: Generator (left) and discriminator (right) architectures.

monly used architectures for our generators. However, since the tasks of gener-

ating whole low-resolution images and high-resolution patches differ in a variety

of requirements, different generator architectures were chosen for G0 and G1...n.

The LR GAN uses a U-Net architecture [23], which is able to filter out many

unimportant details and generalize better due to its bottleneck. Its tendency to

result in more blurry images is negligible in the context of low-resolution images.

For the patch generation by the HR GANs, ResNet blocks [24] are chosen, since

they are known to produce sharp results by keeping the input image resolution

unchanged. The higher overfitting risk of not having a bottleneck is diminished

due to the stronger conditioning (on the previous scales) and the overall large

number of patches for training compared to the number of images used. For

the discriminators D0...n a regular fully-convolutional architecture is chosen (s.

Fig. 3 for detailed architectures)2.

Cascading approaches like these are prone to propagate errors from the low-

est scale to the highest. To avoid this problem, data augmentation becomes

crucial to our method. During the training of every HR generator, the low-

resolution patches are augmented with noise, Gaussian blurring is applied to

2Code available at: https://github.com/hristina-uzunova/MEGAN
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30% of the patches and the resolution of 20% of the patches is lowered by half.

The edge input patches are also distorted with noise. These measures hinder

overadapting to each of the inputs and help to cope with imperfections in the

edge extraction method and the generated images of lower scales at inference

phase. Also, the augmentation with noise and the usage of dropout replace

the straight-forward input noise vector z, since in that case it would simply get

ignored [25].

Further, the edge image used as input for the LR GAN has twice the resolu-

tion of the output LR image to prevent the loss of too much edge information.

Also, in our experience, it showed to be advantageous not to use strictly binary

edges, but gradient magnitude weighted Canny-extracted edges.

In order to avoid padding-related patch artifacts, only the network’s recep-

tive field from each patch is used when reconstructing the generated images, as

proposed in [17].

In all experiments, an image size of 643 is produced by the LR GAN (input

edge image of size 1283) and iteratively upscaled by doubling the resolution

with HR GANs producing patches of size 323 until the original image size is

reached. The choice of the image size for the LR GAN is of significant impor-

tance, since a trade-off between capturing all important global information of

the images and avoiding too many details needs to be made. Thus an LR size

of 323 is not sufficient to represent the complexity of the images, while 1283

contains too many details that cannot be captured by the LR GAN. Naturally,

the input image size needs to be adjusted depending on the size and complexity

of the available data. Using larger patches for the HR GAN does not introduce

significant improvements, however more computational resources are demanded.

3. Experiments and Results

3.1. Memory Requirements for 3D Images

GANs are currently rarely applied to 3D images due to computational con-

straints, therefore in this experiment, the dependence of 3D image size and
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memory requirements of different GAN-based image generation techniques is

investigated. Three common GAN architectures are chosen as baselines: DC-

GAN [26], Pix2Pix [18] and progressive growing GAN (PGGAN) [8], and com-

pared to the two architectures of our method: LR 64 for low-resolution images of

size 643 and HR 32 for high-resolution patches of size 323. PyTorch [27] is used

as an implementation framework of choice for all networks. Since Pix2Pix and

PGGAN are only implemented for 2D images, a straight-forward translation

to 3D is obtained (replacing 2D by 3D convolutions, etc.). The RAM demand

computation is realized using an approach similar to the summary approach

from the keras framework [28]. The assumed lower bound of memory usage

here includes one forward and backward pass for the generator and discrimi-

nator each, as well as the memory required to store the images, gradients and

network parameters for batch size one.

The results for different image sizes are shown in Fig. 4. Naturally, all three

baseline approaches have at least cubic memory requirement growth w.r.t. the

image side’s length. For those approaches calculations for size over 1283 were

not even possible on the used Titan XP 12GB GPU, thus the extrapolated cubic

regressed curves are shown. These results underline the infeasibility of straight-

forward 3D GAN approaches for medical images, as their sizes commonly reach

5123, e.g., PGGAN require more than 100GB GPU RAM for images of size

2563. In contrast, our method is of constant nature w.r.t. the image side length

and is thus suitable for arbitrary image sizes with predictable memory usage.

3.2. Domain Translation for Medical Images

Usually in medical imaging, there is a large variety of different acquisition

parameters that can be chosen to ensure different contrast and better visibility of

particular tissues. This flexibility, however, yields inconsistent acquisitions be-

tween datasets, causing inconvenience for automated data analysis algorithms.

One example are the different reconstruction kernels used in CT imaging. While

sharp kernels are more pleasant for visual perception, soft kernels are more ap-

propriate for automatic calculations. Another common problem occurs in MRI
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Figure 4: RAM requirements for 3D GANs. Baselines: DCGAN, Pix2Pix and PGGAN.

Dashed lines indicate cubic regression approximation. Our methods: for low resolution images

of size 643 (LR 64) and high resolution patches of size 323 (HR 32), have constant memory

requirement regardless the image size. Dotted lines indicate sizes under the assumed minimal

size 643. Log-scale is used on the y-axis.

imaging, since different pulse sequences can be chosen (e.g. T1-,T2-weighted,

FLAIR). Many algorithms require complete datasets or specific sequences (e.g.

segmentation with FreeSurfer [29]), however, in many cases not all of the se-

quences are available. For those reasons, medical image domain translation for

the generation of missing image modalities becomes crucial for automatic image

analysis applications. And although, there are many domain translation frame-

works, most of them need paired data for training and do not enable large image

sizes. In our experiments, we apply the proposed method for unpaired domain

translation of high resolution 3D medical images. However, domain translated

synthetic images for direct diagnostic purposes by a clinician is not implied,

still, we suggest their application in many different image analysis algorithms.

3.2.1. Domain Translation for 3D Thorax CTs

For those experiments the dataset Lungs COPD is used for training. Lungs

COPD is a thorax CT dataset, containing 3D CT images of size ca. 5123

of 56 subjects with varying degree of chronic obstructive pulmonary disease

(COPD)[30]. For each subject the data was simultaneously reconstructed with

different kernels: soft (B20f), sharp (B50f) and very sharp (B80f). In the fol-

lowing, one LR and three HR GANs are trained in a 5-fold-cross-validation
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manner on the B20f images from the dataset. Those experiments aim to show

the possibility of our method to generate very large (up to 5123) images in high

resolution and quality.

Sharp to Soft Kernels. The influence of different CT acquisition parameters on

the image quality usually hinders the comparability of automatic image quan-

tifications between various settings, e.g. the emphysema index in CTs recon-

structed with different kernels [31, 32]. For this reason we obtain domain trans-

lations from sharper kernels (B80f and B50f) of the Lungs COPD to the soft

kernel (B20f) using the presented GAN-based method. In the inference phase,

the edges of the B80f and B50f image from the current test fold are extracted

and propagated through the cascading nets. This results in keeping the topol-

ogy of the noisy images and filling them with gray values typical for the smooth

B20f images. Examples of the domain translation results can be seen in Fig. 5.

Since in this dataset every image is simultaneously reconstructed with each

kernel, the corresponding ground truth B20f image for each B80f and B50f recon-

struction is available, and thus a quantitative comparison is enabled. The cal-

culated measurements between the generated and ground truth images are the

structured self-similarity index (SSIM) [22], peak signal-to-noise ratio (PSNR),

mean average error (MAE), mean squared error (MSE). Note, that the B20f

reconstructions of the test images are used for evaluation only and are whether

requested for training, nor inference. Also, only one training on the B20f data

is sufficient for translations from every domain (here: B80f and B50f).

For comparison the following standard approaches are implemented: 1)

Straight-forward patch-wise GAN – a GAN trained in the exact same man-

ner as the HR GAN on the last scale, except for using the information from the

lower resolution scales. In the test phase, patch overlaps are applied to avoid

artifacts. 2) Straight-forward GAN for smaller image size and then rescaling

to the original size. For this method, the LR GAN architecture is applied to

generate images of size 643 (this is on the edge of our computational abilities),

followed by trilinear interpolation. 3) Smooth the B80f/B50f images to achieve
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B20f B20f (target) B50f B80f

Our method Our method Patch NLM

B50f→B20f B80f→B20f

Scale 0: 643 Scale 1: 1283 Scale 2: 2563 Scale 3: 5123

B80f→B20f

Figure 5: Sharp (B80f and B50f) to soft (B20f) kernels. From left to right: First row – original

images: Representing real B20f axial coronal slice from a 3D thorax CT (red: zoom-in area

for all other images); Real B20f; Real B50f; Real B80f. Second row – generated B20f images

by: Our method from the B50f images; Our method from the B80f images; A straight-forward

patch-wise approach from the B80f images; NLM smoothed B80f images. Third row – different

scales of our method.

the appearance of a B20f image. This is accomplished using the state-of-the-art

edge-preserving non-local means filter (NLM).

The quantitative results for all methods and both scenarios (B80f→B20f

and B50f→B20f) are shown in tab. 1. After domain translation of the B80f im-

ages with our method, the images are significantly more similar to the ground

truth, especially when SSIM is taken into account. However, since the B50f and

B20f images are initially more similar, the B50f→B20f translation, does not
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deliver such large discrepancy in values, however, the SSIM of the translated

images is still significantly higher compared to the original ones, suggesting a

good domain adaption. Also, the results are visually appealing (Fig. 5). Even

though the NLM smoothed images show similar quantitative results, qualita-

tively they lack many important details and the filtering requires ∼ 100 times

longer computational time. The patch-based and resizing methods deliver im-

ages of significantly worse quality both visually and quantitatively. To illustrate

the importance of using multiple scales, the results of four scales are visualized

in Fig. 5, where there is a clear increase in quality with each scale.

Table 1: Quantitative results for the lungs CT experiments.Measurements between a generated

image and its ground truth. Columns 3-6: average SSIM (higher is better), MAE and MSE

(lower is better), PSNR (higher is better). Note that the image intensities are normalized

within [0,1]. Experiments (top and bottom): B80f to B20f image translation, B50f to B20f

image translation. Compared to ground truth (row-wise): our generated images, conventional

patch-wise generation, up-scaled low-resolution images, a non-local means filtered image [33]

and the original image. Superscripts correspond to significance (p < 0.0001) in a paired

two-sided t-test for all methods compared to ours in terms of: all measures ?; SSIM †.

SSIM MAE MSE PSNR (dB)

Method mean mean mean mean

B80f→B20f

Our gen. 0.773 0.033 0.004 24.1

Patch gen.? 0.706 0.049 0.008 21.2

Small gen.? 0.633 0.058 0.011 19.5

NLM B80f 0.773 0.031 0.004 19.5

Orig. B80f? 0.480 0.065 0.012 19.2

B50f→B20f

Our gen. 0.794 0.033 0.003 24.8

Patch gen.? 0.698 0.050 0.008 21.1

Small gen.? 0.636 0.055 0.012 19.3

NLM B50f? 0.478 0.283 0.213 19.3

Orig. B50f† 0.722 0.028 0.002 26.3

Low-dose to High-dose. This experiment underlines the ability of the presented

method for unpaired domain translation. The domain translation is established

from a completely different dataset – the Low-dose Lungs – to the B20f Lungs

COPD domain with a simple inference through the network trained in the pre-
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vious experiment. The Low-dose Lungs dataset contains 10 3D inhale phase

thorax CTs from the COPDgene dataset [13] of sizes around 3003 all having

COPD. Since the Lungs COPD B20f training data are acquired with a higher

dose than the Low-dose Lungs data, this experiments corresponds to a low-dose

to high-dose translation. The edges of all ten images from the low-dose dataset

are extracted and propagated through the trained GANs. Visually the generated

images look smoother and of better quality (Fig. 6) than the original low-dose

images. Due to the lack of ground truth for this experiment (no corresponding

high-dose images are available), only visual evaluation is possible. Note, that

those experiments do not aim the generation of data for direct interpretation

(by clinicians), since GANs tend to hallucinate pathologies and other features

(here: emphysema) [34], however, automatic image analysis methods can be

facilitated.

Low-dose High-dose (fake) Low-dose High-dose (fake)

Figure 6: Low-dose to high-dose domain translation example image. Left two: Whole images;

Right two: Zoomed-in into the red square.

3.2.2. Domain Translation and Data Augmentation for 3D Brain MRIs

The following experiments are based on brain MRI domain translation us-

ing the BRATS dataset for training. This dataset features 274 multi-modal 3D

brain MRI images from the BRATS challenge [11]. All images contain brain tu-

morous of the type glioblastomas with given expert segmentations. The initial

image size is 155× 240× 240, however the images are cropped with a bounding

box around the brain. In this work the Flair, T1- and T2-weighted sequences

are considered, where the T2-weighted image sequences are used in a 4-fold-

cross-validation manner. One LR and two HR GANs are trained on the data.
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Since the segmentation masks of the tumors are given, they get strictly inte-

grated into the training and testing process by overlaying them on the extracted

edges. In our experience, the explicit integration of the tumors (and not only

their extracted edges), help avoid pathology hallucination [34]. In the following

experiments, the aim is to explore the boundaries of the proposed method and

its separate components.

MRI Modality Translation. The task of translating between different MRI modal-

ities is quite often requested, thus this experiment shows that our method is

also suitable for MRI modality translation on the full-sized 3D images from the

BRATS dataset. For inference the edges from the Flair as well as T1-weighted

sequences of the test fold are cascaded through the trained networks, resulting

into a Flair→T2 and a T1→T2 translation. In this dataset, all three sequences

for each image are available and co-aligned. Hence a ground truth for quanti-

tative evaluation is available.

As a comparison, two state-of-the art paired image translation methods are

considered and trained on the same folds: the random forest based REPLICA[35]

method; and the patch-wise 3D GAN MedSynth[36] approach that applies an

auto-context model for patch refinement. For both methods, the source code

provided by the authors was adapted for the experiments. The results can be

seen in tab. 2. The overall high SSIM and PSNR, and low MAE and MSE indi-

cate good correspondence between the generated and real T2-weighted images.

All methods deliver comparable results in terms of MSE and MAE, where as ex-

pected paired methods tend to generate intensities more similar to the original

images. However, in terms of SSIM, describing the structural information of the

images, the presented method delivers significantly better results, capturing its

ability to generate sharper images and no visible patch artifacts. The low SSIM

values of the MedSynth images can be explained by the often visible patch and

slice artifacts of the generated images, especially in tumor regions.

Examples of domain translated images of our method can be seen in Fig. 7.

Visually, the generated images have a realistic appearance, however, the trans-
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Table 2: Quantitative results of the Brain MRI experiments. Measurements between a gen-

erated image and its ground truth. Columns 3-6: average SSIM (higher is better), MAE and

MSE (lower is better), PSNR (higher is better). Note that the image intensities are normal-

ized within [0,1]. Experiments (top and bottom): T1 to T2 translation, Flair to T2 transla-

tion. Compared to ground truth (row-wise) generated images by our method, REPLICA and

MedSynth. Superscripts correspond to significance (p < 0.0001) in a paired two-sided t-test

for all methods compared to ours in terms of SSIM ?.

SSIM MAE MSE PSNR (dB)

Method mean mean mean mean

T1→T2

Ours? 0.911 0.017 0.003 26.0

REPLICA [35] 0.854 0.017 0.003 26.9

MedSynth [36] 0.613 0.025 0.003 27.0

Flair→T2

Ours? 0.905 0.021 0.004 24.6

REPLICA [35] 0.833 0.019 0.002 25.9

MedSynth [36] 0.734 0.020 0.002 27.5

lation from the T1-weighted sequence delivers sharper visual and better quan-

titative results than from Flair, since the reduced contrast of the Flair images

impedes edge extraction. Even though the results are satisfactory, the depen-

dence of the presented method on well-extracted edges gets highlighted.

Since the generation of realistically looking tumor tissue in MR images is a

quite complicated task, the amount of artifacts generated in the tumor tissue,

especially on the lower scales, is considerable. However, thanks to the aug-

mentation approaches mentioned in Sec. 2.2, the artifacts from lower scales, in

general do not get propagated to the last scale (s. Fig. 8 for examples).

Healthy to Pathological Translation. To once again underline the ability of our

method for unpaired domain translation, here, a domain translation between the

healthy patients T1-weighted MRIs from a completely different dataset (LPBA)

and the pathological T2-weighted BRATS dataset is established. The LPBA

dataset [12] contains 40 healthy T1-weighted MRIs of size 181×217×217. Since

the edges of the LPBA images contain no pathologies, the BRATS domain can-

not be completely obtained. However, the explicit integration of the tumor mask

allows to overlay the mask on the LPBA edges and thus generate pathological
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Real T1 Real Flair Real T2 T1→T2 Flair→T2

Figure 7: MRI sequence translation (T1→T2) and (Flair→T2). Row-wise: slices from two

example BRATS images in their three sequences (left three) and the domain translated images

generated by our method (right two), cropped to the left brain half for better visibility.

data (Fig. 9). It can also be observed that leaving the tumor mask out, does not

lead to hallucination of pathologies, even though the training dataset is entirely

pathological (Fig. 10).

A further advantage of the explicit tumor mask integration is the possibility

to use it for data augmentation or dataset balancing purposes, e.g., when having

only a few pathological cases in a training dataset. The tumor masks can

be transformed in simple ways creating new appearances of the tumors. In

our experiments, the transformations feature shrinking and zooming by 15%

and mirroring the tumor on the y-axis (Fig. 10). Even though the generated

images look highly realistic, they lack some essential medical details such as

tissue compression around the tumor. This is in agreement with [34], that

artificial data generated by GANs should not be used for direct interpretation

by clinicians, but can be very helpful for automatic image analysis algorithms.
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scale 2 scale 3 scale 2 scale 3

Figure 8: Zoom-ins on the tumor tissue from scale 2 and 3 of two generated images. Artifacts

generated on lower scales do not get propagated to the high resolution images.

Edges vs. Multi-scale. The intuition behind using both multiple resolution

scales and edge information is to provide every HR GAN with fine information

from the edges and coarse gray value information from the previous resolution

scale (similar to a Laplacian pyramid). To test this assumption, two experi-

ments are carried out. First, the HR GANs are trained again (the LR GAN

stays unchanged) for the LPBA→BRATS T2 translation scenario: once without

considering edge information and once without using the images from previous

scales as input. While this experiment shows the importance of each component

during training, the second experiment considers both components for training

and shows the effect of each of them in the test phase. Here, the HR GANs

trained on both inputs are used, and in the inference phase, one of the inputs

consecutively gets blacked out. Example results can be seen in Fig. 11. Surpris-

ingly, training the network on only one of the inputs significantly reduces the

quality of the generated images. When using only edge information for training,

inconsistent appearance can be achieved and patch artifacts are strongly visi-

ble. As opposed to that, using a sole multi-scale approach for training generates

blurry images due to the lack of high-resolution information. When simply leav-

ing one of the inputs out during testing, using only the edges creates a rather

average gray-value profile and a patchy appearance. Interestingly, when the

edge information is left out, the inner part of the brain barely gets reproduced,

supposedly due to the large amount of details in this area.
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BRATS T2 1 BRATS T2 2 LPBA

Sketch LPBA Fake T2 Sketch LPBA Fake T2

+ tumor 1 + tumor 1 + tumor 2 + tumor 2

Figure 9: LPBA to BRATS T2 domain translation examples. First row: Real images; Second

row: Extracted edges and generated (fake) images.

No tumor Mirror tumor Shrink tumor Zoom tumor

Figure 10: Tumor augmentation examples by applying affine transformations of the tumor

label. Row-wise: Two different tumors applied on the same image (tumor 1 and tumor 2 from

Fig. 9).
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Only edges Only multi-scale Only edges Only multi-scale

Train Train Test Test

Figure 11: Edges vs. multi-scale: examples of a generated image when leaving out one of the

inputs (fake T2 + tumor1 from Fig. 9). Two images on the left: One input is left out during

training and testing; Two images on the right: One input is left out during testing only.

4. Conclusion

In this work, we propose a multi-scale GAN-based approach for the memory-

efficient generation of high-resolution 3D images. The leading idea of the method

is to first generate the whole image in a very low resolution using an LR GAN,

followed by a succession of HR GANs that generate patches of the same size

but growing resolutions. Since the patches are conditioned on previous scales,

no patch artifacts appear. In this way, the memory demand remains constant

independently from the image size, allowing for arbitrarily large image gener-

ation. The multi-scale scheme also allows creating images of very high quality

and resolution, compared to conventional GAN-based methods. Due to the aug-

mentation techniques applied during training a typical problem of propagating

errors from lower scales to higher scales is avoided. The experiments in this work

are based on a domain translation scenario. Different translation tasks on a tho-

rax CT (sharp to soft kernels, low-dose to high-dose) and a brain MRI (T1/Flair

to T2, healthy to pathological) dataset were investigated and demonstrate the

wide range of applications for the presented methods. This is established by

additionally conditioning the GANs on an edge based image sketch. Alongside

with the suitability of the method for those domain translation tasks, the exper-

iments also show the importance of using a combination of the image edges and

a multi-scale approach, so that local high-resolution and global low-resolution
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information is combined. Compared to paired methods, the proposed approach

delivers comparable results in quality but carries significant advantages such as

explicit pathology integration (and thus less feature hallucination) and augmen-

tation. This opens up possibilities for data augmentation, dataset balancing,

and various preprocessing steps for automatic algorithms, however, the images

should not be considered for direct usage by clinicians due to the high proba-

bility of feature hallucination.

However, the experiments also highlight a drawback of using the edge infor-

mation as a topology constrain, since imprecise edge extraction leads to worse

quality of the generated images. This would impair tasks like CT to MRI im-

age translation, as their extracted edges lack correspondence. A more elaborate

topology constrain is required to solve this issue and will be investigated in our

future work.
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