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Abstract—With the remarkable success of representation
learning for prediction problems, we have witnessed a rapid
expansion of the use of machine learning and deep learning
for the analysis of digital pathology and biopsy image patches.
However, learning over patch-wise features using convolutional
neural networks limits the ability of the model to capture
global contextual information and comprehensively model tissue
composition. The phenotypical and topological distribution of
constituent histological entities play a critical role in tissue diag-
nosis. As such, graph data representations and deep learning have
attracted significant attention for encoding tissue representations,
and capturing intra- and inter- entity level interactions. In this
review, we provide a conceptual grounding for graph analytics
in digital pathology, including entity-graph construction and
graph architectures, and present their current success for tumor
localization and classification, tumor invasion and staging, image
retrieval, and survival prediction. We provide an overview of
these methods in a systematic manner organized by the graph
representation of the input image, scale, and organ on which they
operate. We also outline the limitations of existing techniques, and
suggest potential future research directions in this domain.

Index Terms—Digital pathology, Cancer classification, Cell-
graph, Tissue-graph, Hierarchical graph representation, Graph
Convolutional Networks, Deep learning.

I. INTRODUCTION

ECENT advances in deep learning techniques have

rapidly transformed these approaches into the methodol-
ogy of choice for analyzing medical images, and in particular
for histology image classification problems [/1]. Because of the
increasing availability of large scale high-resolution whole-
slide images (WSI) of tissue specimens, digital pathology and
microscopy have become appealing application areas for deep
learning algorithms. Given wide variations in pathology and
the often time-consuming diagnosis process, clinical experts
have begun to benefit from computer-aided detection and
diagnosis methods capable of learning features that optimally
represent the data [2]]. This thorough survey serves as an
accurate guide to biomedical engineering and clinical research
communities interested in discovering the tissue composition-
to-functionality relationship using image-to-graph translation
and deep learning.

There are several review papers available that analyse the
benefits of deep learning for providing reliable support for
microscopic and digital pathology diagnosis and treatment
decisions [1]], [3[]-[6], and specifically for cancer diagno-
sis [[7]. Compared to other medical fields such as derma-
tology, ophthalmology, neurology, cardiology, and radiology,
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Fig. 1: Traditional CNNs excel at modelling local relations in
grid representation, where the topology of the neighborhood
is constant (Left). GCNs can take into account different
neighbouring relations (global relation) by going beyond the
local pixel neighbourhoods used by convolutions. On a graph,
the neighbours of a node are unordered and variable in size
(Right).

digital pathology and microscopy is one of the most dominant
medical applications of deep learning. One driving force
behind innovation in computational pathology has been the
introduction of grand challenges (e.g. NuCLS [8]], BACH [9],
MoNuSeg [10]]). Developed techniques that offer decision
support to human pathologists have shown bright prospects
for detecting, segmenting, and classifying the cell and nucleus;
and detecting and classifying diseases such as cancer.

Deep learning techniques such as convolutional neural net-
works (CNNs) have demonstrated success in extracting image-
level representations, however, they are inefficient when deal-
ing with relation-aware representations. Modern deep learning
variations of graph neural networks (GNNs) have made a
significant impact in many technological domains for describ-
ing relationships. Graphs, by definition, capture relationships
between entities and can thus be used to encode relational
information between variables [|11]]. As a result, special empha-
sis has been placed on the generalisation of GNNs into non-
structured and structured scenarios. Traditional CNNs analyse
local areas based on fixed connectivity (determined by the
convolutional kernel), leading to limited performance, and
difficulty in interpreting the structures being modeled. Graphs,
on the other hand, offer more flexibility to analyse unordered
data by preserving neighboring relations. This difference is
illustrated in Fig. [I]

The adaptation of deep learning from images to graphs has
received increased attention, leading to a new cross-domain
field of graph-based deep learning which seeks to learn infor-
mative representations of graphs in an end-to-end manner. This
field has exhibited remarkable success for various tasks as dis-
cussed by recent surveys on graph deep learning frameworks



Fig. 2: Top: Graph-based representation of images for relation-
aware human-object interaction, image segmentation, and hu-
man pose estimation (left-to-right). Images adapted from [12]-
[14]. Bottom: A. Cell-graph representation for prostate cancer.
B. Tissue-graph representation for colorectal cancer. C. Hier-
archical cell-to-tissue graph representation for breast cancer.
Images adapted from [[15]-[17].

and their applications [[11]], [18]-[20]]. Graph embeddings have
appeared in computer vision tasks where graphs can efficiently
define relationships between objects, or for the purpose of
graph-structured image analysis. Interesting results have been
obtained for object detection, semantic segmentation, skeleton-
based action recognition, image classification and human-
object interaction tasks as illustrated in Fig. 2] (Top).

Medical applications have benefited from rapid progress in
the field of computer vision and GNNs. The development of
GNNs has seen the application of deep learning methods to
GNNs, such as graph convolutional networks (GCNs). These
models have been proposed as a powerful tool to model
functional and anatomical structures, brain electrical activity,
and segmentation of the vasculature system and organs [21]].

Histological images depict the micro-anatomy of a tissue
sample, and pathologists use histological images to make
diagnoses based on morphological changes in tissues, the
spatial relationship between cells, cell density, and other
factors. Graph-based methods, which can capture geometri-
cal and topological properties, are able to model cell-level
information and overall tissue micro-architecture. Prior to the
advent of deep learning, numerous approaches for processing
histopathological images as graphs were investigated [22].
These methods used classical machine learning approaches,
which are less accurate for graph classification compared to
GCNs. The capabilities of graph-based deep learning, which
bridges the gap between deep learning methods and traditional
cell graphs for disease diagnosis, are yet to be sufficiently
investigated.

In this survey, we analyse how graph embeddings are
employed in histopathology diagnosis and analysis. While
graphs are not directly expressed within this data, they can
efficiently describe relationships between tissue regions and
cells. This setting offers a very different task for GNNs in
comparison to analysis of unstructured data such as electro-

physiological and neuroimaging recordings where the data can
be directly mapped to a graph [21]]. Selected samples of graph
representations in digital pathology (cell-graph, patch-graph,
tissue-graph and cell-tissue representation) used to capture and
learn relevant morphological regions that will be covered in
this review are illustrated in Fig. 2] (Bottom).

This survey offers a comprehensive overview of preprocess-
ing, graph models and explainability tools used in computa-
tional pathology, highlighting the capability of GNNs to detect
and associate key tissue architectures, regions of interest, and
their interdependence. Although some papers have surveyed
conventional cell graphs with handcrafted features to charac-
terize the entities [22], [23], and others have briefly touched
upon the benefits of GCNs in biology and medicine [24],
to the best of our knowledge, no systematic review exists
that presents and discusses all relevant works concerning
graph-based representations and deep learning models for
computational pathology.

A. Why graph-based deep learning for characterizing diseases
through histopathology slides?

Deep learning has increased the potential of medical im-
age analysis by enabling the discovery of morphological
and textural representations in images solely from the data.
Although CNNs have shown impressive performance in the
field of histopathology analysis, they are unable to capture
complex neighborhood information as they analyse local areas
determined by the convolutional kernel. To extract interaction
information between objects, a CNN needs to reach sufficient
depth by stacking multiple convolutional layers, which is
inefficient. This leads to limitations in the performance and
interpretability of the analysis of anatomical structures and
microscopic samples.

Graph convolutional networks (GCNs) are a deep learning-
based method that operate over graphs, and are becoming
increasingly useful for medical diagnosis and analysis [21]].
GCNs can better exploit irregular relationships and pre-
serve neighboring relations compared with CNN-based mod-
els [[11]]. Below we outline the reasons why current research in
histopathology has shifted the analytical paradigm from pixel
to entity-graph processing:

1) The potential correlations among images are ignored
during traditional CNN feature learning, however, a
GCN can be introduced to estimate the dependencies
between images and enhance the discriminative ability
of CNN features [25].

2) CNNs have been commonly used for the analysis of
whole slide images (WSI) by classifying fixed-sized
biopsy image patches using fixed fusion rules such
as averaging features or class scores, or weighted av-
eraging with learnable weights to obtain an image-
level classification score. Aggregation using a CNN also
includes excessive whitespace, putting undue reliance
on the orientation and location of the tissue segment.
Even though CNN-based models have practical merits
through considering important patches for prediction,
they dismiss the spatial relationships between patches, or
global contextual information. Architectures are required



to be capable of dealing with size and shape variation in
region-of-interests (ROIs), and must encode the spatial
context of individual patches and their collective con-
tribution to the diagnosis, which can be addressed with
graph-based representations [26]], [27].

3) A robust computer-aided detection system should be
able to capture multi-scale contextual features in tis-
sues, which can be difficult with traditional CNN-based
models. A pathological image can be transformed into a
graph representation to capture the cellular morphology
and topology (cell-graph) [28], and the attributes of
the tissue parts and their spatial relationships (tissue-
graph) [17], [29].

4) Graph representations can enhance the interpretation of
the final representation by modeling relations among
different regions of interest. Graph-based models offer
a new way to verify existing observations in pathology.
Attention mechanisms with GCNs, for example, high-
light informative nuclei and inter-nuclear interactions,
allowing the production of interpretable maps of tissue
images displaying the contribution of each nucleus and
its surroundings to the final diagnosis [30].

5) By incorporating any task-specific prior pathological in-
formation, an entity-graph can be customized in various
ways. As a result, pathology-specific interpretability and
human-machine co-learning are enabled by the graph
format [31].

6) GCNs are a complimentary method to CNNs for mor-
phological feature extraction, and they can be employed
instead of, or in addition to CNNs during multimodal
fusion for fine-grained patient stratification [32].

B. Contribution and organisation

Compared to other recent reviews on traditional deep learn-
ing in histopathology slides, our manuscript captures the cur-
rent efforts relating to entity-graphs and recent advancements
in GCNs for characterizing diseases and pathology tasks.

Papers included in the survey are obtained from various
journals, conference proceedings and open-access repositories.
Table [l outlines the applications that were addressed across all
reviewed publications. It is noted that breast cancer analysis
constitutes the major application in digital pathology that has
been analyzed using graph-based deep learning techniques.

This review is divided into three major sections. In Sec-
tion |lIl we provide a technical overview of the prevailing tools
for entity-graph representation and graph architectures used
in accelerating digital pathology research. In Section we
introduce the current applications of deep graph representation
learning and cluster these proposals based on the graph con-
struction (cell-graph, patch-graph, tissue-graph, hierarchical
graph) and feature level fusion methods followed by the task
or organ on which they operate. Finally, Section high-
lights open problems and perspectives regarding the shifting
analytical paradigm from pixel to entity-based processing.
Specifically, we discuss the topics of graph construction,
embedding expert knowledge, complexity of graph models,
training paradigms, and graph model interpretability.

TABLE I: Summary of applications of graph-based deep
learning in histopathology covered in this survey.

Application #Applications  Reference

Breast cancer 11 (171, [26], [281-[31], [33]-[37]
Colorectal cancer 6 [16], [271, [381-[41]

Prostate cancer 3 (151, 130}, [42]

Lung cancer 3 [431-[45]

Cervical cancer 2 [25], [46]

Lymphoma 1 (16

Skin cancer 1 [47]

Renal cancer 1 [32]

Total 28

II. GRAPH REPRESENTATION LEARNING
IN DIGITAL PATHOLOGY: BACKGROUND

Translating patient histopathological images into graphs to
encode the spatial context of cells and tissues for a given
patient has been used to improve prediction accuracy of
various pathology tasks. Graph representations followed by
GNN-based models and interpretability approaches allows
pathologists to directly comprehend and reason for the out-
comes. GNNs can also serve a variety of prediction purposes
by adapting different designs, such as performing node-level
and graph-level predictions.

A standard entity-graph based pathological workflow re-
quires several phases, such as node and graph topology def-
inition, as well as the choice of GNN architecture. In this
section, we provide technical insights of these phases that
are required for graph analytics in computational pathology:
(1) Graph representation (entity, embeddings and edges def-
inition); (2) Graph models (graph structures for processing
graph-structured); and (3) Explainability (a set of interpre-
tation methodologies such as model-based and post-hoc in-
terpretability). A traditional framework with aforementioned
phases is illustrated in Fig. [3] A deep analysis of each GNN
model can be found in survey papers that deal with graph
architectures [[11], [20].

A. Histopathology graph representation

1) Preliminaries: A graph can be represented by G =
(V,E,W), where V is a vertex set with |V| = n nodes and
& denotes the set of edges connecting these nodes. Data in V
can be represented by a feature matrix X € R"*¢, where n
and d denote the input feature dimensions. W € R"*"™ is a bi-
nary or weighted adjacency matrix describing the connections
between any two nodes in V, in which the importance of the
connections between the i-th and the j-th nodes is measured
by the entry W in the i-th row and j-th column, and denoted
w;j. Commonly used methods to determine the entries, w;,
of W include Pearson correlation-based graph, the K-nearest
neighbor (KNN) method, and the distance-based graph [48].
In general, GNNs learn a featur/e transformation function for X
and produce output Z € R"*¢ | where d’ denotes the output
feature dimension.

Presented graph methods in digital pathology typically
use data in one of two forms. Whole slide images (WSI),
also known as virtual microscopy, are high-resolution images
generated by combining many smaller image tiles or strips and
tiling them to form a single image. Tissue microarrays (TMAs)
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Fig. 3: Overview of a standard graph-based workflow in computational pathology. The WSI image is first transformed into one
or more graphs. 1. The entities can be nuclei, patches or tissue regions. 2. Node features comprise handcrafted or deep learning
features to characterize the entities. 3. The edges encode intrinsic relationships (spatial or semantic) among the entities. 4.
Graph encoding and classification (node-level or graph-level prediction): the graph representation is processed using GNNs
and its variants such as ChebNet, GCN, GraphSAGE, GAT, and GIN, including different graph pooling strategies (global or
hierarchical pooling). 5. Graph interpretations: a set of GNN model interpretability tools such as graph attentions or post-hoc

graph explainers (e.g. GNNExplainer and GraphGrad-CAM.)

consist of paraffin blocks produced by extracting cylindrical
tissue cores and inserting them into a single recipient block
(microarray) in a precisely spaced pattern. With this technique,
up to 1000 tissue cores can be assembled in a single paraffin
block to allow multiplex histological analysis.

2) Graph construction: Graph representations have been
used in digital pathology for multiple tasks where a histol-
ogy image is described as an entity-graph, and nodes and
edges of a graph denote biological entities and inter-entity
interactions respectively. The entities can be biologically-
defined such as nuclei and tissue regions, or can be defined
patch-wise. Therefore, constructing an entity-graph for graph
analytics in computational pathology demands the following
pre-processing steps.

a) Node definition: WSI usually includes significant non-
tissue regions. To identify tissue regions the foreground is seg-
mented with Gaussian smoothing and OTSU thresholding [49].

One of the most common graph representation, cell-graphs,
requires model training and fine-tuning for cell detection or
segmentation. To detect nuclei several methods have been
used such as Hover-Net [50], CIA-Net [51]], UNet and
c¢GANSs [53]], that are trained on multi-organ nuclei segmen-
tation datasets (MoNuSeg [54], PanNuke [55]], CoNSep [50]).
The entities can also be calculated using agglomerative clus-
tering of detected cells.

The nodes in a graph can also be represented by fixed-
sized patches (patch-graphs) randomly sampled from the raw
WSI or by using a patch selection method where non-tissue
regions are removed [57]. Important patches can be sampled
from segmented tissues using color thresholds where patches
with similar features (tissue cluster) are modeled as a node.
Pre-trained deep learning models on tissue datasets (e.g. NCT-
CRC-HE-100 [58]]) have also been used to detect the tumor
region of the specific pathological task.

Meaningful tissue regions have been also used as nodes
to capture the tissue distribution (tissue-graphs). To separate
tissue structures, superpixels [59]] obtained using unsuper-
vised algorithms such as simple linear iterative clustering
(SLIC) [60]) become nodes.

b) Node embeddings: Node features can comprise hand-
crafted features including morphological and topological prop-

erties (e.g. shape, size, orientation, nuclei intensity, and the
chromaticity using the gray-level co-occurrence matrix). For
cell-graph representations, some works include learned fea-
tures extracted from the trained model used to localise the
nuclei.

In patch-graph methods, deep neural networks are used
to automatically learn a feature representation from patches
around the centroids of the nuclei and tissue regions. If the en-
tity is larger than the specified patch size, multiple patches in-
side the entity are processed, and the final feature is computed
as the mean of the patch-level deep features. Some works have
aggregated features from neighboring patches and combined
them to obtain a central node representation to increase
feature learning performance. Authors have adopted CNNs
(MobileNetV2, DenseNet, ResNet-18 or ResNet-50 [61])), and
encoder-decoder segmentation models (UNet [52])) for the
purpose of deep feature extraction. To generate patch-level
embeddings, ImageNet-pretrained CNN as well as a CNN
pretrained for tissue sub-compartment classification task have
been used.

c) Edge definition: The edge configuration encodes the
cellular or tissue interactions, i.e. how likely two nearby
entities will interact and consequently form an edge. This
topology is often defined heuristically using a pre-defined
proximity threshold, a nearest neighbor rule, a probabilistic
model, or a Waxman model [22]. The graph topology can
also be computed by constructing a region adjacency graph
(RAG) by using the spatial centroids of superpixels.

3) Training paradigms: From the perspective of supervi-
sion, we can categorize graph learning tasks into different
training settings. Such approaches have also been used to
extract effective representations from data.

o The Supervised learning setting provides labeled data for
training.

o Weakly or partially supervised learning refers to models
that are trained using examples that are only partially
annotated.

o Semi-supervised learning trains a model using a small set
of annotated samples, then generates pseudo-labels for a
large set of samples without annotations, and learns a
final model by mixing both sets of samples.



o Self-supervised learning is a form of unsupervised learn-
ing in which the data provides supervisory signals when
learning a representation via a proxy task. Annotated
data is used to fine-tune the representation once it has
been learned. Some self-supervised approaches adopted
as feature extractors include contrastive predictive coding
(CPC) [63]], texture auto encoder (Deep Ten) [64], and
variational autoencoders (VAE) [65]].

B. Graph neural networks models

Following graph building, the entity graph is processed
using a graph-based deep learning model that works with
graph-structured data to perform analysis.

GCNs can be broadly categorised as spectral-based [[66]],
[67] and spatial-based [|68]]. Spectral-based GCNs use spectral
convolutional neural networks, that build upon the graph
Fourier transform and the normalized Laplacian matrix of
the graph. Spatial-based GCNs define a graph convolution
operation based on spatial relationships that exist among graph
nodes.

Graph convolutional networks, similar to CNNs, learn ab-
stract feature representations for each feature at a node via
message passing, in which nodes successively aggregate fea-
ture vectors from their neighborhood to compute a new feature
vector at the next hidden layer in the network.

A basic GNN consists of two components: The AGGRE-
GATE operation can aggregate neighboring node representa-
tions of the center node, whereas the COMBINE operation
combines the neighborhood node representation with the cen-
ter node representation to generate the updated center node
representation. The Aggregate and Combine at each [ — th
layer of the GNN can be defined as follows:

h{) = AGGREGATE® ({hl !, vu e N,}), (1)

where hg\t/) is the aggregated node feature of the neighbour-

hood, hl- Iis the node feature in neighbourhood N (+) of node
v.

p? = COMBINE® (ni1, () ) = oW - [ i ), ()

where hq(,t) is the node representation at the [ — th iteration.
hgo) = x, where x, is the initial feature vector for the node,
o denotes the logistic sigmoid function, and || denotes vector
concatenation.

With the network structure and node content information
as inputs, the outputs of GNNs can focus on various graph
analytic tasks using one of the processes listed below:

e Node-level prediction: A GNN operating at the node-level
computes values for each node in the graph and is thus
useful for node classification and regression purposes. In
node classification, the task is to predict the node label
for every node in a graph. To compute the node-level
predictions, the node embedding is input to a Multi-Layer
Perceptron (MLP) (See Fig. ).

o Graph-level prediction: Refers to GNNs that predict a
single value for an entire graph. This is mostly used to
classify entire graphs, or compute similarities between
graphs. To compute graph-level predictions, the same
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Fig. 4: Representation of graph architectures for node-level
classification. Recreated from [11]].

node embedding used in node-level prediction is input
to a pooling process followed by a separate MLP (See
Fig. ).

In the following subsections, we describe in more detail
the GNN architectures considered in digital pathology analysis
methods. Different GNN variants employ different aggregators
to acquire information from each node’s neighbors, as well
as different techniques to update the nodes’ hidden states. In
GNNgs, the number of parameters is dependent on the number
of node and edge features, as their aggregation is learned.

1) ChebNet: The convolution operation for spectral-based
GCNs is defined in the Fourier domain by determining the
eigen decomposition of the graph Laplacian [69]. The normal-
ized graph Laplacian is defined as L = Iy — D~ '/2AD~1/2 =
UAUT (D is the degree matrix and A is the adjacency matrix
of the graph), where the columns of U are the matrix of
eigenvectors and A is a diagonal matrix of its eigenvalues.
The operation can be defined as the multiplication of a signal
x € RY (a scalar for each node) with a filter go = diag(6),
parameterized by 0 € RY,

goxx=Ugs(AM)U . 3)

Defferrard et al. [66] proposed a Chebyshev spectral CNN
(ChebNet), which approximates the spectral filters by trun-
cated Chebyshev polynomials, avoiding the calculation of the
eigenvectors of the Laplacian matrix, and thus reducing the
computational cost. A Chebyshev polynomial 7, (z) of order
m evaluated at L is used. Thus the operation is defined as,

M—-1 ~
goxx~ Y OpTn(L), €
m=0

where L is a diagonal matrix of scaled eigenvalues defined as
L= 2L/ xma—IN. Amax denotes the largest eigenvalue of L. The
Chebyshev polynomials are defined as T, (z) = 22T —1(z) —
Ti—o(x) with To(x) =1 and Ty (z) = .

2) GCN: A GCN is a spectral-based GNN with mean
pooling aggregation. Kipf and Welling [|67]] presented the GCN
using a localized first-order approximation of ChebNet. It
limits the layer-wise convolution filter to ' = 1 and uses a
further approximation of A = 2, to avoid overfitting and limit
the number of parameters. Thus, Equation ] can be simplified
to,

goxx ~ Oy +0,2(L—Iy)z = 0yz+0, D~ 2AD~ 2. (5)



Here, 0, 0; are two unconstrained variables. A GCN further
assumes that § = 6, = —6,, leading to the following definition
of a graph convolution:

goxx~0(Iy+DV2AD™YV2)g (6)

The definition to a signal X € RV*¢ with C input channels
and F' filters for feature maps is generalized as follows,

Z =D"'?2AD"Y?Xe0, (7

where © € RE*F is the matrix formed by the filter bank
parameters, and Z € RV*F is the signal matrix obtained by
convolution. From a spatial-based perspective, Equation [/| is
reformulated in [[70] as a message passing layer which updates
the node’s representation =¥ as follows:

k

JeNz(:uZ VIN(T IIN (8)

xéﬂrl _ O'(kaerl),

k+1

where mF is the output of a message passing iteration, | N (.J)]
and |N (i )| denote the node degree of node j and i respectively,
W* denotes a layer-specific trainable weight matrix and o is
a non-linearity function.

3) GraphSAGE: GraphSAGE is a spatial-GCN which uses
a node embedding with max-pooling aggregation. Hamilton et
al. [|68]] offer an extension of GCNs for inductive unsupervised
representation learning with trainable aggregation functions
instead of simple convolutions applied to neighborhoods as
in a GCN. The authors propose a batch-training algorithm for
GCNs to save memory at the cost of sacrificing time efficiency.
In [68] three aggregating functions are proposed: the element-
wise mean, an LSTM, and max-pooling. The mean aggregator
is an approximation of the convolutional operation from the
transductive GCN framework [67]. An LSTM is adapted to
operate on an unordered set by permuting the neighbors of
the node. In the pooling aggregator, each neighbor’s hidden
state is fed through a fully-connected layer, and then a max-
pooling operation is applied to the set of the node’s neighbors.
These aggregator functions are denoted as,

Wy, = max{c(Wpoothl, ' + bpool), Vu € Ny}, (9)

where M, is the neighborhood set of node v, Whool and bpool
are the parameters to be learned, and max{-} is the element-
wise maximum. Hence, following the message passing for-
mulation in Equation [8] the node representation is updated
according to,

mit = MEAN e n@yui(ah),

A= o)

4) GAT: Inspired by the self-attention mechanism [71],
graph attention networks (GAT) [[72]] incorporate the attention
mechanism into the propagation steps by modifying the con-
volution operation. GAT is a spatial-GCN model that incorpo-
rates masked self-attention layers into graph convolutions and
uses a neural network architecture to learn neighbor-specific
weights. Veli¢kovi¢ et al. [[72] constructed a graph attention
network by stacking a single graph attention layer, a, which is
a single-layer feed-forward neural network, parametrized by a

(10)

)

weight vector @ € R2F". The layer computes the coefficients
in the attention mechanisms of the node pair (i, j) by,

exp(LeakyReLu(@” [Wh; | Wh;]))
ZkeN v exp(LeakyReLu(a” [Wh I th]))

where || represents the concatenation operation. The at-
tention layer takes as input a set of node features h =
{hl,h;,...,h;v},i;i € RF, where N is the number of
nodes of the input graph and F' the number of features for
eacl} nogle, and /pI‘Odl/J.CCS a new set of node features h =
{hz ,h; s h;v 1 i;z € RF as its output. To generate higher-
level features, as an initial step a shared linear transformation,
parametrized by a weight matrix W € RF'*F  is applied to
every node and subsequently a masked attention mechanism
is applied to every node, resulting in the following scores,

ei; = a(Whi, Wh;),

(an

@5 =

12)

that indicates the importance of node j/s features to node
1. The final output feature of each node can be obtained by
applying a non-linearity, o

h; = O‘( Z OéijWhj).
JEN;

13)

The layer also uses multi-head attention to stabilise the
learning process. K different attention heads are applied to
compute mutually independent features in parallel, and then
their features are concatenated.

The attention coefficients are used to update the node
representation according to the following message passing
formulation,

mE = 3

JEN()
k+1 _ ¢k 117k, k k+1
T = o(ap ;Whai + mi™),

5) GIN: The graph isomorphism network (GIN) [73] is
a spatial-GCN that aggregates neighborhood information by
summing the representations of neighboring nodes. Isomor-
phism graph-based models are designed to interpret graphs
with different nodes and edges. The representation of node @
itself is then updated using a MLP,

>k

JEN(i)
= F((14e€) -z +mih),

af,jka;?,
(14)

k+1

5)
i+

where F' is the MLP and e is either a learnable parameter or
fixed. GIN’s aggregation and readout functions are injective,
and thus are designed to achieve maximum discriminative
power [73]].

6) Other GNN architectures in histopathology: Other GNN
architectures considered for entity-graph evaluation in digital
pathology that were proposed by the surveyed works include:

e Edge graph neural network (EGNN) [38], [74]]: Edge
features are included when leveraging the graph structure
in the network.

e Robust spatial filtering (RSF) [28], [30], [75]: These
spatial-based models are more flexible when dealing with
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Fig. 5: Representation of graph models for graph-level classi-
fication. Recreated from [11]].

heterogenous graphs as the graph inputs can be easily
incorporated into the aggregation function.

o Adaptive GraphSAGE [27], [39]: Graph networks with
the ability to more effectively learn the embedding feature
between nodes, by using a learnable pattern to adaptively
aggregate multi-level embedding features for each node.
3

o Jumping Knowledge Network (JK-Net) Xu et al. [76]
proposed the Jumping Knowledge (JK) approach to adap-
tively leverage, for each node, different neighborhood
ranges to better represent feature.

o Feature-enhanced spatial-GCN (FENet) [41]], [[73]]: This
model is proposed to analyse non-isomorphic graphs,
distinct from isomorphic graphs which strictly share
the same adjacency neighborhood matrix. The feature-
enhance mechanism adaptively selects the node repre-
sentation from different graph convolution layers. The
model adopts sum-pooling to capture the full structural
information of the entire graph representation.

o Multi-scale graph wavelet neural network (MS-GWNN)
[29]], [77]: This spectral model leverages the localiza-
tion property of graph wavelets to perform multi-scale
analysis with a variety of scaling parameters in parallel,
offering high efficiency and good interpretability for
graph convolution.

C. Graph pooling

Different graph pooling strategies have been developed
to minimise the graph size in order to learn hierarchical
features for improved graph-level classification, and reduce
computational complexity.

a) Global pooling: The most fundamental type of signal
pooling on a graph is global pooling. It is also referred to
as a readout layer in the literature. Similar to CNNs, mean,
max, and sum functions are often utilized as basic pooling
methods. Other approaches, instead of employing these simple
aggregators, transform the vertex representation to a permu-
tation invariant graph-level representation or embedding. In
particular, Li et al. [78|] proposed a global attention pooling
system that uses a soft attention mechanism to determine
which nodes are relevant to the present graph-level task and
returns the pooled feature vector from all nodes.

b) Hierarchical pooling: A graph pooling layer in the
GCN pools information from multiple vertices to one vertex,
to reduce graph size and expand the receptive field of the graph
filters. Many graph classification methods use hierarchical
pooling in conjunction with a final global pooling or readout
layer to represent the graph as illustrated in Fig. [5] Below we
outline the most common hierarchical pooling techniques used
in digital pathology.

e DiffPool: Ying et al. [[79] introduced the differentiable
graph pooling operator (DiffPool) which uses another
graph convolution layer to generate the assignment matrix
for each node (i.e. DiffPool does not simply cluster the
nodes in a graph, but learns a cluster assignment matrix).

e SAGPool The self-attention graph pooling (SAGPool)
introduced by Lee et al. [80] is a hierarchical pooling
method that performs local pooling operations over node
embeddings in a graph. The pooling module considers
both node features and graph topology and learns to pool
features via a self-attention mechanism, which can reduce
computational complexity.

D. Graph interpretations

Graph representations embed biological entities and their
interactions, but their explainability for digital pathology is
less explored. While cells and their spatial interactions are
visible in great detail, identifying relevant visual features is
difficult. To undertake due diligence on model outputs and
improve understanding of disease mechanisms and therapies,
the medical community requires interpretable models.

The two most popular types of interpretation methodologies
are model-based and post-hoc interpretability. The former
constrains the model so that it can quickly deliver meaningful
details about the relationships that have been discovered (such
as sparsity, modularity, etc). Here, internal model information
such as weights or structural information can be accessed and
used to infer group-level patterns across training instances. The
latter seeks to extract information about the learnt relationships
in the model. These post-hoc methods are typically used to
analyze individual feature input and output pairs, limiting their
explainability to the individual sample level.

1) Attention mechanisms: Graph-structured data can be
both massive and noisy, and not all portions of the graph
are equally important. As such, attention mechanisms can
direct a network to focus on the most relevant parts of the
input, suppressing uninformative features, reducing compu-
tational cost and enhancing accuracy. A gate-based attention
mechanism [81] controls, for example, the expressiveness of
each feature. Attention has also been used as an explanation
technique where the attention weights highlight the nodes and
edges in their relative order of importance, and can be used for
discovering the underlying dependencies that have been learnt.
The activation map and gradient sensitivity of GAT models are
used to interpret the salient input features at both the group
and individual levels.

In a graph model with attention, selected layers of the graph
are connected to an attention layer, and all attention layers
are jointly trained with the network. A traditional attention
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mechanism that can be learned by gradient-based methods [|82]]
can be formulated as,
us = tanh(Why + b),
exp(uf Uuw)

25— exp(uf )

St = g aghy,
t

where h; is the output of a layer; and W, u, and b are
trainable weights and bias. The importance of each element
in h; is measured by estimating the similarity between u; and
h;, which is randomly initialized. o, is a softmax function.
The scores are multiplied by the hidden states to calculate the
weighted combination, s; (the attention-weighted final output).

2) Graph explainers: Several post-hoc feature attribution
graph explainers have been presented in the literature in-
cluding excitation backpropagation [83], a node pruning-
based explainer (GNNExplainer) [|84f], gradient-based explain-
ers (GraphGrad-CAM [85] and GraphGrad-CAM++ [86]), a
layerwise relevance propagation explainer (GraphLRP) [87],
[88], and deep graph mapper [89].

oy =

(16)

III. APPLICATIONS OF GRAPH DEEP LEARNING
IN DIGITAL PATHOLOGY

The case studies presented in this section are organised
according to the methodology adopted for the graph represen-
tation and the clinical application. The graph model, training
paradigm, and datasets used in all applications are detailed
in Table [[I] Rather than providing an exhaustive review of the
literature, we present prominent highlights concerning the pre-
processing, graph construction and graph models adopted, and
their benefits in addressing various pathology tasks.

With the development of TMAs and WSI scanning tech-
niques, as well as access to massive digital datasets of tissue
images, deep learning methods for tumor localization, survival
prediction and cancer recurrence prediction have made sub-
stantial progress [104]]. Both the spatial arrangement of cells of
various types (macro features), and the details of specific cells
(micro features) are important for detecting and characterizing
cancers. Thus, a valuable representation of histopathology data
must capture micro features and macro spatial relationships.
Graphs are powerful representational data structures, and have
attracted significant attention in analysis of histopathological
images [105] due to their ability to represent tissue architec-
tures. The paradigm change from pixel-based to entity-based

research has the potential to improve deep learning techniques’
interpretability in digital pathology, which is relevant for
diagnostics.

A. Cell-graph representation

Most of these works follow a similar framework where a
cell-graphs is introduced using cells as the entities to capture
the cell micro-environment. The image is converted into a
graph representation with the locations of identified cells
serving as graph vertices and edges constructed depending on
spatial distance. Cell-level features are extracted as the initial
node embedding. The cell-graph is fed to a GCN to perform
image-wise classification.

1) Breast cancer: Breast cancer is the most commonly
diagnosed cancer and registers the highest number of can-
cer deaths among women. A majority of breast lesions are
diagnosed along a spectrum of cancer classes that ranges
from benign to invasive. Cancer diagnosis and the detection
of breast cancer is one of the most common applications of
machine learning and computer vision within digital pathology
analysis. CNNs have been used for various digital pathology
tasks in breast cancer diagnosis such as nucleus segmentation
and classification, and tumor detection and staging. However,
these patch-wise approaches do not explicitly capture the inter-
nuclear relationships and limit access to global information.

Anand et al. [28]] proposed the use of GCNs to classify
WSIs represented by graphs of their constituent cells. Micro-
level features (nuclear morphology) were incorporated as ver-
tex features using local image descriptors, while macro-level
features (gland formation) were included as edge attributes
based on a mapping of Euclidean distances between nearby
nuclei. The vertex features are represented by the average
RGB intensity, morphological features and learned features
extracted from a pre-trained CNN applied to a window around
the nuclei centroid. Finally, each tissue image is classified by
giving its cell-graph as an input to the GCN which is trained
in a supervised manner. The authors adopted a spatial GCN
known as robust spatial filtering (RSF) [75], which can take
heterogeneous graphs as input. This framework is depicted
in Fig. [ The authors demonstrate competitive performance
compared to conventional patch-based CNN approaches to
classify patients into cancerous or non-cancerous groups using
the Breast Cancer Histology Challenge (BACH) dataset [9]].

Sureka et al. [30] modeled histology tissue as a graph of
nuclei and employed the RSF with a GCN [75] with attention



TABLE II: Summary of applications and graphs models in computational pathology.

Authors Topic Application Entity-graph  GNN Model + Input; Training (Node detection/embeddings); Training (GNN model/pathology
Explainer task); Datasets; Additional remarks
Jaume et al. (2021) \ Classification Breast cancer CG GIN + Post-hoc WSI; Supervised; Supervised; BRACS (5 classes); Post-hoc explainers:
explainers GNNExplainer, GraphGrad-CAM, GraphGrad-CAM++, GraphLRP.
Jaume et al. (2020) [34] Classification Breast cancer CG GIN + CGExplainer ‘WSI; Supervised; Supervised; BRACS (5 classes); Customized cell-graph
H explainer based on GNNExplainer.
Sureka et al. (2020) |30 Classification Breast cancer / CG GCN, RSF + WSI, TMAs; Supervised; Supervised; Breast cancer: BACH IE] (2 classes), Prostate
Prostate cancer Attention/Node occlusion cancer: TM (2 classes); Gleason grade.
Anand et al. (2020) \ﬁ Classification Breast cancer CG GCN, RSF WSI; Supervised; Supervised; BACH @ (4 classes).
Studer et al. (2021) [38] Classification Colorectal cancer CG GCN, GraphSAGE, GAT, 'WSI; Supervised; Supervised; pT1-Gland Graph (2 classes); Graph-level output.
GIN, ENN, JK-Net Concatenation of global add, mean and max_pooling). Dysplasia of intestinal glands.
Zhou et al. (2019) | Classification Colorectal cancer CG Adaptive GraphSAGE, ‘WSI; Supervised; Supervised; CRC dataset (3 classes); Graph-level output.
JK-Net, Graph clustering Hierarchical representation of cells based on graph clustering method from DiffPool).
‘Wang et al. (2020) I15] Classification Prostate cancer CG GraphSAGE, SAGPool TMA; Self-supervised; Weakly-supervised; UZH prostate TMAs (2 classes);
ﬁ Graph-level output. Grade classification (low and high-risk).
Ozen et al. (2020) | ROI Retrieval Breast cancer PG GCN, DiffPool WSI; Supervised; Self-Supervised; Department of Pathology at Hacettepe University
(private) (4 classes); Histopathological image retrieval (slide-level and ROI-level).
Lu et al. (2020) | Classification Breast cancer TG GIN WSI; Supervised; Supervised; TCGA-BRCA (2 classes); Graph-level. Status of
(HER2, PR) Human epidermal growth factor receptor 2 (HER2) and Progesterone receptor (PR).
Aygiines et al. (2020) |26 Classification Breast cancer PG GCN ‘WSI; Supervised; Weakly-supervised; Department of Pathology at Hacettepe
University (private) (4 classes). ROI-level classification.
Ye et al. (2019) Classification Breast cancer PG GCN WSI; Supervised; Supervised; BACH [EI (4 classes); Graph construction based on the
ROI segmentation map.
Zhao et al. (2020 Classification Colorectal cancer PG ChebNet, SAGPool WSI; Self-Supervised; Weakly-supervised; TCGA-COAD (2 classes); Multiple
instance learning. Graph-level output.
Raju et al. (2020) Classification Colorectal cancer TG Adaptive GraphSage + WSI; Self-Supervised; Weakly-supervised; MCO (4 classes); Multiple instance
Attention learning. Cluster embedding (Siamese architecture); Tumor node metastasis staging.
Ding et al. (2020) Classification Colorectal cancer PG Spatial-GCN (FENet) WSI; Supervised; Supervised; TCGA-COAD and TCGA-READ (2 classes);
Genetic mutational prediction.
Adnan et al. (2020) Classification Lung cancer PG ChebNet, GraphSAGE + WSI; Supervised; Supervised; TCGA-LUSC (2 classes), MUSK1 ;
Global attention pooling Adjacency learning layer. Multiple instance learning.
Zheng et al. (2019) [44] Retrieval Lung cancer PG GNN, DiffPool WSI; Supervised; Similarity (Hamming distance); ACDC-LungHP ; Hashing
(GNN-Hash) methods and binary encoding. Histopathological image retrieval.
Li et al. (2018) [45 Classification Lung cancer PG ChebNet + Attention WSI; Self-Supervised; Supervised; TCGA-LUSC (2 classes), NLST 2
classes); Survival prediction.
Wu et al. (2019) 4 Classification Skin cancer PG GCN WSI; Supervised; Weakly- and Semi-supervised; BCC data collected from 2 different
hospitals (private) (4 classes).
Anklin et al. (2021) [42 Segmentation Prostate cancer TG GIN (SegGini) + TMA, WSI; Supervised; Weakly-supervised; UZH prostate TMAs (4 classes),
/ Classification GraphGrad-CAM SICAPvV2 (4 classes); Gleason grade, Post-hoc interpretability.
Pati et al. (2021) Classification Breast cancer CG, TG, HR  GIN-PNA (HACT-Net) + WSI; Supervised; Supervised; BRACS (7 classes), BACH E] (4 classes);
GraphGrad-CAM Cell-to-Tissue Hierarchies.
Pati et al. (2020) W Classification Breast cancer CG, TG, HR GIN (HACT-Net) WSI; Supervised; Supervised; BRACS (5 classes); Cell-to-Tissue Hierarchies.
Zhang and Li (2020) [29 Classification Breast cancer PG, HR MS-GWNN WSI; Supervised; Supervised; BACH (4 classes), BreakHis (2 classes);
Multi-scale graph feature learning (node-level and graph-level prediction).
Levy et al. (2021) |16 Regression Colorectal cancer / PG, HR GAT, TDA + Graph ‘WSI; Supervised; Supervised; Dartmouth Hitchcock Medical Center (private): colon
lymphoma Mapper (9 classes), lymph (4 classes); Hierarchical representation. Tumor invasion score and
staging.
Shi et al. (2020) [46 Classification Cervical cancer CCG Fusion CNN-GCN RGB; Supervised; Semi-supervised; SIPaKMed (5 classes), Motic 7
classes); Population analyis of isolated cell images.
Shi et al. (2019) Classification Cervical cancer CCG Fusion CNN-GCN RGB; Supervised; Supervised; STPaKMed (5 classes), Motic (7 classes);
Population analyis of isolated cell images.
Chen et al. (2020 Classification Renal Cancer CG GraphSAGE, SAGPool + Fusion: WSI+Genome; Self-Supervised; Self-Supervised; TCGA-GBMLGG,

Attention

TCGA-KIRC [@; Survival outcome, Integrated gradient method.

Graph representation: Cell-Graph (CG); Patch-Graph (PG); Tissue-Graph (TG); Hierarchical Representation (HR); Cluster-Centroids-Graph (CCG)

mechanisms and node occlusion to highlight the relative cell
contributions in the image, which fits the mental model used
by pathologists. In the first approach, the authors occluded
nuclei clusters to assess the drop in the probability of the
correct class, while also including a method based on [[106]
to learn enhanced vertex and edge features. In a second
approach, an attention layer is introduced before the first
pooling operation for visualization of important nuclei for the
binary classification of breast cancer on the BACH dataset and
Gleason grade classification on a prostate cancer dataset.

Several explainers have been applied in digital pathology,
inspired by explainability techniques for CNN model pre-
dictions on images. However, pixel-level explanations fail to
encode tumor macro-environment information, and result in
ill-defined visual heatmaps of important locations as illustrated
in Fig. [7] Thus, graph representations are relevant for both
diagnostics and interpretation. Generating intuitive explana-
tions for pathologists is critical to quantify the quality of
the explanation. To address this, Jaume et al. []3;3'[] introduced
a framework using entity-based graph analysis to provide
pathologically-understandable concepts (i.e. to make the graph
decisions understandable to pathologists). The authors pro-

Importance scale

Fig. 7: For a ductal carcinoma, examples of explanations given
by graph-based (Left) and pixel-based (Right) explainability
algorithms. Recreated from [33].

posed a set of quantitative metrics based on pathologically
measurable cellular properties to characterize explainability
techniques in cell-graph representations for breast cancer sub-
typing.

In [33]], the authors first transform the histology image
into a cell-graph, and a GIN model is used to map the
corresponding class level. Then, a post-hoc graph explainer
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Fig. 8: Cell-graph explainer (CGExplainer): a customized post-
hoc graph explainer based on graph pruning optimization.
Recreated from [34].

generates an explanation per entity graph. Finally, the proposed
metrics are used to assess explanation quality in identifying the
nuclei driving the prediction (nuclei importance maps). Four
graph explainers were considered in this analysis: GNNEx-
plainer [84], GraphGrad-CAM [85]], GraphGrad-CAM++ [86]],
and GraphLRP [87]. The results on the Breast Carcinoma
Subtyping (BRACS) dataset [17] confirm that GraphGrad-
CAM-++ produces the best overall agreement with patholo-
gists. The proposed metrics, which include domain-specific
user-understandable terminology, could be useful for quanti-
tative evaluation of graph explainability.

Jaume et al. [34] focused on the analysis of cells and cellular
interactions in breast cancer sub-typing classification, and
introduced an instance-level post-hoc graph-pruning explainer
to identify decisive cells and interactions from the input graph
in the BRACS dataset [[17]. To create the cell-graph, nuclei
are detected with segmentation algorithms and hand-crafted
features including shape, texture and color attributes are ex-
tracted to represent each nucleus. The cell-graph topology uses
the KNN algorithm and is based on the assumption that that
spatially close cells encode biological relationships and, as a
result, should create an edge. The cell-graph is processed by a
GIN model, followed by a MLP to predict the cancer stages.

Jaume et al. [34] designed a cell-graph explainer (CGEx-
plainer), based on the GNNExplainer, to remove redundant
and uninformative graph components, and the resulting sub-
graph will be responsible for class-specific patterns that will
aid disease comprehension. This module aims to learn a mask
at the node-level that activates or deactivates parts of the
graph. Fig. [§] provides an overview of the explainer module.
The proposed explainer was shown to prune a substantial
percentage of nodes and edges to extract valuable information
while retaining prediction accuracy (e.g. the explanations
retain relevant tumor epithelial nuclei for cancer diagnosis).

2) Colorectal cancer: Colorectal cancer (CRC) grading
is a critical task since it plays a key role in determining
the appropriate follow-up treatment, and is also indicative of
overall patient outcome. The grade of a cancer is determined,

for example, by assessing the degree of glandular formation
in the tumour. Nevertheless, automatic CNN-based methods
for grading CRC typically use image patches which fail to
include information on the micro-architecture of the entire
tissue sample, and do not capture correspondence between the
tissue morphology and glandular structure. To model nuclear
features along with their cellular interactions, Zhou et al. [|39]]
proposed a cell-graph model for grading CRC, in which each
node is represented by a nucleus within the original image,
and cellular interactions are captured as graph edges based
on node similarity. A nuclear instance segmentation model
is used to detect the nucleus and to extract accurate node
features including nucleus shape and appearance features.
Spatial features such as centroid coordinates, nuclei intensity
and dissimilarity extracted from the grey level co-occurrence
matrix were used as descriptors for predicting the grade of
cancer. To reduce the number of nodes and edges based on
the relative inter-node distance, an additional sampling strategy
was used.

To conduct the graph-level classification, the authors in [|39]]
proposed the Adaptive GraphSAGE model, which is inspired
by GraphSAGE [68] and JK-Net [76], to obtain multi-level
features (i.e. capturing the gland structure at various scales).
To achieve multi-scale feature fusion, Adaptive GraphSAGE
employs an attention technique which allows the network to
adaptively generate an effective node representation.

A graph clustering operation, which can be considered as
an extension of DiffPool [[79], is used to group cells according
to their appearance and tissue type, and to extract more
abstract features for hierarchical representation. However,
since the tissue hierarchy is inaccessible via this approach,
the representation does not include high-level tissue features.
Based on the degree of gland differentiation, the graph model
categorises each image as normal, low-grade, or high-grade.
In comparison with a traditional CNN, the proposed model
achieves better accuracy by incorporating both nuclear and
graph-level features.

Dysplasia of intestinal glands is especially important in
pT1 colorectal cancer, the earliest stage of invasive colorectal
cancer. Studer et al. [91] introduced the pT1 Gland graph (pT1-
GG) dataset that consists of cell-graphs of healthy and dys-
plastic intestinal glands. In this work, the authors established
a baseline for gland classification using labelled cell-graphs
and the graph edit distance (GED), which is an error-tolerant
measurement of similarity between two graphs. This technique
is an improved version of the bipartite graph-matching method
(BP2) [107] combined with a KNN algorithm to perform
classification.

Later, the same authors investigated different graph-based
architectures [38] to classify healthy gland tissue and dysplas-
tic glandular areas on the pT1-GG dataset. The GNN archi-
tectures evaluated for cell-graph classification are GCN [67],
GraphSAGE [68]], GAT [72], GIN [73]], EGNN [74] and a 1-
dimensional GNN [108]]. All models are trained using three
graph convolution layers where GraphSAGE and GCN are
also trained with jumping knowledge (JK) [76] to allow for
an adaptive neighborhood range by aggregating representa-
tions across different layers. A concatenation of global sum-
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pooling, global mean-pooling and global max-pooling is used
to get the graph-level output, followed by a MLP to classify
an input graph. The results demonstrated that graph-based
deep learning methods outperformed classical graph-based and
CNN-based methods. It should be emphasised, however, that
each node is only linked to its two spatially closest neighbors,
resulting in very restricted information sharing during message
passing.

3) Prostate cancer: The commonly used Gleason score,
which is based on the architectural pattern of tumor tissues
and the distribution of glands, determines the aggressiveness
of prostate cancer. CNNs have been used for histology image
classification including Gleason score assignment, but CNNs
are unable to capture the dense spatial relationships between
cells and require detailed pixel level annotations for training.

To analyse the spatial distribution of the glands in prostate
TMAs, Wang et al. [15] proposed a weakly-supervised ap-
proach for grade classification and to stratify low and high-risk
cases (Gleason score < 6 is normal tissue; Gleason score > 6
is abnormal tissue or high-risk). The authors segmented the
nuclei and construct a cell-graph for each image with nuclei as
the nodes, and the distance between neighboring nuclei as the
edges, as illustrated in Fig. [0] Using prostate TMAs with only
image-level labels rather than pixel-level labels, a GCN is used
to identify high-risk patients via a self-supervised technique
known as contrastive predictive coding (CPC) [63]]. Features
for each node are generated by extracting morphological (area,
roundness) and texture features (dissimilarity, homogeneity)
as well as features from CPC-based learning. A GraphSAGE
convolution and a self-attention graph pooling (SAGPool) [|80]]
are applied to the graph representation to learn from the
global distribution of cell nuclei, cell morphology and spatial
features. The proposed method can calculate attention scores,
focus on the more significant node attributes, and aggregate
information at different levels.

B. Patch-graphs and Tissue-graphs representations

The majority of the following works transform pathological
images into patch-graphs, where nodes are important patches,
and edges encode the intrinsic relationships between these
patches. These patches are sampled using methods such as
color-based, cell density or attention mechanisms. Then, CNNs
are used to extract features from these patches to generate a
feature vector for the node embedding of the graph repre-
sentation. Given the constructed graph, a graph deep learning

model is used to conduct node or graph classification. It is
important to make the distinction between tissue-graphs, which
are biologically-defined and capture relevant morphological
regions; while patch-graphs connect patches of interest, where
each patch can contain multiple biological entities, with each
other.

1) Breast cancer: Multi-class classification of arbitrarily
sized ROIs is an important problem that serves as a necessary
step in the diagnostic process for breast cancer. Aygiines
et al. [26] proposed to incorporate local context through
a graph-based ROI representation over a variable number
of patches (nodes) and their spatial proximity relationships
(edges). A CNN is used to extract a feature vector for each
node represented by fixed-sized patches of the ROI. Then,
to propagate information across patches and incorporate local
contextual information, two consecutive GCNs are used, which
also aggregate the patch representation to classify the whole
ROI into a diagnostic class. The classification is conducted
in a weakly-supervised manner over the patches and ROI-
level annotations, without having access to patch-level labels.
Results on a private data collected from the Department of
Pathology at Hacettepe University outperformed CNN-based
models that incorporated majority-voting, learned-fusion and
base-penultimate methods.

Some traditional CNN-based models have proposed to
jointly segment a ROI of an image and classify WSIs and that
enabled the classifier to better predict the image class [109].
Ye et al. [37] captured the topological structure of a ROI
image through a GCN where a graph is constructed with
segmentation masks of image patches that contain high levels
of semantic information. The segmentation mask for each
image patch is obtained using an encoder-decoder semantic
segmentation framework where each pixel is classified as one
of the four classes of tissue samples (normal, benign, in
situ, and invasive) of the BACH [9] dataset. The combined
segmentation masks of the image patches yield the total ROI
segmentation mask. The area ratio of each lesion is calculated
as the value of the unit node in each picture patch. Then, a
graph is constructed to capture the spatial dependencies using
the features of the image patch segmentation masks. Finally,
the ROI image is classified based on the features learned by
the GCNss.

One limitation of previous works is that they construct
graphs using small patches of the WSI. Lu et al. [36] over-
come this challenge by introducing a pipeline to construct a
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graph from the entire WSI using the nuclei level information,
including geometry and cellular organization in tissue slides
(termed the histology landscape). After building the graph, the
authors used a GIN model to predict the positive or negative
human epidermal growth factor receptor 2 (HER2), and the
progesterone receptor (PR), which are two valuable biomarkers
for breast cancer prognosis.

The proposed method in [36]] consists of four steps as
illustrated in Fig. @[ This work first used Hover-Net [50] to
simultaneously segment and classify the individual nuclei and
extract their features. Then, agglomerative clustering [56] is
used to group spatially neighboring nuclei into clusters which
results in reduced computational cost for downstream analysis.
Using these clusters, a graph is generated by assigning the
tissue clusters to nodes and the edges of the graph encode the
cellular topology of the WSI. Lastly, the graph generated from
the entire WSI is used as an input to a GCN to predict HER2
or PR status at the WSI-level. The performance of this method
is evaluated on the hematoxylin and eosin (H&E) stained WSI
images from the TCGA-BRCA [94] dataset, which consist
of 608 HER2 negative and 101 HER2 positive, and 452 PR
positive and 256 PR negative samples.

Content-based histopathological image retrieval has also
been investigated for decision support in digital pathology.
This system scans a pre-existing WSI database for regions
that the pathologist is interested in and returns related regions
to the pathologists for comparison. These methods can provide
valuable information including diagnosis reports from experts
for similar regions. Retrieval methods can also be used for
classification by considering the most likely diagnosis [110].
However the amount of manually labelled training data limits
their power. Ozen et al. [35] suggested a generic method that
combines GNNs with a self-supervised training method that
employs a contrastive loss function without requiring labeled
data. In this framework, fixed-size patches and their spatial
proximity relations are represented by undirected graphs. The
simple framework for constrastive learning of visual represen-
tation (SimCLR) [111] is adopted for learning representations
of ROIs. Using the contrastive loss, the GNN encoder and
MLP projection head are trained to maximise the agreement
between the representations. A GCN followed by a DiffPool
operation is selected as the model configuration.

For content-based retrieval tasks, this GNN is trained in a
self-supervised setting and is used to extract ROI represen-
tations where the Euclidean distance between the extracted
representations is used to determine how similar two ROIs are.
Quantitative results demonstrated that contrastive learning can
improve the quality of learned representations, and despite not
utilizing class labels could outperforming supervised classifi-
cation methods.

2) Colorectal cancer: Although CNN-based approaches
have practical merits when identifying important patches for
predicting CRC, they do not take into account the spatial rela-
tionships between patches, which is important for determining
the stage of the tumor. The size and the relative location of the
tumor in relation to other tissue partitions are used for tumor
node metastasis staging estimation. Furthermore, traditional
approaches require the presence of expert pathologists to anno-
tate each WSI. Weakly-supervised learning is an important and
potentially viable solution to dealing with sparse annotations
in medical imagery. Multiple instance learning (MIL) is well-
suited to histology slide classification, as it is designed to
operate on weakly-labeled data [4].

Raju et al. [27] considered the spatial relationship between
tumor and other tissue partitions with a graph attention multi-
instance learning framework to predict colorectal tumor node
metastasis staging. Each graph with nodes representing differ-
ent tissues serves as an instance, and the multiple instances
for a WSI form a bag that aids in tumour stage prediction.

In [27]], given a WSI, a texture autoencoder [[64] is used to
encode the texture from random sample patches. Then a cluster
embedding network based on a Siamese architecture [112]]
is trained on a binary classification task to group similar
texture features into multiple graphs. Each WSI is divided
into multiple graphs and each graph has features from all
cluster labels. The authors used a tissue wise annotated CRC
dataset [[113] to assign cluster labels for similar image patches.
The authors consider the multiple graphs as multiple instances
in a bag which are used to predict the tumor staging using an
attention MIL method [114]]. The authors adopted an Adaptive
GraphSage [39] approach with learnable attention weights
to assign more importance to instances which contain more
information towards predicting the tumor stage. The authors
demonstrated that graph attention multi-instance learning can
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perform better than a GCN on the Molecular and Cellular
Oncology (MCO) [96] dataset.

Colorectal cancer lymph node metastasis (LNM) is a crucial
factor in patient management and prognosis, and its identifica-
tion suggests the need for dissection to avoid further spread.
Zhao et al. introduced a GCN-based multiple instance
learning method combined with a feature selection strategy
to predict LNM in the colon adenocarcinoma (COAD) cohort
of the Cancer Genome Atlas (TCGA) project [95]]. Following
the MIL approach, the training dataset is composed of bags
where each bag contains a set of instances. The goal of this
work is to teach a model to predict the bag label, where only
the bag-level label is available.

The overall framework has three major components:
instance-level feature extraction, instance-level feature selec-
tion, and bag-level classification, as illustrated in Fig. @ First,
non-overlapping patches are extracted from a WSI which is
represented as a bag of patches. Since instance labels are
unavailable, the authors introduced a combination of a vari-
ational autoencoder (VAE) and a generative adversarial
network (GAN) for fine-tunning the encoder component as an
instance-level feature extractor in a self-supervised manner. In
this VAE-GAN model, the architecture of the network for the
decoder of the VAE and generator of the GAN is the same
network. Then, a feature selection component is incorporated
to remove redundant and unhelpful features to alleviate the
workload when generating the bag representation. The maxi-
mum mean discrepancy is used to evaluate the feature impor-
tance. Finally, the authors employed ChebNet followed by
SAGPool to generate the bag representation and perform

the bag-level classification. The authors demonstrated that the
proposed model outperformed CNN-based and attention-based
MIL models.

Colon adenoma and carcinoma may occur as a result of
a series of histopathological changes due to key genetic
alterations. Thus, the ability to predict genetic mutations is
important for the diagnosis of colon cancer. Ding et al.
proposed a feature-enhanced graph network (FENet) using a
spatial-GCNs, based on GIN, to predict gene mutations across
all three key mutational prediction tasks (APC, KRAS, and
TP53) that are associated with colon cancer evolution. In this
approach, multiple spatial graphs are created using randomly
selected image patches from each patient’s WSI.

The feature-enhanced mechanism aggregates features from
neighboring patches and combines them as the central node
representation to increase feature learning performance. The
authors introduced GlobalAddPooling as a READOUT func-
tion to convert the node representation into a graph represen-
tation. The prediction outcome for each sub-graph is classified
by fully-connected layers. Finally, an ensemble strategy com-
bines the prediction results of all sub-graphs to predict mutated
and non-mutated classes. Fig. illustrates the proposed
FENet networks. The authors demonstrated that the integration
of multiple sub-graph outcomes in the proposed model leads
to a significant improvement in prediction performance on the
Cancer Genome Atlas Colon Adenocarcinoma dataset [97],
outperforming graph-based baseline models such as ChebNet,
GraphSAGE and GAT.

3) Lung cancer: Lung adenocarcinoma and lung squamous
cell carcinoma are the most common subtypes of lung cancer,
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and distinguishing between them requires a visual examination
by an experienced pathologist. Efficient mining of survival-
related structural features on a WSI is a promising way
to improve survival analysis. Li et al. [45] introduced a
GCN-based survival prediction model that integrated local
patch features with global topological structures (patch-graph)
through spectral graph convolution operators (ChebNet) using
the TCGA-LUSC [98]] and NLST [100]] datasets. The model
utilized a survival-specific graph trained under supervision
using survival labels. A parallel graph attention mechanism
is used to learn attention node features to improve model
robustness by reducing the randomness of patch sampling
(i.e. an adaptive patch selection by learning the importance of
individual patches). This attention network is trained jointly
with the prediction network. The authors demonstrated that
topological features fine-tuned with survival-specific labels
outperformed CNN-based models.

Adnan et al. [43]] explored the application of GNNs for MIL.
The authors sampled important patches from a WSI and model
them as a fully-connected graph where the graph is converted
to a vector representation for classification. Each instance is
treated as a node of the graph in order to learn end-to-end
relationships between nodes. In this approach, a DenseNet is
used to extract features from all important patches sampled
from a segmented tissue using color thresholds [57]]. Then, an
adjacency learning layer which uses global information about
the patches is adopted to define the connections within nodes
in an end-to-end manner. The adjacency matrix is calculated by
an adjacency learning block using a series of dense layers and
cross-correlation. The constructed graph is passed through two
types of graph models (ChebNet and GraphSAGE), followed
by a graph pooling layer to get a single feature vector to
compare the discrimination of sub-types of lung cancer on
the TCGA [98] and MUSKI1 [99] datasets. With the adopted
global attention pooling [78|] which uses a soft attention
mechanism, it is possible to visualise the importance that the
network places on each patch when making the prediction.

The pooled representation is fed to two fully connected dense
layers to achieve the final classification between lung adeno-
carcinoma and lung squamous cell carcinoma. The proposed
model outperformed CNN-based models that use attention-
MIL.

As discussed previously, content-based image retrieval seeks
to find images that have morphological characteristics that
are most similar to a query image. Binary encoding and
hashing techniques have been successfully adopted to speed
up the retrieval process in order to satisfy efficiency require-
ments [[115]]. However, WSI are commonly divided into small
patches to index WSIs for region-level retrieval. This process
does not consider the contextual information from a broad
region surrounding the nuclei and the adjacency relationships
that exist for different types of biopsy.

Zheng et al. [44] proposed a retrieval framework for a
large-scale WSI database based on GNNs and hashing, which
is illustrated in Fig. [I3] Patch-graphs are first built in an
offline stage based on patch spatial adjacency, and feature
similarity extracted with a pre-trained CNN. Then, the patch-
graphs are processed by a GNN-Hash model designed to use
a graph encoding, and stored in the retrieval database. The
GNN-Hash structure was created by stacking GNN modules
and a DiffPool module [[79]]. The output of the hierarchical
GNN-Hash is modified with a binary encoding layer in the
final graph embedding layer. Finally, the relevant regions
are retrieved and returned to pathologists after the region
the pathologist queries is converted to a binary code. The
similarities between the query code and those in the database
are measured using Hamming distance. Experiments to es-
timate the adjacency relationships between local regions in
WSIs and the similarities with query regions were conducted
using the lung cancer ACDC-LungHP [98]] dataset. The results
demonstrated that the proposed retrieval model is scalable to
different query region sizes and shapes, and returns tissue
samples with similar content and structure.
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4) Skin cancer: One of the most common types of skin
cancer is basal cell carcinoma (BCC) which can look similar to
open sores, red patches and shiny bumps. Several studies have
demonstrated the ability to identify BCC from pathological
images. Wu et al. [47] introduced a model that predicted
BCC on WSI using a weakly- and semi-supervised formulation
by combining prior knowledge from expert observations, and
structural information between patches into a graph-based
model. A sample of this prior knowledge is the fact that a
dense patch with predictive cancer cells is more likely to have
a cluster of cancer cells, and more patches with high cancer
likelihoods increase the overall likelihood of an image being
positive.

The framework consists of two modules, a GCN that prop-
agates supervisory information over patches to learn patch-
aware interpretabililty in the form of a probability score; and
an aggregation function that connects patch-level and image-
level predictions using prior knowledge. The proposed model
makes full use of different levels of supervision, using a mix
of weak supervision from image-level labels and available
pixel-wise segmentation labels as a semi-supervised signal.
By incorporating prior knowledge and structure information,
both image-level classification and patch-level interpretation
are significantly improved.

5) Prostate cancer: Pathologists must go above and be-
yond normal clinical demands and norms when precisely
annotating image data. As a result, a semantic segmentation
method should be able to learn from inexact, coarse, and
image-level annotations without complex task-specific post-
processing steps. To this end, Anklin et al. [42] proposed a
weakly-supervised semantic segmentation method based on
graphs (SegGini) that incorporates both local and global inter-
tissue-region relations to perform contextualized segmentation
using inexact and incomplete labels. The model is evaluated
on the UZH (TMAs) [93] and SICAPv2 (WSI) [101] prostate
cancer datasets for Gleason pattern segmentation and Gleason
grade classification. Fig. depicts the proposed SegGini
methodology. A tissue-graph representation for an input histol-
ogy image is constructed as proposed in [[17], where the graph

nodes depict tissue superpixels. As the rectangular patches can
span multiple distinct structures, superpixels are used [[59]. To
characterize the nodes, morphological and spatial features are
extracted, and the graph topology is computed with a region
adjacency graph (RAG) [62]], using the spatial connectivity of
superpixels.

Given a tissue graph, a GIN model learns contextualized
features from the tissue microenvironment and inter-tissue
interactions to perform semantic segmentation, where the
proposed SegGini model assigns a class label to each node.
The resulting node features are processed by a graph-head
(image label), a node-head (node label), or both, based on
the type of weak supervision. The graph-head consists of a
graph classification and a feature attribution technique. The
authors employed GraphGrad-CAM to measure importance
scores towards the classification of each class, where the node
attribution maps determine the node labels. Further, the authors
in [42] found that the node-head simplifies image segmentation
into classifying nodes where the node labels are extracted
by assigning the most prevalent class within each node. For
inexact image label and incomplete scribbles, both heads are
jointly trained to improve the individual classification tasks.
The outcomes of the heads are used to segment Gleason
patterns. Finally, to identify image-level Gleason grades from
the segmentation map, a classification approach [90] is used.
SegGini outperforms prior models such as HistoSegNet [[116]
in terms of per-class and average segmentation, as well as
classification metrics. This model also provides comparable
segmentation performance for both inexact and complete su-
pervision; and can be applied to a variety of tissues, organs,
and histology tasks.

C. Hierarchical graph representation (macro and micro ar-
chitectures)

In previous approaches, pathological images have been rep-
resented by cell-graphs, patch-graphs or tissue-graphs. How-
ever, cellular or tissue interactions alone are insufficient to
fully represent pathological structures. A cell-graph incorpo-
rates only the cellular morphology and topology, and discards



tissue distribution information that is vital for appropriate
representation of histopathological structures. A tissue-graph
made up of a collection of tissue areas, on the other hand,
is unable to portray the cell microenvironment. Thus, to
learn the intrinsic characteristics of cancerous tissue it is
necessary to aggregate multilevel structural information, which
seeks to replicate the tissue diagnostic process followed by a
pathologist when analyzing images at different magnification
levels.

1) Breast cancer: Early detection of cancer can signifi-
cantly reduce the mortality rate of breast cancer, where it is
crucial to capture multi-scale contextual features in cancerous
tissue. Combinations of CNNs have been used to encode multi-
scale information in pathology images via multi-scale feature
fusion, where scale is often associated with spatial location.

Zhang and Li [29]] introduced a multi-scale graph wavelet
neural network (MS-GWNN) that uses graph wavelets with
different scaling parameters in parallel to obtain multilevel
tissue structural information in a graph topology. The graph
wavelet neural network (GWNN) [77] replaces the graph
convolution in a spectral GCN with the wavelet transform
which has an excellent localization capability. For breast
cancer classification, the authors first transformed pathological
images into graph structures where nodes are non-overlapping
patches. Then, node classification is performed via a GWNN at
different scales in parallel (node-level prediction). After that,
multi-level node representations are incorporated to perform
graph-level classification. The results and the visualization of
the learned node embeddings demonstrated the strong capacity
of the model to encode different structural information on two
public datasets: BACH [9] and BreakHis [[102]. However, this
approach is limited by the manual selection of the appropriate
scaling parameter.

A hierarchy defined from the cells with learned pool-
ing layers [39] does not include high-level tissue features
and approaches that concatenate cell-level and tissue-level
information [32] cannot leverage the hierarchy between the
levels of the tissue representation. To address these issues,
Pati et al. [17] proposed a hierarchical-cell-to-tissue (HACT)
representation that utilizes both nuclei and tissue distribution
properties for breast cancer subtype classification. The HACT
representation consists of a low-level cell-graph (CG) that
captures the cellular morphology and topology; a tissue-graph
(TG) at a high-level that captures the properties of the tissue
sections as well as their spatial distribution; and the hierarchy
between the cell-graph and the tissue-graph that captures the
cells’ relative distribution within the tissue.

Fig. [T3] illustrates samples of the CG, the TG and the
hierarchical cell-to-tissue representation. To construct a CG,
each node represents a cell and edges encode cellular inter-
actions, where for each nucleus hand-crafted features such as
shape, texture and spatial location are extracted. Then, a KNN
algorithm is adopted to build the initial topology based on the
assumption that a close cell should be connected and a distant
cell should remain disconnected. The Euclidean distances be-
tween nuclei centroids in the image space are used to quantify
cellular distances. The TG is constructed by first identifying
tissue regions (e.g., epithelium, stroma, lumen, necrosis) by

Fig. 15: Representation of a) CG, b) TG, and c¢) Hierarchical-
cell-to-tissue. Image adapted from [17].

detecting non-overlapping homogeneous superpixels of the
tissue and iteratively merging neighboring superpixels that
have similar colour attributes. The TG topology is generated
assuming that adjacent tissue parts should be connected by
constructing a region adjacency graph [62] with the spatial
centroids of the superpixels. The HACT representation, that
jointly represents the low-level (CG) and high-level (TG)
relationships, is processed with a hierarchical model (HACT-
Net) that employs two GIN models [73]]. The learned cell-node
embeddings are combined with the corresponding tissue-node
embeddings to predict the classes.

To demonstrate the hierarchical-learning, the authors in-
troduce the BRACS dataset to classify five breast cancer
subtypes: normal, benign, atypical, ductal carcinoma in situ,
and invasive. The authors also evaluate the generalizability
to unseen data by splitting the data at the WSI-level (two
images from the same slide do not belong to different splits)
different from previous approaches that split at the image-
level [15]], [39]. The enriched multi-level HACT representation
for classification outperformed CNN-based models and stan-
dalone cell-graph and tissue-graph models, confirming that for
better structure-function mapping, the link between low-level
and high-level information must be modelled at the local node
level rather than at the graph level.

Later, Pati et al. [31]] exploited hierarchical modeling for
interpretability in digital pathology, aiming to map the tis-
sue structure to tissue functionality. The authors adopt the
hierarchical entity-graph representation of a tissue which is
processed via a hierarchical GNN to learn the mapping from
tissue compositions to respective tissue categories. In this
work, Pati et al. [31] improved the HACT representation and
the HACT-Net model. HACT-Net is modeled using principal
neighborhood aggregation (PNA) [117] layers, which use a
combination of aggregators to replace the sum operation in
GIN and adopt degree-scalers to amplify or dampen neighbor-
ing aggregated messages based on the degree of a node. Graph
normalization followed by batch normalization is incorporated
after each PNA layer [|118]], which aids the network in learning
discriminative topological patterns when the number of nodes
within a class varies dramatically. To further assess the quality
of the methodology, a comparison with independent pathol-
ogists is conducted. Three board-certified pathologists were
recruited to annotate the BRACS test set without having access
to the respective WSIs. The results indicate that the model
outperforms the domain experts in the 7-class classification
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task. The authors employed the GraphGrad-CAM to highlight
the nuclei and tissue region nodes to show what the HACT-Net
focuses on while classifying the tumor regions-of-interest.

2) Colorectal cancer: Tumor staging includes both tissue
and nodal stages, with higher numbers indicating a greater
depth of invasion and a greater number of lymph nodes impli-
cated in the tumor, respectively. Levy et al. [[16] introduced
a framework that used varied levels of structure to learn
both local and global patterns from histological images for
determining the degree of tumor invasion. Fig. [T6] illustrates
the proposed framework where the authors combined GCNs
to explain the mechanisms by which tissue regions interact,
and topological feature extraction methods [119] to extract
essential contextual information. Patch-level classification of
colon sub-compartments was conducted via a GCN as well as
a refinement of patch-level predictions, in which nodes with
high uncertainty were deleted, and the remaining class labels
were propagated to unlabeled patches. A topological data
analysis (TDA) tool for graphs known as Graph Mapper [89]
was adopted as a post-hoc model explanation technique to
elucidate the high-level topology of the WSI. The mapper
generates a graph in which each node represents a cluster of
WSI patches and each edge represents the degree of shared
patches between the clusters. This tool can offer higher level
information flow descriptors in a GNN model, substantially
simplifying analysis. With the regions of interest (collection of
patches) extracted with the mapper, the authors compute tumor
invasion scores that measure the degree of overlap between
the tumor and adjacent tissue region. Finally, cancer staging is
predicted via derived invasion scores using a private colon and
lymph node dataset collected from the Dartmouth Hitchcock
Medical Center, where the results demonstrated the potential
of topological methods in the analysis of GNN models.

D. Unimodal and multi-modal feature level fusion

In this subsection we introduce works that have used fu-
sion techniques to extract and combined multiple rich visual

representations of the same input data (unimodal fusion), or
integrate information from various input modalities (multi-
modal fusion) to enable more accurate and robust decisions.
The former involves integrating several feature sets acquired
from different networks into a single vector, which is then used
for classification. This fusion occurs in two stages: normaliza-
tion of a feature, and selection of a feature. The latter seeks
to correlate and combine disparate heterogeneous modalities,
such that the model can learn pairwise feature interactions
and control the expressiveness of each modality. The main
challenges in multi-modal data fusion are the dissimilarity of
the data types being fused, and the interpretation of the results.

1) Unimodal fusion (Cervical cancer): Cervical cancer is
one of the most common causes of cancer death in women,
and screening for abnormal cells from a cervical cytology slide
is a common procedure for early detection of cervical cancer.
In contrast with conventional CNNs which learn multi-level
features through hierarchical deep architectures, Shi et al. [[25]]
combined a GCN output with deep CNN features to classify
images of isolated cervical cells into five and seven classes
using the SIPakMeD [103] and Motic (liquid-based cytology
image) [46] datasets, respectively.

First a CNN model pretrained for a cervical cell classi-
fication task is used to extract features of each individual
cervical cell image. Then, K-means clustering is computed
on the extracted features from all images to construct a
graph where the centre of each cluster represents a node.
The constructed graph of intrinsic similarities can be used
to further investigate the potential relationships between im-
ages. Consequently, a stacked two-layer GCN generates a
relation-aware representation which is encoded into CNN
features for classification, as illustrated in Fig. E The authors
demonstrated that the relation-aware representation generated
by the GCN greatly enhances the classification performance.
Extensive experiments to validate the performance of cervical
cytology classification with a GCN were also published by the
same authors in [406].

2) Multi-modal fusion (Renal cancer): To predict clini-
cal outcomes, oncologists often use both quantitative and
qualitative information from genomics and histology [120].
However, current automated histology methods do not take
genomic details into account. The following work exploits the
complementary knowledge within morphological information
and molecular information from genomics to better quantify
tumors using graph-based methods.

Renal cell carcinoma is the most common malignant tumor
of the kidney, and it is a diverse category of tumor with vary-
ing histology, clinical outcomes, and therapeutic responses.
Renal cell carcinoma subtypes can be automatically classified
through Deep learning frameworks. These algorithms can also
identify features that predict survival outcomes from digital
histopathological images. Several authors have used GCNs
for cancer histology classification, however, its application to
survival outcome prediction is less explored. Chen et al. [32]
proposed a framework for multi-modal fusion of histology and
genomic features for renal cancer survival outcome prediction
on the TCGA datasets (glioma and clear cell renal cell
carcinoma) [98]], which contains paired whole slide images,
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genotype, and transcriptome data. Their model fuses the his-
tology image (patch features), cell-graph and genomic features
into a multi-modal tensor that models interactions between
the different modalities and outperforms deep learning-based
feature fusion for survival outcome prediction. This framework
is illustrated in Fig. [T§]

The authors first extract morphological features from image-
based features using CNNs, and graph-based features using
GCNs, to learn cell-to-cell interactions in WSI. Cells are
represented as nodes in a graph, with cells segregated using a
nuclei segmentation method and connections established using
KNN. CPC is also adopted as a self-supervised method for
cell feature extraction. The authors adopted the aggregating
functions of the GraphSAGE architecture. The hierarchical
self-attention pooling strategy, SAGPool [80], is adopted to
encode the hierarchical structure of cell graphs. Then, to
monitor the expressiveness of each modality, a gating-based
attention system is used to perform uni-modal function fusion.
Multi-modal interpretability was considered by adopting an
integrated gradient method for visualizing image saliency
feature importance.

IV. DISCUSSION AND OPEN CHALLENGES

Beyond generating predictions relating to biology and
medicine at molecular, genomic and therapeutic levels [24],
graph representation learning has also been used to support
medical diagnosis through the representation of patient records
as graphs by using information including brain electrical
activity, functional connectivity and anatomical structures [21]].
As demonstrated throughout this review, graph-based deep
learning has been successfully used to capture phenotypical
and topological distributions in histopathology to better enable
precision medicine. Numerous entity-graph based tissue repre-
sentations and GNN models have been proposed for computer-
aided detection and diagnosis of breast, colorectal, prostate,
lung, lymphoma, skin, colon, cervical and renal cancers.

Given the utility of graphs across biomedical domains,
especially to model the histology of cancer tissue, there has
been a major push to exploit recent developments in deep
learning for graphs in this domain. However, these applications
are still in their nascent stages compared to existing research
concerning conventional deep learning methods. There are
challenges associated with the adoption of GNNs, and there
are graph approaches yet to be explored in this domain that



potentially allow a more robust and comprehensive inves-
tigation of complex biological processes that merit further
investigation. In this section, we discuss several future research
directions that need to be addressed to unlock the full power
of graph deep learning in digital pathology: 1) Entity graph
construction; 2) Embedding expert knowledge and clinical
adoption of graph analytics; 3) Complexity of graph models;
4) Training paradigms; and 5) Explainability of graph models.

A. Entity-graph construction

Defining an appropriate graph representation where vertices
correspond to entities, and edges represent the connectivity
of these entities, is highly relevant. Given a pathology task,
different choices of entities in histology images can be selected
as the relevant biological structures. Several graph represen-
tations have been customized according to the relevant entity
such as nuclei, tissue regions, glands or just traditional patches.
However, in the majority of methods discussed in this survey,
graph structures are designed manually.

1) Pros and cons of current preprocessing steps for entity-
graph construction:

a) Entity definition: Cell-graphs have been one of the
most popular graph representations, where cells are the entities
used to encode cell microenvironments, including morphology
of cells and cellular interactions. Such cell-graph representa-
tions were proposed in [15]], [28], [30[, [32—[34]l, [38]], [39].
However, modeling a WSI as a cell-graph is non-trivial due
to the large number of cells and the many possibly isolated
cells and weak nuclear boundaries. This representation relies
heavily on cell detection or segmentation methods. Although
some works have used representative node sampling [39] or
agglomerative clustering [36]] to remove redundancy in the
graph and reduce computation cost, the majority of cell-graph
based proposals assume that cell-cell interactions are the most
salient sources of information. Cell-graphs do not exploit
tissue macro-architectural structures, or the hierarchical nature
of the tissue.

Another traditional technique for analysing WSI that include
context information of ROIs is patch-graphs. Although patch-
graph representations have been adopted in a number of
studies [26], [35]I, [37], [40], [41], [43]-[45], [47], not all
entities are biologically-defined and methods are limited by the
patch definition. The resolution and optimal size of each image
patch and the level of context offered are trade-off against
one another, and are determined by the data. For example,
variations in glandular morphology and size make determining
an acceptable image patch size problematic. Operating at lower
magnification levels may not capture cell-level features, and
higher resolutions limits the ability to capture the tissue micro-
environment. Thus, an automated technique that defines these
patch regions and an appropriate scaling parameter from the
input data is vital.

To improve the tissue structure-function mapping, graph
representations based on tissue regions have been proposed,
which can also deal with one of the limitations of cell-graph as
important regions may not need to only contain cells [27], [36],
[42]. Tissue-graphs represent well-defined tissue regions and
are used to propagate information across neighboring nodes

in a progressive manner at a gland or region level. Although
superpixel-based approaches are proposed to address patch-
graph limitations, a tissue-graph alone cannot capture local
cellular information. A combination of cell-level and patch-
level features was proposed to capture local and global patterns
from histological images [32]. However, this fusion approach
cannot take advantage of the hierarchy between levels.

Hierarchical graph representations were proposed as an
adequate tissue representation as histological structures cannot
be fully represented by cellular or tissue interactions alone.
It has been shown that cell-graphs and tissue-graphs provide
valuable complementary information (cellular and tissue in-
teractions) to learn the intrinsic characteristics of cancerous
tissues. Such hierarchical analysis that captures multivariate
tissue information at multiple levels has been addressed only
by [16], [L7], [29], [31]. Nevertheless, this approach is still
dependent on the construction of a cell-centered graph, which
itself is limited by cell detection accuracy and is subjected to
the complexity constraints of the model driven by the number
of nodes. Other works have dealt with cell detection limitations
by exploiting graph wavelets with different scaling parame-
ters [29] to obtain multilevel tissue structural information in a
tissue-graph. Further, in [[16] micro- and macro architectures
of histology images were captured with the combination of
a topological data analysis tool (cell-level) and GCN (tissue-
level).

b) Feature extraction: Handcrafted and CNN-based fea-
tures have been the typical methods to characterize entities.
Such deep feature extraction allows use of features from a
pre-trained deep architecture. However, the performance of
these methods is compromised because the authors usually
utilize a pre-trained model (e.g., trained on ImageNet) due
to a lack of patch labels to fine-tune the network, and thus
suffer from the domain gap between natural scene images
and histopathological images. To address this limitation, a
small number of works trained a feature extractor using self-
supervised approaches such as CPC, VAE-GAN and auto
encoder in [15]], [27]], [32]], [40].

c) Graph topology: On current entity-graphs, each node
is only connected to its spatially nearest neighbors, resulting
in relatively limited information exchange during the message
passing phase. Only one approach to date has computed the
connections between nodes by using an adjacency learning
layer in an end-to-end manner that considered the global
context of all patches [43]]. Edge embeddings in cell-graph
and tissue-graph topologies are a poorly studied field with
few approaches. Learning takes place primarily at the vertices,
with edge attributes serving as auxiliary information. The
EGNN has only been applied in [38] for colorectal cancer
classification, and shows similar performance to the best model
based on a 1-dimensional GNN [[108]]. Edge attributes can also
directly inform the message passing phase operating over the
vertices. In the MEGNet [121]] model, vertices are updated by
an aggregation of features from adjacent edges.

2) Automated graph generation: Automated graph structure
estimation aims to find a suitable graph to represent the data
as input to the GNN model. By modeling graph generation as
a sequential process, the graph representation (nodes, edges



and embeddings) can be inferred directly from data which
would be especially useful when representing tissues with a
variety of complex micro- and macro environments. However,
the majority of methods surveyed follow a standard sequential
workflow which is highly dependent on the individual per-
formance of each preprocessing step, including tissue mask
detection, nuclei detection, super-pixel detection, deep feature
extraction, and graph building. The use of neural networks to
build generative graph models is gaining popularity to capture
both their topology and their attributes, which can in turn lead
to more robust algorithms and help to provide more accurate
results. However, the effectiveness of such algorithms have
not been investigated for histopathology images. Therefore,
several requirements are still needed to enable the generation
process.

Several works that have adopted GCNs for brain elec-
trical activity analysis tasks [21] have demonstrated that
learning the graph structure from data improves classifica-
tion performance in comparison to approaches where a pre-
defined graph topology is used. In digital pathology these
predefined parameters per histology task are represented by
fixed threshold to differentiate non-tissue pixels; patch size
and number of patches for nuclei detection, and nuclei and
tissue feature extraction; sample ratio of representative nuclei;
thresholded KNN and distance that define topology and edges;
the number of superpixels and downsampling factor per image;
and selection of handcrafted features and CNN layer from
which deep features are extracted. Such definitions limit the
generalization of entity-graphs to different tissues, organs,
and histology tasks. Some graph generation approaches that
are worthy of exploration within histopathology diagnosis
are GraphGAN [122], DGMG [123]], and GCPN [124]. For
instance, DGMG [123]] can be used to generate one node at
a time from each histopathology patch and then create edges
one by one, to connect each node to the existing partial graph
using probabilistic dependencies among nodes.

In summary, the preceding discussion exemplified the dif-
ficulties in estimating a graph structure with the desired
properties from data. While there is emerging work in this
field, it is ripe for further investigation. In digital pathology,
automated graph generation, in which a graph model infers
structural content from data, and the integration of domain
knowledge, are also underutilised.

B. Embedding expert knowledge and clinical adoption of
graph analytics

Incorporating domain knowledge into the model has
emerged as a promising method for improving medical image
analysis [125]. The use of graph-based mappings with label
representations (word embeddings) have been investigated to
guide information propagation among nodes [126]. For exam-
ple, in basal cell carcinoma classification [47]], the embedding
knowledge is represented by encoding patches based on prior
expert knowledge, which bridges the gap between patch-level
and image-level predictions and results in better performance.
Further, pathologists’ feedback can help to improve the graph
representation in terms of how to best mirror the biological
relationship between cells and tissues. Thus, graph-based
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analysis motivates exploring the inclusion of task-specific
pathological prior knowledge in the construction of the graph
representations [17].

Another open research question is how to incorporate inter-
disciplinary knowledge in a principled way, rather than on a
case-by-case basis. Integrating electronic health records for
personalized medicine can also boost the diagnostic power
of digital pathology. The hierarchical information inherent in
medical ontologies naturally lends itself to creating a rich
network of medical knowledge, and other data types such as
symptoms and genomics [[127]. Thus, by integrating patient
records into the graph representation learning environment,
tailored predictions can be generated for individual patients.

Among the Al-techniques, graph-based tissue image anal-
ysis demonstrated performance superior or comparable to
domain experts in breast cancer analysis [31]]. These results
combined with studies examining the effect of explanations on
clinical end-user decisions [33] show generally positive results
in the translation of this technology into diagnostic pathology.
Such translation will require to considered integration of
standardised technologies into digital pathology workflows,
resulting in an integrated approach to diagnosis and offering
pathologists new tools that accelerate their workflow, increase
diagnostic consistency, and reduce errors.

While, there is considerable promise for graph analytics
in digital pathology, there are some challenges ahead. These
include, for example, the ability to generalize a diagnosis
technique to a large population of patients which contain
outliers; and to develop problem-solving skills that demand
complex interactions with other medical disciplines. Thus,
more work should be conducted to investigate how a pathol-
ogist could refine a graph model decision via a human-in-
the-loop system [[128]], [[129] Such approaches provide an
important safety mechanism for detecting and correcting al-
gorithmic errors that may occur. A remaining challenge here
is to provide frameworks with the above functionalities with
reduced complexity to lower the barriers between the systems
and clinicians, to help facilitate system uptake.

Entity-graph analysis has the ability to transform pathology
by providing applications that speed up workflow, improve
diagnosis, and improve patient clinical outcomes. However,
there is still a gap between research studies and the effort
required to deliver reliable graph analytics that incorporate
expert knowledge into the system, and can be integrated into
existing clinical workflows.

C. Complexity of graph models

Graph-based approaches for histology analysis have a high
representational power, and can describe topological and geo-
metric properties of multiple types of cancers. When compared
to pixel-based approaches, the graph representation can more
seamlessly describe a large tissue region. However, classical
graph-based models have a high computational complexity.
As a result, in the suggested learning approach, the choice of
GNN architecture should be handled as a hyper-parameter.

The most common GNNs used by methods in this survey
include ChebNet [66], GCN [[67]], GraphSAGE [68], GAT [72],
GIN [73], and variants such as Adaptive GraphSAGE [39],



RSF [75], MS-GWNN [29] and FENet [41]. Spatial-GCNs
such as GraphSAGE and GIN demonstrated their learning
ability using max-, mean-, or sum-pooling aggregators. GIN
has been particularly effective in computational pathology with
a provably strong expressive power to learn fixed-size dis-
criminative graph embeddings from cellular and tissue archi-
tectures in WSIs, which demonstrate translation and rotation
invariance. However, it is noted that these GNN models inherit
considerable complexity from their deep learning lineage,
which can be burdensome when scaling and deploying GNNss.
This is likely one of the reasons that has seen patch-based
approaches remain a popular approach for many problems.

The training of GNNs remains one of the most difficult
tasks due to their high memory consumption and inference
latency compared to patch-based deep learning approaches.
GNNs usually require the whole graph and the intermediate
states of all nodes to be saved in memory. However, the
adoption of an efficient training approach is uncommon in
the applications surveyed. Various graph sampling approaches
have been proposed as a way to alleviate the cost of training
GNNs. Rather than training over the full graph, each iteration
is run over a sampled sub-graph, whether they are sampled
node-wise (GraphSage [68]), layer-wise (FastGCN [130], L2-
GCN [131]), or by clustering (Cluster-GCN [[132]).

Some works have proposed more efficient and simple
architectures that deserve attention for their potential to be
adopted in computational histopathology. The simple graph
convolution (SGC) [[133]] reduces the complexity of GCNs by
repeatedly removing the non-linearities between GCN layers
and collapsing multiple weight matrices into a single linear
transformation. This model was adopted for emotion recogni-
tion and increased the performance speed with a comparable
classification accuracy in comparison to other networks [[134].
The simple scalable inception GNN (SIGN) [135] is explic-
itly designed as a shallow architecture that combines graph
convolutional filters of different sizes that allow efficient pre-
computation. The efficient graph convolution (EGC) [136]
method does not require trading accuracy for runtime memory
or latency reductions based on an adaptive filtering approach.
GNNs can also deliver high performance for feature matching
across images [137], which can be incorporated for content-
based histopathological image retrieval.

It is also important to highlight that some works exploit
the cell-graph representation without the complexity of GCN
processing. The tissue classification problem was proposed
in [138]] as a cellular community detection based on cell
detection and classification into distinct cellular components
(cell-graphs), and clustering of image patches (patch-level
graphs) into biologically meaningful communities (specific
tissue phenotype). The concept of constructing a graph and
then using geodesic distance for community detection has
outperformed deep neural networks and graph-based deep
leaning methods such as ChebNet, GCNs and deep graph
infomax learning (DGI) [[139].

In the coming years, a key research topic will be how to
effectively learn and compute GNNSs in order to realise their
full potential. Deep learning on graphs is inherently difficult
due to the graphs’ complex topological structure, which can be

21

made up of many different types of entities and interactions.
As such, the appropriate selection of key parameters of a
model prior to representation learning is essential to capture
the structural information of the histopathology slides.

D. Training paradigms

As stated in previous sections, training paradigms can be
divided into two main categories: training a network to learn
the node embeddings used in the graph representation; and the
training of the GNN model.

1) Node embeddings: The node embeddings are the fea-
tures that are learned to represent the defined node (e.g.
cells, nucleus, patches, super-pixels). Some of the embedding
features extracted through attribute networks require labeled
datasets and need to be trained in a supervised manner as
explained in [16], [17], 251, [126], [28]1-131], [33]-139], [41],
[43], [44], [46[, [47]. However, one of the main challenges
in deep learning is the lack of large corpora of manually
labeled data for training, which often imposes a limitation
on problems in the medical domain. Thus, self-supervised
methods are gaining interest to improve the quality of learned
node embeddings [15]], [27], [32]], [40], [45] by learning em-
bedding features directly from histopathology images, rather
than relying on extracting features using transfer learning,
which is discussed in Subsection [V-Al

2) Node/graph classification: Training a GCN for node
or graph level classification can be performed in supervised,
semi-supervised or even in a self-supervised manner. If suffi-
cient labels are available for nodes or graph data, the common
practice is a supervised training approach, such as the methods
of [16]], [17], [25]1, (2811311, [33], [34], (3611391, [41]l, (43,
[45]].

Though supervised methods can achieve high performance,
they can place limitations on model complexity and can
suffer when annotations are inconsistent or imprecise. In
the absence of sufficient labeled data, weakly-supervised or
semi-supervised frameworks are proposed to better capture
the structure of histopathology data and reduce the human
annotation workload. Although the issue of missing labels
is not specific to the graph domain, only a few works have
adopted such frameworks (pixel or patch level labels).

In semi- or weakly-supervised approach, the node embed-
dings are learnt from few labeled samples per class [15],
[26], [46], [47]. For example, in a weakly supervised learning
approach, the contributions of the individual patches to the
ROI-level diagnosis are not known during training [26]].

In addition to the above, extensive research over past years
in deep learning [140]-[[142] showed that a decision classifier
based on Multiple Instance Learning (MIL) can boost the
performance in classifying cancer by aggregating instance-
level predictions. MIL only requires labels for the bag of
instances rather than individual instances, which makes it
well-suited for histology slide classification. One example
is CLAM (Clustering-constrained attention multiple instance
learning [143]]). Even though these approaches have practical
merits and can consider the important patches for predicting
the staging, they do not consider the spatial relationships be-
tween patches. Current multiple instance learning approaches



using deep graphs [27], [40]], [43]] follow this line of research.
They can seamlessly scale to arbitrary tissue dimensions by
incorporating an arbitrary number of entities and interactions,
thus offering an alternative to traditional MIL [143]]. MIL
methods can be incorporated with a GCN to take advantage of
the structural information among instances [4]]. For example,
the SegGini model [42]] outperforms several traditional state-
of-the-art methods such as CLAM [143|] and Context-Aware
CNN (CACNN) [144] for weakly-supervised classification of
prostate cancer.

Self supervised methods have also been successfully de-
ployed as a training paradigm for GCNs. For example, Ozen
et al. [35] adopted a SimCLR framework [111] along with
contrastive loss to learn a representation of ROIs and perform
classification. Although the aforementioned training paradigms
demonstrate remarkable performance, few works [43[] have
considered end-to-end training and the challenge that brings
such as dealing with complexity of constructing a graph or
labeled data, and thus this requires investigation in future
works.

Training paradigms are dependent on the availability of
manually labeled data. In medical imaging and specifically
histopathology obtaining a large set of labeled data is a tedious
process and so weakly- and self-supervised algorithms are
receiving increasing interest for learning node embeddings
and performing graph classification. It is expected that in
future, further research carry out on a large-scale to anal-
yse histopathology data using GCNs in a weakly- or self-
supervised manner.

E. Explainability of graph models

To effectively translate graph models into clinical prac-
tise, clinicians’ trust must be established. Explainability, or
a model’s ability to justify its outcomes and therefore assist
clinicians in understanding a model’s prediction, has long
been seen as crucial to building trust. Understanding model
behaviour beyond traditional performance indicators has thus
become an important part of machine learning research, par-
ticularly in healthcare [[145]].

Explainability in deep models has focused on providing
input-dependent explanations and understanding model be-
havior from different perspectives, including visual explana-
tions and highlighting salient regions. We can examine the
sensitivity between the input features and the predictions,
for example, by looking at the gradients or weights. We
can also highlight important features or regions of an image
by incorporating attention mechanisms [146]. Nevertheless,
compared with traditional image domains, explainability and
visualization of deep learning for graphs is less explored [84],
yet explanability is critical to highlight informative structural
compositions of tissue and inter-nuclear relationships, as is
desired for computational histopathology.

While interpretability approaches are generally lacking
within most graph network methods, it is worth noting that a
few methods exist and incorporate such explanations in digital
pathology as illustrated in Table i) In [47] a GCN prop-
agated supervisory information over patches to learn patch-
aware interpretability in the form of a probability score. ii) A
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robust spatial filtering with an attention-based architecture and
node occlusion was used to capture the contribution of each
nucleus and its neighborhood to the prediction [30]. iii) The
Graph Mapper, a topological data analysis tool, was adopted
to compress histological information to its essential structures,
where meaningful histology regions are captured [16]. iv)
In [32], an integrated gradient method was used to visualise
image saliency feature importance. v) A graph clustering
visualization was used in [39] to group cells with similar tissue
structures. vi) A post-hoc graph-pruning explainer, GCEx-
plainer, was designed to identify decisive cells and interactions
from the input graph [34]. vii) The gradient-based saliency
method, GraphGrad-CAM, was adopted in [31] and [42]]
to measure importance scores and regions that contributed
towards the classification of each class.

The majority of approaches that have incorporated explain-
ers are limited to cell-graph analysis. Considering the patho-
logically aligned multi-level hierarchical tissue attributes [31]],
the interpretability can reveal crucial entities such as nuclei,
tissue parts and interactions which can mimic the pathologist’s
assessment and therefore, increase the level of trust between
experts and Al frameworks.

Existing works however lack the definition of objectives to
validate a model in terms of effective explainability, and only
a single work has looked at the quality and utility of the pro-
posed explanation methods for the intended audience (i.e. clin-
icians). In [33], the authors evaluated several graph explain-
ers (GNNExplainer, GraphGrad-CAM, GraphGrad-CAM++,
GraphLRP) to provide domain-understandable quantitative
metrics based on pathologically measurable cellular properties,
to make graph decisions understandable to pathologists. The
authors found that at the concept-level, GraphGrad-CAM-++
has the highest overall agreement with the pathologists, fol-
lowed by GraphGrad-CAM and GNNExplainer.

Other methods not investigated in this survey that focus on
instance-level interpretation of deep graph models that deserve
attention in digital pathology for explainability at the node,
edge, or node feature levels are: excitation BP [83], PGM-
explainer [147]], GraphMask [148|], Graphlime [149]], and
Relex [150]]. Other methods such as SubgraphX [151]] provide
subgraph-level explanations which may be more intuitive and
human-intelligible for digital pathology.

Knowing the subset of features from which the model out-
come is derived is critical. This allows clinicians to compare
model decisions with clinical judgement, which is especially
useful when there is a discrepancy. It is also worth noting
that clinicians expect variation in the importance of inputs to
exist both across patients and populations [145]. However, the
explanations provided by methods discussed in this survey us-
ing gradient-based (GraphGrad-CAM) and perturbation-based
methods (GNNExplainer) are limited to single instances. To
verify and understand a deep model, pathologists need to check
explanations for all input graphs, which is time-consuming and
impractical. Models that interpret each instance independently,
as previously stated, are insufficient to provide a global
understanding of the trained model [152]. Thus, methods to
provide GNN predictions on a group of instances collectively
(i.e. a population) and provide a global understanding of GNN



predictions is less explored in the literature.

Instance-level methods explain GNNs with respect to each
input graph, whereas model-level methods explain GNNs
without regard for any specific input example. The Ilatter
specifically investigates what input graph patterns can lead
to a specific GNN behaviour, such as maximising a target
prediction. However, no research on interpreting GNNs at the
model-level exists in digital pathology. XGNN [153]] provides
model-level explanations by training a graph generator to build
graph patterns that optimize a specific model prediction. The
authors formulated graph creation as a reinforcement learning
problem, with the graph generator predicting how to add
an edge to a given graph and build a new graph at each
step. The generator is then trained using a policy gradient
based on feedback from the trained graph models. Several
graph rules are also used to ensure that the explanations are
both valid and human-readable. PGExplainer [[154] can also
provide an explanation for each instance with a global view
of the GNN model by incorporating a generative probabilistic
model. Nonetheless, it is unknown whether XGNN and PG-
Explainer can be used to perform node classification tasks for
histopathology analysis, which is an important area for future
research.

Given the trend of graph-based processing for a variety of
applications in computational pathology, graph explainability
and quantitative evaluation with a focus on clinician usability
are critical. Interpretability is essential because it can aid, for
example, in informed decision-making during cancer diagnosis
and treatment planning. However, interpretability of GNNs
within digital pathology has received insufficient attention to
date.

V. CONCLUSION

Through the use of whole-slide images (WSIs) and tis-
sue microarrays (TMAs), digital pathology has transformed
pathology diagnosis. The growing use of this data has also
given rise to a new field of study known as computational
pathology, which aims to develop machine learning techniques
to provide more objective and reproducible results. Deep
learning, in particular Convolutional Neural Networks (CNNs),
have demonstrated efficacy in visual representation learning
in digital pathology. To obtain image-level representations,
mainstream CNN architectures typically aggregate feature
representations over fixed-sized patches of the WSI. However,
the patch-wise and pixel-based processing used by CNNs
lacks the ability to capture global contextual information
relating to meaningful entities such as cells, glands, and tissue
types. As demonstrated throughout this review, histopathology
knowledge graphs enable the capture of more comprehen-
sive and interpretable information relating to the underlying
mechanisms of a disease. Several works have attempted to
adopt graph-based deep learning models to learn both local
and global patterns. Entity-based analysis has the potential
to improve the interpretability of deep learning techniques
by identifying decisive nuclei, tissue regions and interactions.
This can also potentially replicate holistic and context aware
parts of a pathologist’s assessment.
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Our survey has provided a detailed overview of a new
rapidly growing field of representation learning for com-
putational histopathology. The enriched graph representation
and learning in digital pathology has resulted in superior
performance for diverse types of cancer analysis. Nevertheless,
we highlight open research directions concerning the adoption
of graph-based deep learning, including the explainability of
graph representation learning, methods of graph construction,
and the complexity of graph models and their limited training
efficiency.
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