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Abstract

Randomization is a well-known numerical method for the transient analysis of continuous-time Markov
chains. The main advantages of the method are numerical stability, well-controlled computation error and
ability to specify the computation error in advance. Typical implementations of the method control the trun-
cation error in absolute value, which is not completely satisfactory in some cases. Based on a theoretical
result regarding the dependence on the parameter of the Poisson distribution of the relative error introduced
when a weighted sum of Poisson probabilities is truncated by the right, in this paper we develop e$cient
and numerically stable implementations of the randomization method for the computation of two measures
on rewarded continuous-time Markov chains with control of the relative error. The numerical stability of
those implementations is analyzed using a small example. We also discuss the computational e$ciency of the
implementations with respect to simpler alternatives.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Rewarded continuous-time Markov chains (CTMCs) are a powerful modeling formalism. A re-
warded CTMC is a CTMC X = {X (t); t¿ 0} with a reward structure imposed over it. The reward
structure may include reward rates associated with states and impulse rewards associated with tran-
sitions. In this paper, we will consider rewarded CTMCs with a reward structure including only
reward rates associated with states. Let � be the state space of X and let ri, i∈� be the reward
rate associated with state i. We will assume ri¿ 0, i∈�. The quantity ri has the meaning of “rate
at which reward is earned while the CTMC is in state i.” The behavior with time of the random
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variable rX (t) can be quantiFed using several measures. In this paper, we will consider two such
measures: the “expected transient reward rate,” ETRR(t) = E[rX (t)], and the “expected averaged re-
ward rate,” EARR(t) = E[

∫ t
0 rX (
) d
=t]. Those measures with particular instances of the CTMC X

and the reward rate structure ri, i∈� have important applications, particularly in the dependability
and performability analysis of fault-tolerant computer systems. Consider, for instance, a fault-tolerant
computer system which can be “up” or “down” whose evolution is modeled by a CTMC X with
state space � = U ∪ D, where U includes the states in which the system is up and D includes the
states in which the system is down. Then, with a reward rate structure ri=0, i∈U and ri=1, i∈D,
the ETRR(t) measure would be the unavailability of the fault-tolerant computer system at time t,
i.e. the probability that the system is down at time t. As another example, consider a degradable
fault-tolerant multiprocessor system whose behavior is modeled by a CTMC X . Then, with a re-
ward rate structure assigning to each state of X the speedup of the multiprocessor in that particular
state, the ETRR(t) measure would be the expected speedup of the multiprocessor at time t and the
EARR(t) measure would be the expected averaged speedup of the multiprocessor during the time
interval [0; t].

Computation of the measures ETRR(t) and EARR(t) requires the transient analysis of the CTMC
X . That transient analysis can be performed using ordinary diIerential equation solvers and random-
ization [1,2] (also called uniformization). Good properties of the randomization method are excellent
numerical stability, well-controlled computation error, and ability to specify the computation error
in advance. The randomization method is based on the randomization result. To review that result,
let �i; j, i; j ∈�, i �= j, �i =

∑
j∈�−{i} �i; j, i∈�, and A = (ai; j)i; j∈�, ai; j = �i; j, i �= j, ai; i = −�i be,

respectively, the transition rates, output rates and transition rate matrix of X . Let �¿maxi∈��i and
consider the discrete-time Markov chain (DTMC) X̂ = {X̂ k ; k = 0; 1; 2; : : :} with same state space
and initial probability distribution as X and transition probability matrix P = I + (1=�)A, where I
denotes an identity matrix of appropriate dimension. The DTMC X̂ is said to be the randomized
DTMC of X with randomization rate �. Let Q = {Q(t); t¿ 0} be a Poisson process with arrival
rate � independent of X̂ . We have P[Q(t)= k]=Pk(�t), with Pk(�)= e−��k=k!, where Pk(�) is the
probability mass function of a Poisson random variable with parameter �. Then, the randomization
result states [3, Theorem 4.19] that X is probabilistically identical to {X̂ Q(t); t¿ 0}, which means
that the probability of any event deFned over the values of the random variables X (t), t¿ 0 is the
same as the probability of the corresponding event over the random variables X̂ Q(t), t¿ 0.
We will review next typical implementations of the randomization method for the computation

of the ETRR(t) and EARR(t) measures with control of the absolute truncation error. Since the
computational cost of the method increases with the randomization rate �, � is taken equal to
maxi∈��i. We will start by the ETRR(t) measure. Using the randomization result, the transient
regime of X can be expressed in terms of the transient regime of X̂ as

P[X (t) = i] =
∞∑
k=0

P[X̂ k = i |Q(t) = k]P[Q(t) = k] =
∞∑
k=0

P[X̂ k = i]Pk(�t) ;

and using ETRR(t) =
∑

i∈� riP[X (t) = i]:

ETRR(t) =
∑
i∈�

ri
∞∑
k=0

P[X̂ k = i]Pk(�t) =
∞∑
k=0

d(k)Pk(�t); (1)
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with

d(k) =
∑
i∈�

riP[X̂ k = i]:

In the implementation, the inFnite series (1) is truncated by the right to obtain an approximate value
for ETRR(t):

ETRRa
R(t) =

R∑
k=0

d(k)Pk(�t): (2)

Letting rmax = maxi∈� ri, and using d(k)6 rmax, it follows that rmax
∑∞

k=R+1 Pk(�t) upper bounds
the truncation error and, then, R is chosen using:

R=min

{
m¿ 0: rmax

∞∑
k=m+1

Pk(�t)6 �

}
;

where �¿ 0 is the requested absolute error. The required probability row vectors of X̂ , q(k) =
(P[X̂ k = i])i∈�, k = 0; 1; : : : ; R are obtained using q(0) = �, where � = (�i)i∈�, �i = P[X (0) = i] and

q(k + 1) = q(k)P: (3)

The truncation error upper bound increases with t, because it is rmax times the probability that the
number of arrivals in the time interval [0; t] in a Poisson process with arrival rate � is ¿R + 1.
Then, if ETRR(t) has to be computed for several values of t with absolute error 6 �, it is enough
to control the truncation error for the largest of them.

We will review next a typical implementation of the randomization method for the EARR(t)
measure with control of the absolute truncation error. Using EARR(t) = (1=t)

∫ t
0 E[rX (
)] d
 = (1=t)∫ t

0 ETRR(
) d
, (1) and
∫ t
0 Pk(�
) d
=(1=�)

∑∞
l=k+1 Pl(�t) (see, for instance, [4, Formula 14.512]),

we can obtain

EARR(t) =
1
t

∫ t

0

∞∑
k=0

d(k)Pk(�
) d
=
1
t

∞∑
k=0

d(k)
∫ t

0
Pk(�
) d
=

1
�t

∞∑
k=0

d(k)
∞∑

l=k+1

Pl(�t)

=
1
�t

∞∑
k=1

(
k−1∑
l=0

d(l)

)
Pk(�t) =

1
�t

∞∑
k=1

(
k−1∑
l=0

d(l)

)
�t
k

Pk−1(�t)

=
∞∑
k=0

(
1

k + 1

k∑
l=0

d(l)

)
Pk(�t): (4)

In the implementation, the summatory is truncated by the right to obtain an approximate value for
EARR(t):

EARRa
R(t) =

R∑
k=0

(
1

k + 1

k∑
l=0

d(l)

)
Pk(�t):
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Since (4) is formally identical to (1) with d(k) replaced by d′(k) =
(∑k

l=0 d(l)
)
=(k + 1) and,

therefore, d′(k)6 rmax, the truncation point R is chosen as in the method for the ETRR(t) measure.
The required probability row vectors q(k) are obtained also as for the ETRR(t) measure. Similarly,
if the measure has to be computed at several time points, it is enough to control the truncation error
for the largest of them. Alternative, similar implementations of the randomization method for the
computation of EARR(t) can be found in [5].

Computation of the Poisson probabilities Pk(�t)=e−�t(�t)k =k! is a delicate issue due to the pos-
sibility of intermediate overQows and underQows. An approach to compute “exact” Poisson probabil-
ities is to use the method proposed in [6, pp. 1028–1029] (see also [7]), which avoids intermediate
overQows and underQows and has good numerical stability. The approach is, however, relatively
expensive.

The computational cost of the (standard) randomization method increases with R. Since (see,
for instance, [8, Theorem 3.3.5]) the random variable Q(t) has for �t → ∞ an asymptotic normal
distribution with mean and variance �t, for large �t and ��1, the truncation point R will be approx-
imately equal to �t, implying that, for large �t and ��1, the method will be expensive. The high
computational cost of the method for large �t and ��1 has motivated the development in the last
years of several variants which can outperform the standard randomization method: selective ran-
domization [9,10], multistepping [11, Section 3.1.2], adaptive uniformization [12], adaptive/standard
uniformization [13], uniformization with steady-state detection [14,15], and regenerative randomiza-
tion [16,17]. Randomization-based methods computing bounds which can be much more e$cient than
“exact” methods have also been proposed [18]. Despite all these variants, the standard randomization
method is still competitive for many rewarded CTMC models.

The implementations of the standard randomization just reviewed are, in some cases, not com-
pletely satisfactory. The reason is that, in some cases, the user is interested in computing the measure
with some reasonably small relative error, while the implementations control the absolute truncation
error. In those cases, unless the user knows in advance a good estimate for the order of magni-
tude of the measure, he/she will be confronted with the dilemma between choosing a very small
error control parameter � to ensure that the desired accuracy will be satisFed, with the consequent
increase in the computational cost (the truncation point R increases for decreasing �), or choosing
a greater value for � and running the risk of obtaining not enough accurate computations and hav-
ing to run the method again. For very large �t, the price paid by using an � smaller than strictly
required is relatively small. However, for not too large �t, the price can be relatively important.
This is illustrated in Table 1 which gives the required R as a function of � and �t, assuming
rmax = 1.

In this paper, we will develop e$cient and numerically stable implementations of the stan-
dard randomization method for the ETRR(t) and EARR(t) measures with control of the relative
error. The rest of the paper is organized as follows. Section 2 will obtain a theoretical result
concerning the dependence on the parameter of the Poisson distribution of the relative error in-
troduced when a weighted sum of Poisson probabilities is truncated by the right. Based on that
result, Section 3 will derive the implementations. Section 4 will analyze the numerical stability
of the implementations using a small rewarded CTMC model of a repairable fault-tolerant com-
puter system and will discuss the computational e$ciency of the implementations with respect
to simpler alternatives. Finally, Section 5 will present some conclusions. The Appendix includes
some proofs.
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Table 1
Truncation point R as a function of � and �t for rmax = 1 in the reviewed implementations of the standard randomization
method with control of the absolute truncation error

�t � = 10−4 � = 10−6 � = 10−8 � = 10−10 � = 10−12

0.01 1 2 3 4 4
0.05 2 3 4 5 6
0.1 3 4 5 6 7
0.5 5 7 8 10 11
1 6 9 11 12 14
5 15 19 22 25 27
10 24 28 32 36 39
50 78 87 94 101 107
100 139 151 161 170 178
500 585 610 630 649 665
1000 1120 1154 1182 1208 1230

2. A theoretical result

In this section we will develop a theoretical result concerning the dependence of the relative
error with respect to the parameter � introduced when a weighted sum of Poisson probabilities∑∞

k=0 !(k)Pk(�) is truncated by the right, i.e. letting

Wa
R(�) =

R∑
k=0

!(k)Pk(�) (5)

and

We
R(�) =

∞∑
k=R+1

!(k)Pk(�) (6)

we will show that, for R¿ 0 and assuming !(k)¿ 0 and !(k)¿ 0 for some k, 06 k6R,

eR(�) =We
R(�)=W

a
R(�) (7)

increases with �, �¿ 0.
We will start by the following lemma.

Lemma 1. Let �1¿ �2 ¿ 0, x = �1=�2, j¿ i¿ 0, and !(k)¿ 0, k¿ 0. Then

1
xj

e
(
1− 1

x

)
�1

j∑
k=i

!(k)Pk(�1)6
j∑

k=i

!(k)Pk(�2)6
1
xi
e
(
1− 1

x

)
�1

j∑
k=i

!(k)Pk(�1):

Moreover, if !(k) is uniformly upper bounded, the right inequality also holds for j = ∞.
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Proof. If !(k)=0 for k, i6 k6 j, the result is trivial. Therefore, let us assume !(k)¿ 0 for some
k, i6 k6 j. Substituting �1 = x�2 into

∑j
k=i !(k)Pk(�1) yields

j∑
k=i

!(k)Pk(�1) =
j∑

k=i

!(k)e−�1 �k
1

k!
=

j∑
k=i

!(k)xke−x�2 �k
2

k!

= e−(x−1)�2
j∑

k=i

xk!(k)e−�2 �k
2

k!
= e−(x−1)�2

j∑
k=i

xk!(k)Pk(�2):

Then, since x¿ 1 and !(k)¿ 0,

xie−(x−1)�2
j∑

k=i

!(k)Pk(�2)6
j∑

k=i

!(k)Pk(�1)6 xje−(x−1)�2
j∑

k=i

!(k)Pk(�2):

Inverting the members of the previous inequalities (this can be done because !(k)¿ 0 for some
k, i6 k6 j implies

∑j
k=i !(k)Pk(�1)¿ 0 and

∑j
k=i !(k)Pk(�2)¿ 0 and, therefore, that all three

members are ¿ 0):

e(x−1)�2

xj
∑j

k=i !(k)Pk(�2)
6

1∑j
k=i !(k)Pk(�1)

6
e(x−1)�2

xi
∑j

k=i !(k)Pk(�2)
:

Multiplying by
(∑j

k=i !(k)Pk(�2)
) (∑j

k=i !(k)Pk(�1)
)
¿ 0,

1
xj
e(x−1)�2

j∑
k=i

!(k)Pk(�1)6
j∑

k=i

!(k)Pk(�2)6
1
xi
e(x−1)�2

j∑
k=i

!(k)Pk(�1);

and, noting that (x − 1)�2 = (1 − 1=x)�1,

1
xj

e
(
1− 1

x

)
�1

j∑
k=i

!(k)Pk(�1)6
j∑

k=i

!(k)Pk(�2)6
1
xi
e
(
1− 1

x

)
�1

j∑
k=i

!(k)Pk(�1):

Finally, if !(k) is uniformly upper bounded, from
∑j

k=i Pk(�), j → ∞, �¿ 0 being upper bounded
and !(k)¿ 0, it is easy to prove that

∑j
k=i !(k)Pk(�), j → ∞, �¿ 0 is upper bounded and, being

increasing, convergent, implying that both
∑j

k=i !(k)Pk(�2), j → ∞ and (1=xi)e(1−1=x)�1
∑j

k=i !(k)
Pk(�1), j → ∞ will converge and that the previous right inequality will also hold for j = ∞.

The following theorem asserts the result which is the purpose of this section.

Theorem 1. Let �′¿ �¿ 0, R¿ 0 and !(k)¿ 0, k¿ 0. Assume !(k)¿ 0 for some k, 06 k6R
and assume that !(k) is uniformly upper bounded. Then, eR(�′)¿ eR(�).
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Proof. Let x = �′=�¿ 1. Using (5) and the left inequality of Lemma 1 with �1 = �′, �2 = �, i = 0,
and j = R,

Wa
R(�) =

R∑
k=0

!(k)Pk(�)¿
1
xR

e
(
1− 1

x

)
�′

R∑
k=0

!(k)Pk(�′) =
1
xR

e
(
1− 1

x

)
�′
Wa

R(�
′): (8)

Similarly, using (6) and the right inequality of Lemma 1 with �1 = �′, �2 = �, i=R+1, and j=∞,

We
R(�) =

∞∑
k=R+1

!(k)Pk(�)6
1

xR+1 e
(
1− 1

x

)
�′

∞∑
k=R+1

!(k)Pk(�′) =
1

xR+1 e
(
1− 1

x

)
�′
We

R(�
′): (9)

Finally, using (7), (8), (9), x¿ 1, noting that !(k)¿ 0 for some k, 06 k6R and �; �′ ¿ 0, implies
Wa

R(�)¿ 0 and Wa
R(�

′)¿ 0:

eR(�) =
We

R(�)
Wa

R(�)
6

1
xR+1 e

(
1− 1

x

)
�′
We

R(�
′)

1
xR e

(
1− 1

x

)
�′
Wa

R(�′)
=

1
x
We

R(�
′)

Wa
R(�′)

6
We

R(�
′)

Wa
R(�′)

= eR(�′):

3. The implementations

In this section, based on Theorem 1, we will derive implementations of the standard randomization
method for the computation of the measures ETRR(t) and EARR(t) at several time points t1; t2; : : : ; tn
with control of the relative error. We will make the following assumptions:

A1) ri ¿ 0 for some state i reachable from some state j with non-null initial probability.
A2) ti ¿ 0, i = 1; 2; : : : ; n.

Assumption A1 implies d(k)¿ 0 for some k¿ 0. Note that if assumption A1 is not satisFed, d(k)=0
for all k and, then, ETRR(t)=EARR(t)=0 for all t. Further, for t=0, we have ETRR(t)=EARR(t)=
d(0). Therefore, when any of the assumptions A1 or A2 is not satisFed, computation of the ETRR(t)
and EARR(t) measures is straightforward.

We will only discuss in detail the implementation for the measure ETRR(t). We will start by, using
Theorem 1, developing in Section 3.1 an e$cient method for obtaining a global truncation point by
the right R guaranteeing a relative truncation error 6 �1 at every time point ti, where �1 ¿ 0 is an
error control parameter. Next, in Section 3.2, we will discuss the introduction of a truncation point
by the left Li and a truncation point by the right R∗

i , beyond the truncation point by the right R, for
each particular time point ti with the purpose of reducing the number of Poisson probabilities which
have to be computed. Those truncations will introduce a further relative truncation error 6 �2, where
�2 ¿ 0 is another error control parameter. In Section 3.3, we will show how weights proportional
to the Poisson probabilities can be used to determine the truncation points Li and R∗

i and how,
at the price of introducing an additional relative error, normalized weights can be used instead of
“exact” Poisson probabilities to perform the actual computation of the truncated summatories in a
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numerically stable way. Also in that section, we will show how the error control parameters �1 and
�2 can be adjusted so as to guarantee an absolute relative error 6 � for every time point ti, where
�¿ 0 is the requested relative error. Finally, in Section 3.4, we will give algorithmic descriptions
of the implementations for both the ETRR(t) and the EARR(t) measures.

3.1. Determination of a global truncation point by the right R

According to the review of the implementation of the standard randomization method for the
ETRR(t) measure performed in Section 1, a truncation point R by the right guaranteeing a relative
truncation error,

∑∞
k=R+1 d(k)Pk(�t)=ETRRa

R(t), 6 �1 at a given time point t ¿ 0 can be chosen
using

R=min

{
m¿ 0: ETRRa

m(t)¿ 0 ∧ rmax

( ∞∑
k=m+1

Pk(�t)

)/
ETRRa

m(t)6 �1

}
: (10)

That a Fnite R can be determined in this way follows from: 1) because d(k)¿ 0 for some k and
t ¿ 0, ETRRa

m(t) is (2) ¿ 0 for some m, 2) ETRRa
m(t) is increasing with m, and 3)

limm→ ∞
∑∞

k=m+1 Pk(�t)=0. Using Theorem 1 with !(k)=d(k) and �=�t, the relative truncation
error increases with t and, therefore, a global truncation point R guaranteeing a relative truncation
error 6 �1 at each time point ti can be obtained using (10) with t = tmax = max{t1; t2; : : : ; tn}¿ 0.
This is formally established by the following theorem, where

∑∞
k=R+1 d(k)Pk(�ti)=ETRRa

R(ti)¿ 0
follows from d(k)¿ 0.

Theorem 2. Let

R=min

{
m¿ 0: ETRRa

m(tmax)¿ 0 ∧ rmax

( ∞∑
k=m+1

Pk(�tmax)

)/
ETRRa

m(tmax)6 �1

}
:

Then, for i = 1; 2; : : : ; n,

06

∑∞
k=R+1 d(k)Pk(�ti)

ETRRa
R(ti)

6 �1:

In the rest of the paper we will refer to the R deFned in Theorem 2 simply as R.
Let

Sm(�) =
∞∑

k=m+1

Pk(�):

Determination of R could then be performed by computing Sm(�tmax) for increasing values of m. The
quantity Sm(�tmax) could be computed using Sm(�tmax)=1−∑m

k=0 Pk(�tmax), but this is numerically
unstable when Sm(�tmax) is �1. Another, better, approach is to use tight upper bounds for Sm(�tmax).
Let M ¿ 0 satisfying M + 1¿�tmax, which implies 0¡�tmax=(M + 1)¡ 1, and M¿m + 2.
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We have:

Sm(�tmax) =
M−1∑

k=m+1

Pk(�tmax) +
∞∑

k=M

Pk(�tmax)

¡
M−1∑

k=m+1

Pk(�tmax) +
∞∑

k=M

PM (�tmax)
(

�tmax

M + 1

)k−M

=
M−1∑

k=m+1

Pk(�tmax) + PM (�tmax)
∞∑
k=0

(
�tmax

M + 1

)k
= S̃m;M (�tmax) + Se

M (�tmax);

with

S̃m;M (�tmax) =
M−1∑

k=m+1

Pk(�tmax);

Se
M (�tmax) = PM (�tmax)

∞∑
k=0

(
�tmax

M + 1

)k
= PM (�tmax)

1
1 − �tmax=(M + 1)

:

The quantity S̃m;M (�tmax)+Se
M (�tmax) upper bounds Sm(�tmax) with relative error 6 Se

M (�tmax)=S̃m;M

(�tmax). Then, being & a reasonable small number, say &=10−6, we can obtain a tight upper bound for
Sm(�tmax) by choosing M as the smallest nonnegative integer satisfying M +1¿�tmax, M¿m+2
and Se

M (�tmax)=S̃m;M (�tmax)6 &. Computing Sm(�tmax) in that way for increasing m, starting at m=0,
until ETRRa

m(t)¿ 0 and rmaxSm(�tmax)=ETRRa
m(t)6 �1 would be expensive when the required R is

large, which will happen if �tmax is large and �1�1. The computational cost of the determination
of the truncation point R will be reduced using two improvements.
The Frst improvement consists in starting the computation of Sm(�tmax) at a value m0 of m poten-

tially larger than 0. First, observe that from d(k)6 rmax, we can easily obtain ETRRa
m(tmax)6 rmax∑m

k=0 Pk(�tmax) = rmax
(
1 −∑∞

k=m+1 Pk(�tmax)
)
=rmax(1 − Sm(�tmax)), which implies rmaxSm(�tmax)=

ETRRa
m(tmax)¿ Sm(�tmax)=(1 − Sm(�tmax)) and, to determine the truncation point R, we can restrict

our attention to values of m for which Sm(�tmax)=(1 − Sm(�tmax))6 �1, i.e. Sm(�tmax)6 �1=(1 + �1)
and do not examine values of m for which Sm(�tmax)¿�1=(1 + �1). Second, we have the following
result.

Lemma 2. Let �¿ 1 and ', 0¡'¡ 1. Let �= �−��� and '∗ =e−0:5+1=(8�)
√

�=(2(���). Then, for
m¿ 0, Sm(�) =

∑∞
k=m+1 Pk(�)¿' if any of the following conditions hold:

(a) P	�
(�)¿ 'e2=� and m6 ��� − 2 +
√
2� log(P	�
(�)='),

(b) P	�
(�)¿ ' or e−�(1=2 + (1=3)e−	�
���	�
=���!)¿ ', and m6 ��� − 1,
(c) '6 1 − '∗ and m6 ��� − 3=2 − √

�,
(d) '¿ 1 − '∗ and m6 ��� − 3=2 −√1=4 − � log(2(���(1 − ')2=�).

Proof. See Appendix A.
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Exploiting the observation and Lemma 2 with �=�tmax and '= �1=(1+ �1), to determine the trunca-
tion point R, we can start computing Sm(�tmax) at m=m0, where m0 is determined as follows, ) being
e−0:5+1=(8�tmax)

√
�tmax=(2(��tmax�). If �tmax ¡ 1, then m0=0. Otherwise, if P	�tmax
(�tmax)¿ (�1=(1+

�1))e2=(�tmax), then m0=max{0; ���tmax�−2+
√
2�tmax log(P	�tmax
(�tmax)=(�1=(1 + �1))�+1}. Other-

wise, if P	�tmax
(�tmax)¿ �1=(1 + �1) or e−(�tmax−	�tmax
)(1=2 + (1=3)e−	�tmax
��tmax�	�tmax
=
��tmax�!)¿ �1=(1+�1), then m0=��tmax�, ¿ 0 because �tmax¿ 1. Otherwise, m0=max{0; ���tmax�−
3=2 − √

�tmax� + 1}, if �1=(1 + �1)6 1 − ), and m0 = max{0; ���tmax� − 3=2 −√
1=4 − �tmax log(2(��tmax�(1 − �1=(1 + �1))2=(�tmax))� + 1}, if �1=(1 + �1)¿ 1 − ).
The second improvement is the use of S̃m+1;M (�tmax) = S̃m;M (�tmax) − Pm+1(�tmax), M¿m+ 2.

This yields the following scheme to compute approximate values for Sm(�tmax) with relative error
upper bounded by & for increasing values of m, starting at m=m0. Let * be a constant signiFcantly
greater than 1, say *=100. Then, for m=m0, we determine the smallest M with M +1¿�tmax and
M¿m0+2 satisfying Se

M (�tmax)=S̃m0 ;M (�tmax)6 &=*, set Slast = S̃m0 ;M (�tmax)+Se
M (�tmax), Sold =Slast,

and approximate Sm(�tmax) by Slast. Then, for increasing m, if m6M −2, we compute Slast =Slast −
Pm(�tmax) and, if Slast=Sold¿ 1=*, approximate Sm(�tmax) with Slast. If m becomes ¿M −2 or, being
m6M −2, Slast=Sold becomes ¡ 1=*, we obtain a new M as the smallest integer with M+1¿�tmax

and M¿m+2 satisfying Se
M (�tmax)=S̃m; M (�tmax)6 &=*, set Slast = S̃m; M (�tmax)+ Se

M (�tmax), Sold =
Slast, approximate Sm(�tmax) with Slast, and continue.
For large �tmax and �1�1, both m0 and R will be approximately equal to �tmax and the two

improvements will have an important impact on the cost of determining the truncation point R.

3.2. Determination of truncation points Li and R∗
i for each time point ti

In this section, we will discuss the introduction of a truncation point by the left Li and a truncation
point by the right R∗

i , beyond the truncation point by the right R, for each particular time point ti at
which the ETRR(t) measure has to be obtained, with the purpose of reducing the number of Poisson
probabilities which have to be computed. The Li and R∗

i will be selected so that the introduced relative
truncation error, (ETRRa

R(ti) −∑R∗
i

k=Li
d(k)Pk(�ti))=

(∑R∗
i

k=Li
d(k)Pk(�ti)

)
, is 6 �2 with �2 ¿ 0.

The relationship Pk+1(�ti)=((�ti)=(k+1))Pk(�ti), k¿ 0 ensures that Pk(�ti) will be increasing on
k for 06 k6 ��ti�−1 and, then, with Li6 ��ti�, Pk(�ti) will be increasing on k for 06 k6Li−1.
Then, letting dmax =max06k6Rd(k) (¿ 0 because (2), otherwise, ETRRa

R(ti) would be 0), we have:

Li−1∑
k=0

d(k)Pk(�ti)6LidmaxPLi−1(�ti); Li6 ��ti�: (11)

With R∗
i ¿ ��ti�, the relationship Pk+1(�ti)=(�ti=(k+1))Pk(�ti) ensures that Pk(�ti) is decreasing

on k for k¿R∗
i + 1. Then, we have:

R∑
k=R∗

i +1

d(k)Pk(�ti)6 (R − R∗
i )dmaxPR∗

i +1(�ti); R∗
i ¿ ��ti�: (12)
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Then, the largest Li6R guaranteeing
∑Li−1

k=0 d(k)Pk(�ti)=
(∑min{R;	�ti
}

k=Li
d(k)Pk(�ti)

)
6 �2=2 through

(11) is:

Li =




max

{
m : 16m6min{R; ��ti�} ∧ mdmaxPm−1(�ti)∑min{R;	�ti
}

k=m d(k)Pk(�ti)
6

�2
2

}

if
mdmaxPm−1(�ti)∑min{R;	�ti
}

k=m d(k)Pk(�ti)
6

�2
2

for some m; 16m6min{R; ��ti�}

0 otherwise

; (13)

and a R∗
i 6R guaranteeing

∑R
k=R∗

i +1 d(k)Pk(�ti)=
(∑R∗

i
k=Li

d(k)Pk(�ti)
)
6 �2=2 through (12) is:

R∗
i =




min
{
m : min{R; ��ti�}6m6R ∧ (R − m)dmaxPm+1(�ti)∑m

k=Li
d(k)Pk(�ti)

6
�2
2

}

if
(R − m)dmaxPm+1(�ti)∑m

k=Li
d(k)Pk(�ti)

6
�2
2

for some m; min{R; ��ti�}6m6R

R otherwise

: (14)

Note that, since the Li given by (13) is 6 ��ti�, Pk(�ti) will be increasing on k for 06 k6Li −1.
Also, when the R∗

i given by (14) is ¡R, R∗
i ¿ ��ti� and Pk(�ti) will be decreasing on k for

k¿R∗
i + 1.

The following lemma establishes that the Li and R∗
i given by (13) and (14) eIectively truncate

the summatory ETRRa
R(ti) =

∑R
k=0 d(k)Pk(�ti).

Lemma 3. The Li and R∗
i given by, respectively, (13) and (14) satisfy 06Li6R∗

i 6R.

Proof. From (13), we have 06Li6R. From (14), we have R∗
i 6R. The result follows, then, if

Li6R∗
i . For R∗

i = R, the result follows from, as previously noted, 06Li6R. Consider, then, the
case R∗

i ¡R. That case is only possible if (R − R∗
i )dmaxPR∗

i +1(�ti)=
(∑R∗

i
k=Li

d(k)Pk(�ti)
)
6 �2=2. But

this is incompatible with Li ¿R∗
i because dmax ¿ 0.

We will prove next that the relative truncation error resulting from the truncation deFned by the Li

and R∗
i given by, respectively, (13) and (14),

(
ETRRa

R(ti)−
∑R∗

i
k=Li

d(k)Pk(�ti)
)
=
(∑R∗

i
k=Li

d(k)Pk(�ti)
)

is well-deFned
(∑R∗

i
k=Li

d(k)Pk(�ti) is ¿ 0
)
. The proof is done in a sequence of two lemmas.

Lemma 4. The Li and R∗
i given by, respectively, (13) and (14) satisfy: a) for Li ¿ 0,

∑min{R;	�ti
}
k=Li

d(k)Pk(�ti)¿ 0; b) for R∗
i ¡R,

∑R∗
i

k=Li
d(k)Pk(�ti)¿ 0.

Proof. Li can only be ¿ 0 if LidmaxPLi−1(�ti)=
(∑min{R;	�ti
}

k=Li
d(k)Pk(�ti)

)
6 �2=2, which, because

dmax ¿ 0, can only happen if
∑min{R;	�ti
}

k=Li
d(k)Pk(�ti) is ¿ 0. This proves part a). Further, R∗

i can

only be ¡R if (R − R∗
i )dmaxPR∗

i +1(�ti)=
(∑R∗

i
k=Li

d(k)Pk(�ti)
)
6 �2=2, which, because dmax ¿ 0, can

only happen if
∑R∗

i
k=Li

d(k)Pk(�ti)¿ 0, proving part b).
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Lemma 5. For the Li and R∗
i given by, respectively, (13) and (14),

∑R∗
i

k=Li
d(k)Pk(�ti)¿ 0.

Proof. For the case R∗
i ¡R, the result follows from Lemma 4, part b). For the case R∗

i =R and Li=0,
the result follows from

∑R∗
i

k=Li
d(k)Pk(�ti)=

∑R
k=0 d(k)Pk(�ti)=ETRRa

R(ti)¿ 0, because of the way

in which R is selected (Theorem 2). For the case R∗
i = R, Li ¿ 0, we have

∑R∗
i

k=Li
d(k)Pk(�ti) =∑R

k=Li
d(k)Pk(�ti)¿

∑min{R;	�ti
}
k=Li

d(k)Pk(�ti) and the result follows from Lemma 4, part a).

Note that in the determination of R∗
i using (14) the fraction (R − m)dmaxPm+1(�ti)=

(∑m
k=Li

d(k)
Pk(�ti)

)
cannot take the form 0=0 because the numerator can only be 0 for m= R, in that case the

denominator would be
∑R

k=Li
d(k)Pk(�ti), which is ¿ 0 because d(k)¿ 0, Lemmas 3 and 5.

The following proposition states that the truncations introduced by the Li and R∗
i given by (13)

and (14) introduce a relative truncation error 6 �2.

Proposition 1. For the Li and R∗
i given by, respectively, (13) and (14):

06
ETRRa

R(ti) −∑R∗
i

k=Li
d(k)Pk(�ti)∑R∗

i
k=Li

d(k)Pk(�ti)
6 �2:

Proof. The left inequality follows immediately from Lemma 3, d(k)¿ 0 and Lemma 5. Let us
prove the right inequality. Because of Lemma 3, we can write:

ETRRa
R(ti) −∑R∗

i
k=Li

d(k)Pk(�ti)∑R∗
i

k=Li
d(k)Pk(�ti)

= ILi¿0

∑Li−1
k=0 d(k)Pk(�ti)∑R∗

i
k=Li

d(k)Pk(�ti)
+ IR∗

i ¡ R

∑R
k=R∗

i +1 d(k)Pk(�ti)∑R∗
i

k=Li
d(k)Pk(�ti)

;

where Ic denotes the indicator function returning the value 1 if condition c is satisFed and the value
0 otherwise. The right inequality follows, then, if (a) for Li ¿ 0,

(∑Li−1
k=0 d(k)Pk(�ti)

)
=
(∑R∗

i
k=Li

d(k)

Pk(�ti)
)
is 6 �2=2, and (b) for R∗

i ¡R,
∑R

k=R∗
i +1 d(k)Pk(�ti)=

(∑R∗
i

k=Li
d(k)Pk(�ti)

)
is 6 �2=2.

To prove (a), note that from (14) R∗
i ¿min{R; ��ti�} and d(k)¿ 0 we have

∑R∗
i

k=Li
d(k)Pk(�ti)¿∑min{R;	�ti
}

k=Li
d(k)Pk(�ti), ¿ 0 by Lemma 4, part (a). Also, for Li ¿ 0, (11) and (13) ensure∑Li−1

k=0 d(k)Pk(�ti)=
(∑min{R;	�ti
}

k=Li
d(k)Pk(�ti)

)
6 �2=2. Then, for Li ¿ 0,∑Li−1

k=0 d(k)Pk(�ti)∑R∗
i

k=Li
d(k)Pk(�ti)

6
∑Li−1

k=0 d(k)Pk(�ti)∑min{R;	�ti
}
k=Li

d(k)Pk(�ti)
6

�2
2
:

To prove (b), it su$ces to note that, for R∗
i ¡R, (12) and (14) ensure

∑R
k=R∗

i +1 d(k)Pk(�ti)=(∑R∗
i

k=Li
d(k)Pk(�ti)

)
6 �2=2.

Using (13), the truncation point Li can be determined by computing Poisson probabilities Pk(�ti)
for decreasing k, starting at k=min{R; ��ti�}. Using (14), the truncation point R∗

i can be determined,
afterwards, by computing Poisson probabilities Pk(�ti) for increasing k, starting at k=min{R; ��ti�}+
1. For large �ti, the truncation point Li given by (13) can be signiFcantly larger than 0 and, for large
�ti signiFcantly smaller than �tmax, the truncation point R∗

i given by (14) can be signiFcantly smaller
than R. In any of those cases, the reduction on the number of Poisson probabilities Pk(�ti) which
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have to be computed achieved by the truncations deFned by the Li and R∗
i given by, respectively,

(13) and (14) can be signiFcant. In the rest of the paper we will refer to the Li given by (13)
simply as Li and to the R∗

i given by (14) simply as R∗
i .

3.3. Use of weights for estimating Poisson probabilities and adjustment of the error control
parameters

Since (13), (14) the expressions controlling the value of the truncation points Li and R∗
i are

invariant to a scaling of the Poisson probabilities Pk(�ti), it is possible to determine those truncation
points using weights (scaled Poisson probabilities) wi

k ¿ 0. Those weights can be obtained using
wi
min{R;	�ti
} = 1 and

wi
k =

k + 1
�ti

wi
k+1; k =min{R; ��ti�} − 1;min{R; ��ti�} − 2; : : : ;

wi
k =

�ti
k

wi
k−1; k =min{R; ��ti�} + 1;min{R; ��ti�} + 2; : : : :

Use of those weights instead of “exact” Poisson probabilities is advantageous from a computational
point of view.

Consider normalized weights w̃i
k ¿ 0, Li6 k6R∗

i , obtained from wi
k , Li6 k6R∗

i using

w̃i
k =

wi
k∑R∗

i
l=Li

wi
l

;

so that
∑R∗

i
k=Li

w̃i
k = 1. Those normalized weights can be used instead of “exact” Poisson proba-

bilities when computing
∑R∗

i
k=Li

d(k)Pk(�ti). Note that, because w̃i
k are scaled versions of Pk(�ti),∑R∗

i
k=Li

w̃i
k =1 and

∑R∗
i

k=Li
Pk(�ti)¡ 1, we have w̃i

k ¿Pk(�ti). It is intuitively clear that if
∑R∗

i
k=Li

Pk

(�ti) is only slightly smaller than 1, then the normalized weights w̃i
k can be used instead of Pk(�ti)

to get an approximation
∑R∗

i
k=Li

d(k)w̃i
k for

∑R∗
i

k=Li
d(k)Pk(�ti) with small relative error. Use of those

normalized weights has better numerical stability than the use of “exact” Poisson probabilities and
results in a more numerically stable method for computing the ETRR(t) measure at time point ti.
The following proposition gives a lower bound for

∑R∗
i

k=Li
Pk(�ti) in terms of �1 and �2, showing

that for small �1 and �2,
∑R∗

i
k=Li

Pk(�ti) is indeed only slightly smaller than 1.

Proposition 2.
R∗
i∑

k=Li

Pk(�ti)¿ 1 − (�1 + �2):

Proof. See Appendix A.

Using Proposition 2, it is possible to show the following proposition which bounds the rela-
tive error

(∑R∗
i

k=Li
d(k)w̃i

k −∑R∗
i

k=Li
d(k)Pk(�ti)

)
=
(∑R∗

i
k=Li

d(k)w̃i
k

)
with which

∑R∗
i

k=Li
d(k)w̃i

k gives∑R∗
i

k=Li
d(k)Pk(�ti). Note that, because w̃i

k ¿ 0 are scaled versions of Pk(�ti), Lemma 5 implies
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∑R∗
i

k=Li
d(k)w̃i

k ¿ 0 and, therefore, that
(∑R∗

i
k=Li

d(k)w̃i
k − ∑R∗

i
k=Li

d(k)Pk(�ti)
)
=
(∑R∗

i
k=Li

d(k)w̃i
k

)
is

well-deFned.

Proposition 3.

0¡

∑R∗
i

k=Li
d(k)w̃i

k −∑R∗
i

k=Li
d(k)Pk(�ti)∑R∗

i
k=Li

d(k)w̃i
k

¡ �1 + �2:

Proof. To prove
(∑R∗

i
k=Li

d(k)w̃i
k−
∑R∗

i
k=Li

d(k)Pk(�ti)
)
=
(∑R∗

i
k=Li

d(k)w̃i
k

)
¿ 0, let w̃i

k=cPk(�ti), where
c¿ 1 because w̃i

k ¿Pk(�ti)¿ 0. We have:

∑R∗
i

k=Li
d(k)w̃i

k −∑R∗
i

k=Li
d(k)Pk(�ti)∑R∗

i
k=Li

d(k)w̃i
k

=
c
∑R∗

i
k=Li

d(k)Pk(�ti) −∑R∗
i

k=Li
d(k)Pk(�ti)

c
∑R∗

i
k=Li

d(k)Pk(�ti)
=

c − 1
c

¿ 0:

We will prove next
(∑R∗

i
k=Li

d(k)w̃i
k − ∑R∗

i
k=Li

d(k)Pk(�ti)
)
=
(∑R∗

i
k=Li

d(k)w̃i
k

)
6 �1 + �2. Using

w̃i
k = Pk(�ti)=

(∑R∗
i

k=Li
Pk(�ti)

)
we get:

∑R∗
i

k=Li
d(k)w̃i

k −∑R∗
i

k=Li
d(k)Pk(�ti)∑R∗

i
k=Li

d(k)w̃i
k

=1 −
∑R∗

i
k=Li

d(k)Pk(�ti)∑R∗
i

k=Li
d(k)w̃i

k

=1 −
∑R∗

i
k=Li

d(k)Pk(�ti)∑R∗
i

k=Li
d(k)

Pk(�ti)∑R∗
i

k=Li
Pk(�ti)

= 1 −
R∗
i∑

k=Li

Pk(�ti):

Then, the result follows from Proposition 2.

The following theorem establishes an upper bound for the absolute relative error, |ETRR(ti) −∑R∗
i

k=Li
d(k)w̃i

k |=
(∑R∗

i
k=Li

d(k)w̃i
k

)
with which

∑R∗
i

k=Li
d(k)w̃i

k gives ETRR(ti) in terms of �1 and �2.

Theorem 3.

|ETRR(ti) −∑R∗
i

k=Li
d(k)w̃i

k |∑R∗
i

k=Li
d(k)w̃i

k

¡ �1(1 + �2) + �1 + 2�2:

Proof. Using Lemma 5 and Proposition 1, we easily obtain ETRRa
R(ti)6 (1+ �2)

∑R∗
i

k=Li
d(k)Pk(�ti)

and
∑R∗

i
k=Li

d(k)Pk(�ti)¿ETRRa
R(ti)=(1 + �2)¿ 0. Then, using

∑R∗
i

k=Li
d(k)w̃i

k ¿
∑R∗

i
k=Li

d(k)
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Pk(�ti)¿ 0, which follows from Proposition 3,
∑R∗

i
k=Li

d(k)w̃i
k ¿ 0 and Lemma 5, and 06 |ETRR(ti)

− ETRRa
R(ti)|=ETRRa

R(ti)6 �1, by Theorem 2 and ETRR(ti) − ETRRa
R(ti) =

∑∞
k=R+1 d(k)Pk(�ti):

|ETRR(ti) − ETRRa
R(ti)|∑R∗

i
k=Li

d(k)w̃i
k

¡
|ETRR(ti) − ETRRa

R(ti)|∑R∗
i

k=Li
d(k)Pk(�ti)

6 (1 + �2)
|ETRR(ti) − ETRRa

R(ti)|
ETRRa

R(ti)
6 �1(1 + �2): (15)

From
∑R∗

i
k=Li

d(k)w̃i
k ¿

∑R∗
i

k=Li
d(k)Pk(�ti)¿ 0 and Proposition 1:

|ETRRa
R(ti) −∑R∗

i
k=Li

d(k)Pk(�ti)|∑R∗
i

k=Li
d(k)w̃i

k

¡
|ETRRa

R(ti) −∑R∗
i

k=Li
d(k)Pk(�ti)|∑R∗

i
k=Li

d(k)Pk(�ti)
6 �2: (16)

Finally, using
∑R∗

i
k=Li

d(k)w̃i
k ¿ 0, Proposition 3, (15), and (16):

|ETRR(ti) −∑R∗
i

k=Li
d(k)w̃i

k |∑R∗
i

k=Li
d(k)w̃i

k

6
|ETRR(ti) − ETRRa

R(ti)|∑R∗
i

k=Li
d(k)w̃i

k

+
|ETRRa

R(ti) −∑R∗
i

k=Li
d(k)Pk(�ti)|∑R∗

i
k=Li

d(k)w̃i
k

+
|∑R∗

i
k=Li

d(k)Pk(�ti) −∑R∗
i

k=Li
d(k)w̃i

k |∑R∗
i

k=Li
d(k)w̃i

k

¡ �1(1 + �2) + �1 + 2�2:

Using Theorem 3, ETRR(ti) can be computed using
∑R∗

i
k=Li

d(k)w̃i
k with absolute relative error

upper bounded by � with the selections �1 = �=4, �2 = �=(4 + �=2). Those are the selections which
will be used in the implementation.

3.4. Algorithmic descriptions

Figs. 1 and 2 describe in C-like syntax the implementation of the standard randomization method
for the computation of the ETRR(t) measure at several time points t1; t2; : : : ; tn with absolute relative
error upper bounded by � discussed in the previous sections. The implementation has as inputs the
CTMC X , the reward rates ri, i∈�, the initial probability distribution row vector � = (�i)i∈�, the
required relative error �, the number of time points n at which ETRR(t) has to be computed, and the
time points, t1; t2; : : : ; tn, and has as outputs the computed values of the measure at the time points
ti, ]ETRR(t1); ]ETRR(t2); : : : ; ]ETRR(tn). The row vector q=(qi)i∈� holds probability row vectors of X̂ .
The implementation has two phases. The Frst phase includes the determination of the truncation point
R and the computation of d(k), 06 k6R; the second phase (call to the function Compute ETRR())
includes, for each time point ti, the computation on the variables L and R∗ of the truncation points
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Fig. 1. Implementation of the standard randomization method for the computation of the ETRR(t) measure with control
of the absolute relative error.
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Fig. 2. Description of the procedure Compute ETRR invoked in Figs. 1 and 3.

Li and R∗
i , the computation on the variables wk of the weights wi

k , the computation on the variables
w̃k of the normalized weights w̃i

k , Li6 k6R∗
i , and the computation on ]ETRR(ti) of the approximate

value of ETRR(ti) using
∑R∗

i
k=Li

d(k)w̃i
k . The computation of d(k), 06 k6R and the computation

of approximate values for Sm(�tmax) for increasing m, starting at m0, as discussed in Section 3.1 are
embedded in the pseudocode determining the truncation point R. In that pseudocode, computation
of ETRRa

m(�tmax) from m = 0 up to m = R is done on the variable trunc sum. In the call to the
function Compute ETRR(), the variable trunc sum is used Frst to compute

∑min{R;	�ti
}
k=m d(k)wi

k from
m=min{R; ��ti�} down to m= Li and, then, to compute

∑m
k=Li

d(k)wi
k from m=min{R; ��ti�} up

to m=R∗
i . The variable may take the value 0 and that case is properly dealt with in the pseudocode.

Using (1) and (4), it follows that the EARR(t) measure has a formalization in terms of Pk(�t)
identical to that of the ETRR(t) measure with d(k) replaced by d′(k) =

(∑k
l=0 d(l)

)
=(k + 1). This

makes all the developments in the previous sections for the measure ETRR(t) to carry over the
EARR(t) measure with the only diIerence that d(k) has to be replaced by d′(k). This allows to
adapt easily to the EARR(t) measure the implementation of the standard randomization method for
the ETRR(t) measure with control of the absolute relative error. The implementation of the method
for the EARR(t) measure is described in Figs. 3 and 2.

4. Analysis and discussion

In this section we will analyze the numerical stability of the implementations of the standard
randomization method for the measures ETRR(t) and EARR(t) derived in the previous section using
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Fig. 3. Implementation of the standard randomization method for the computation of the EARR(t) measure with control
of the absolute relative error.

a small rewarded CTMC model of a repairable fault-tolerant system. We will also discuss the
computational e$ciency of the implementations with respect to simpler alternatives.
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Fig. 4. State transition diagram of the CTMC describing the behavior of the example fault-tolerant system.

The rewarded CTMC model which will be used to analyze the numerical stability of the im-
plementations corresponds to a repairable fault-tolerant computer system using the triple modular
redundancy (TMR) technique including three identical processing modules and a voter. The system
is up if the voter and at least two processing modules are unfailed. It is assumed that components
do not fail when the system is down. Failure and repair times are assumed to have exponential
distributions. The failure rate of a processing module is �M and the failure rate of the voter is �V.
The repair rate of a processing module is 1M and the repair rate of the voter is 1V. Repairs are per-
formed by a single repairman who gives preemptive priority to the voter. It is assumed that initially
all processing modules and the voter are unfailed. Fig. 4 depicts the state transition diagram of the
resulting CTMC. The states are labeled by (PM; V ), where PM is the number of unfailed processing
modules and V has value 1 if the voter is unfailed and value 0 otherwise. The initial state of the
CTMC is the state (3; 1). We will consider the reward rate structure:

ri =

{
1 for i∈ {(3; 0); (2; 0); (1; 1)};
0 for i∈ {(3; 1); (2; 1)}:

Under that reward rate structure, the ETRR(t) measure is the unavailability at time t, i.e. the probabil-
ity that the system is down at time t, and the EARR(t) measure is the expected interval unavailability
at time t, i.e. the expected value of the fraction of time that the system is down in the time in-
terval [0; t]. The numerical experiments will be performed using �M = 10−3 h−1, �V = 10−4 h−1,
1M =0:5 h−1, and 1V =1 h−1, which yields �=1 h−1. The steady-state unavailability of the system
is 1:2384 × 10−4.
The implementations used double precision arithmetic and were run in a Sun-Blade-1000 pro-

cessor. The actual errors of the numerical results given by the implementations were obtained by
comparing those results with an “exact” solution of the model computed using a mathematical
software package with 100 digits of accuracy, which was enough to determine with good accu-
racy the actual errors. Fig. 5 plots the actual relative error in the numerical solution given by
the implementation for the ETRR(t) measure when that implementation is run with a single tar-
get time t and an absolute relative error requirement �, for several values of � and t. Fig. 6 plots
the results obtained by the implementation for the EARR(t) measure. We can note that the ac-
tual relative error, �m, is always smaller than �, even for such stringent values of � as 10−10.
For the ETRR(t) measure and not small �t = t, �m is extremely small and almost independent
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Fig. 5. Actual relative errors in the implementation for the ETRR(t) measure as a function of � and t (h).

Fig. 6. Actual relative errors in the implementation for the EARR(t) measure as a function of � and t (h).

of �. The explanation of that behavior is the following. For not small �t, both ETRR(t) and
the d(k) corresponding to non-negligible Poisson probabilities Pk(�t) are almost identical to the
steady-state unavailability and, then, since the implementation computes ETRR(t) by averaging d(k)
with weights proportional to the Poisson probabilities Pk(�t) , the actual error is basically due to
round-oI errors and, therefore, extremely small and almost independent of the requested absolute
relative error, �. Overall, the implementations for both methods seem to have a very high numerical
stability.

Simpler alternatives to the implementations of the standard randomization method developed in this
paper would only use the truncation point R deFned in Theorem 2 with �1 = �, � being the requested
relative error, and would estimate the ETRR(t) measure at each time point ti using

∑R
k=0 d(k)Pk(�ti)

and the EARR(t) measure at each time point ti using
∑R

k=0 d′(k)Pk(�ti). This would require to
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Table 2
Truncation point R used by the implementations developed in the paper and the truncation point R′ in simpler alternatives
for the example when the implementations for both measures are run with a single target time t and � = 10−4

ETRR(t) EARR(t)
t (h) R R′ R R′

0.01 4 4 4 4
0.1 6 6 6 6
1 11 11 11 11
10 33 32 33 32
100 163 161 163 161
103 1,189 1,181 1,189 1,181
104 10,587 10,562 10,587 10,562
105 101,843 101,768 101,843 101,768
106 1,005,817 1,005,580 1,005,817 1,005,580
107 10,018,383 10,017,634 10,018,383 10,017,634

compute “exact” Poisson probabilities. Call R′ the truncation point R in those alternatives. Then,
since R decreases with �1, R′ would be smaller than the truncation point R of the implementations
developed in the paper. This would allow a reduction on the required number of vector-matrix
multiplications (3), which for large rewarded CTMC models is an important component of the com-
putational cost of the method. However, being R a smooth function of �1, the reduction will not
be, in general, signiFcant. This is illustrated in Table 2 which compares R and R′ for the example
when the implementations for both measures are run with a single target time t and � = 10−4. At
the price of increasing slightly the truncation point R and the required number of vector-matrix
multiplications, the implementations developed in this paper have computational advantages. One of
them is a better numerical stability, since available approaches to compute “exact” Poisson proba-
bilities, e.g. [6, pp. 1028–1029], are less stable numerically than the use of normalized weights. The
implementations developed in this paper have also computational advantages when �tmax is large
and the number of time points n at which the measure has to be computed is large. In that case, the
improvements developed in Section 3.1 to determine the truncation point R which are incorporated
in the implementations reduce signiFcantly the number of “exact” Poisson probabilities which have
to be computed and the truncation points Li and R∗

i introduced in Section 3.2 make the number of
weights and normalized weights which have to be computed for each time point ti to be signiFcantly
smaller than the number of “exact” Poisson probabilities which would have to be computed in the
simpler alternative implementations.

5. Conclusions

Based on a theoretical result regarding the dependence on the parameter of the Poisson distribution
of the relative error introduced when a weighted sum of Poisson probabilities is truncated by the right,
we have developed implementations of the standard randomization method for the computation of the
“expected transient reward rate” and the “expected averaged reward rate” measures over rewarded



1110 V. Suñ*e, J.A. Carrasco / Computers & Operations Research 32 (2005) 1089–1114

CTMCs with control of the relative error. The methods seem to exhibit an excellent numerical
stability and have computational advantages over simpler alternatives. The implementations developed
in the paper are sometimes preferable from a practical point of view over the standard randomization
method as it is usually implemented, i.e. with control of the absolute truncation error.

Appendix A.

Proof of Lemma 2. Let m∗ = ��� − 2 +
√
2� log(P	�
(�)='). Then, for 06m6m∗, which implies

m+ 16 �m∗� + 1, we have

Sm(�) =
∞∑

k=m+1

Pk(�)¿P	m∗
+1(�): (A.1)

From [19, Proposition 5] it follows that, for any strictly positive integer i,

P	�
+i(�)¿P	�
(�) exp
(

−(i + 1)2

2�

)
: (A.2)

Noting that P	�
(�)¿ 'e2=� implies m∗¿ ��� and, therefore, �m∗�¿ ���, we have �m∗�+1−���¿ 1.
Then, using (A.1), using (A.2) with i=�m∗�+1−���, noting that e−x2 is decreasing, and substituting
m∗, we obtain, for 06m6m∗:

Sm(�)¿P	m∗
+1(�)¿P	�
(�) exp
(

−(�m∗� + 2 − ���)2
2�

)

¿P	�
(�) exp
(

−(m∗ + 2 − ���)2
2�

)

= P	�
(�) exp
(

−2� log(P	�
(�)=')
2�

)
= ':

(b) Assume Frst P	�
(�)¿ '. Then, for 06m6 ��� − 1, which implies ���¿m+ 1,

Sm(�) =
∞∑

k=m+1

Pk(�)¿P	�
(�)¿ ':

Assume next e−�(1=2 + (1=3)e−	�
���	�
=���!)¿ '. Let Z be a Poisson random variable with mean
���, and let 4 such that 1=2=P[Z ¡ ���]+ 4P[Z = ���]. Using a result given in [20, p. 780], which
depends on ���¿ 1, 4¿ 1=3 and, therefore,

1=2 − P[Z ¡ ���]
P[Z = ���] = 4¿

1
3
: (A.3)

From (A.3) we can obtain 1 − P[Z ¡ ���]¿ 1=2 + (1=3)P[Z = ���] and

P[Z¿ ���]¿ 1
2
+

1
3
P[Z = ���]: (A.4)
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Moreover, since 06 �¡ 1 and ���¿ 1, for k¿ 0,

Pk(�) = e−� �
k

k!
= e−�e−	�
 (��� + �)k

k!
¿ e−�e−	�
 ���k

k!
= e−�P[Z = k]:

Then, for 06m6 ���−1, which implies ���¿m+1, using (A.4), and using e−�(1=2+(1=3)e−	�

���	�
=���!)¿ ',

Sm(�) =
∞∑

k=m+1

Pk(�)¿
∞∑

k=	�

Pk(�)¿ e−�

∞∑
k=	�


P[Z = k] = e−�P[Z¿ ���]

¿ e−�

(
1
2
+

1
3
P[Z = ���]

)
= e−�

(
1
2
+

1
3
e−	�
 ���	�


���!

)
¿ ':

(c) Let U5(x) =
∫∞
x 6(u) du, with 6(u) = (1=

√
2()e−u2=2. It is proved in [21, p. 13] that

m∑
k=0

Pk(�)6

√
�

��� e1=(8�) U5
(��� − m − 3=2√

�

)
; �¿ 1; 06m6 ��� − 2:

From [7, Formula 26.2.12],

U5(x) =
6(x)
x

− 6(x)
x3

− 15
∫ ∞

x

6(u)
u6

du¡
6(x)
x

; x¿ 0:

Then, since m6 ��� − 2 implies ��� − m¿ 2 and (��� − m − 3=2)=
√
�¿ 0,

m∑
k=0

Pk(�) ¡

√
�

2(���e
1=(8�) exp

[
−1
2

(��� − m − 3=2√
�

)2]

×
√
�

��� − m − 3=2
= Tm(�); �¿ 1; 06m6 ��� − 2: (A.5)

Also, extending the deFnition of Tm(�) in (A.5) to m real, we have

'∗ = T	�
−3=2−√
�(�): (A.6)

Let f(x) = e−x2=2=x. Since f(x) is decreasing for x¿ 0,

Tm(�) =

√
�

2(��� e1=(8�) f
(��� − m − 3=2√

�

)

6

√
�

2(��� e1=(8�)f
(��� − m′ − 3=2√

�

)

= Tm′(�); �¿ 1; 06m6m′6 ��� − 2: (A.7)

Since �¿ 1 implies ��� − 3=2− √
�6 ��� − 2, for 06m6 ��� − 3=2− √

� we can use (A.5) and
use (A.7) with m′ = ��� − 3=2 − √

�, yielding
m∑

k=0

Pk(�)¡Tm(�)6T	�
−3=2−√
�(�):
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Then, using (A.6) and recalling that, by assumption, '∗6 1 − ',
m∑

k=0

Pk(�)¡'∗6 1 − ':

Finally,

Sm(�) =
∞∑

k=m+1

Pk(�) = 1 −
m∑

k=0

Pk(�)¿ 1 − (1 − ') = ':

(d) Let g(x) = e−x2=2. Since g(x) is decreasing for x¿ 0, retaking the deFnition of Tm(�) given
in (A.5) extended to m real,

gm(�) = Tm(�)
��� − m − 3=2√

�
=

√
�

2(��� e1=(8�)g
(��� − m − 3=2√

�

)

6

√
�

2(��� e1=(8�)g
(��� − m′ − 3=2√

�

)
= gm′(�); �¿ 1; 06m6m′6 ��� − 2: (A.8)

A solution m(') of gm(�) = 1 − ' is

m(') = ��� − 3
2

−
√

1
4

− � log
(
2(���(1 − ')2

�

)
;

which is real for '¿ 1 − '∗. Trivially, since m(') is decreasing on ' for 0¡'¡ 1, and, by
assumption, '¿ 1− '∗, m(')6m(1− '∗). It is also easy to check that m(1− '∗)= ���− 3=2−√

�.
Then, using �¿ 1, for m6 ��� − 3=2 −√1=4 − � log(2(���(1 − ')2=�) = m('),

m6m(')6 ��� − 3
2

−
√
�¡ ��� − 2; (A.9)

from which we get
√
�

��� − m − 3=2
6 1:

Using, then, the deFnition of gm(�) in (A.8) we obtain

Tm(�) =

√
�

��� − m − 3=2
gm(�)6 gm(�): (A.10)

Moreover, since (A.9) m(')¡ ��� − 2 and �¿ 1, for 06m6m('), we have (A.8)

gm(�)6 gm(')(�) = 1 − ': (A.11)

Finally, since (A.9) m¡ ��� − 2, we can invoke (A.5), which together with (A.10) and (A.11)
yields

m∑
k=0

Pk(�)¡Tm(�)6 1 − ';
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and, therefore,

Sm(�) =
∞∑

k=m+1

Pk(�) = 1 −
m∑

k=0

Pk(�)¿ 1 − (1 − ') = ':

Proof of Proposition 2. Assume Li ¿ 0. Taking into account Lemma 4, part a), that, because of
Lemma 4, part a),

∑min{R;	�ti
}
k=Li

Pk(�ti)¿ 0, that, as noted in Section 3.2, Pk(�ti) is increasing on
k for 06 k6Li − 1, that 06d(k)6dmax, Li6 k6R∗

i , and the way in which Li is selected (13):∑Li−1
k=0 Pk(�ti)∑min{R;	�ti
}

k=Li
Pk(�ti)

6
LiPLi−1(�ti)∑min{R;	�ti
}

k=Li
Pk(�ti)

=
LidmaxPLi−1(�ti)

dmax
∑min{R;	�ti
}

k=Li
Pk(�ti)

6
LidmaxPLi−1(�ti)∑min{R;	�ti
}

k=Li
d(k)Pk(�ti)

6
�2
2
;

implying
(
because 0¡

∑min{R;	�ti
}
k=Li

Pk(�ti)¡ 1
)

Li−1∑
k=0

Pk(�ti)6
�2
2
: (A.12)

The previous inequality can be trivially extended to the case Li = 0.
Assume R∗

i ¡R. Taking into account Lemma 5, that, because of Lemma 5,
∑R∗

i
k=Li

Pk(�ti)¿ 0,
that, as noted in Section 3.2, Pk(�ti) is decreasing on k for k¿R∗

i + 1, that 06d(k)6dmax,
Li6 k6R∗

i , and the way in which R∗
i is selected (14):∑R

k=R∗
i +1 Pk(�ti)∑R∗

i
k=Li

Pk(�ti)
6

(R − R∗
i )PR∗

i +1(�ti)∑R∗
i

k=Li
Pk(�ti)

=
(R − R∗

i )dmaxPR∗
i +1(�ti)

dmax
∑R∗

i
k=Li

Pk(�ti)

6
(R − R∗

i )dmaxPR∗
i +1(�ti)∑R∗

i
k=Li

d(k)Pk(�ti)
6

�2
2
;

implying
(
again, because 0¡

∑R∗
i

k=Li
Pk(�ti)¡ 1

)
R∑

k=R∗
i +1

Pk(�ti)6
�2
2
: (A.13)

The previous inequality can be trivially extended to the case R∗
i = R.

Finally, since
∑∞

k=R+1 Pk(�t) increases with t, because it is the probability that the number of
arrivals in a Poisson process with arrival rate � in the time interval [0; t] is ¿R + 1, taking into
account the way in which R is selected (10) and using 0¡ETRRa

R(tmax)6 rmax,
∞∑

k=R+1

Pk(�ti)6
∞∑

k=R+1

Pk(�tmax)6
�1
rmax

ETRRa
R(tmax)6 �1: (A.14)

Finally, combining (A.12), (A.13) and(A.14) and using
∑∞

k=0 Pk(�t) = 1:
R∗
i∑

k=Li

Pk(�ti) = 1 −
Li−1∑
k=0

Pk(�ti) −
R∑

k=R∗
i +1

Pk(�ti) −
∞∑

k=R+1

Pk(�ti)¿ 1 − (�1 + �2):
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