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Abstract

In this paper, we consider a repair shop location problem with uncertainties in demand. New repair shops have to
be opened at a number of locations. At these local repair shops, customers arrive with broken, but repairable, items.
Customers go to the nearest open repair shop. Since they want to leave as soon as possible, an inventory of working
items is kept at the repair shops. A customer immediately receives a working item from stock, provided that the
stock is not empty. If a stockout occurs, the customer has to wait for a working item. The broken items are repaired
in the shop and then put in stock. Sometimes, however, a broken item cannot be fixed at the local repair shop, and it
has to be sent to a central repair shop. At the central repair shop the same policy with inventory and repair is used.

The problem we focus on, is finding locations for the local repair shops, deciding their capacity, i.e., number
of servers and base stock levels, such that the total expected cost is minimized and the fraction of customers that
can leave the local shops without waiting is above some specified level. We assume that the central repair shop is
already opened, but that the repair capacity still has to be set. The costs we consider are the costs for keeping the
repair shops operational, for the transport of items and for the inventory. For this problem, a local search heuristic
is proposed and experimental results are presented.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we present a model for the following problem. Consider a transport company, which uses
buses/trucks for transportation of passengers/goods. The company decides to build small repair shops
for the maintenance of the vehicles. When a vehicle is defective, its driver brings it to the repair shop,
where the broken part is replaced in a neglectable time. The broken part is repaired, in principal, at the
local repair shop. If the broken part, for some reason, cannot be repaired at the local repair shop, it is
sent to the central repair shop. There are several locations where the local repair shops can be placed. At
a repair shop several repair facilities can be installed and spare parts can be kept in inventory in order to
insure a high service level. The position of the central repair shop is known in advance, but the number
of servers that will be installed there is not. When deciding if at a certain location a repair shop will be
opened, the company looks at the following costs: the cost of opening the facility, the cost of installing the
necessary number of servers at that facility, the distance from the customers (each customer is assigned
to the closest open facility), the cost of the necessary inventory and the transportation cost to the central
repair facility. The company prefers a solution that insures, at a minimal cost, a high quality of service,
given by a small probability that a customer has to wait.

The model presented in this paper is related to the area of facility location and the area of inventory
control in multi-echelon models for repairable systems. Although both problems have received much
attention separately, not much has been done on addressing them together.

In a facility location problem, having some information on the demand and on the possible location
of facilities, one has to decide where to open facilities such that certain objectives are realized (e.g.,
minimization of costs, maximization of the population covered, minimization of response time). The
literature on facility location problems is very vast. For a survey on models and methods see the books
edited by Drezner[1], Mirchandani and Francis[2] and the review done by Hesse et al.[3].

Recently, the issue of uncertainty of demand and transportation has been addressed in several papers.
Many of them concern models for emergency systems, in which a server travels to the site of the emergency,
as opposed to systems in which servers are fixed at certain locations[4–7]. In the case of more mobile
servers, the algorithms developed generally use as a sub-algorithm the single-server model[8,9]. Marianov
and Serra[10] analyse the issue of locating servers at fixed locations when the number of requests for
service follow some probabilistic distribution. Their goal is to maximize the population covered under
the constraint that the probability of a long response time or the probability of long queues are small.
In Marianov and Serra[11] they extend their analysis to the situation in which the number of facilities
and servers needed to cover all the population is minimized. In[12], Wang, Batta and Rump propose
a heuristic for finding the optimal location of facilities in order to optimise the traveling cost of the
customers and their waiting cost. In their model there is an upper bound on the number of open facilities
and on the expected waiting time at a facility.

For literature on spare part management, we refer to Sherbrooke[13], Muckstadt[14], Avsar and
Zijm [15] and Sleptchenko[16]. In these papers the focus is on multi-echelon inventory systems, (in
a multi-echelon system, inventory is stored at different locations). The papers by Sherbrooke and by
Muckstadt, assume that the repair capacity is infinite, so that all items are repaired simultaneously. They
present algorithms for optimizing inventory levels at the different locations, the so called (MOD)METRIC
models. In the papers by Avsar and Zijm and by Sleptchenko, the repair capacity is finite, so some-
times items have to wait for repair. Avsar and Zijm model the system as a product form network, by
assuming that the repair times are exponentially distributed while Sleptchenko gives an approxima-
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tion based on the first two moments of the repair times. They use the analytic results to find optimal
inventory levels.

This paper is structured as follows. In Section 2, we describe the problem in more detail and propose
a stochastic model for it. We model the repair shops as M/M/k queues and consider deterministic trans-
portation times. The quality of service is measured by the probability that a customer has to wait for
service. Since it is very difficult to find this probability analytically, we will approximate it by using the
method described by Avsar and Zijm in[15]. The approximation of the fill rate and the calculation of the
expected inventory levels at facilities are presented in Section 3. In Section 4, we propose a local search
heuristic for finding a solution of the problem. In Section 5, we present computational results illustrating
the behavior of the proposed procedure. The numerical results obtained by the local search procedure are
compared with a brute force procedure and a procedure based on sequential optimization. We present our
conclusions in Section 6.

2. The model

Next we will describe in more detail the problem of locating repair shops in a stochastic environment.
There is a set of customers who require service (repair of a broken item), a set of locations where local
repair shops may be opened and an already opened central repair shop. We assume that the customers are
grouped in clusters, depending on their geographical location. Each cluster is assigned for service to the
nearest open local repair shop.

At each local repair shop a stock of items is kept in order to replace the broken items brought by
customers. The broken items that have been repaired locally, are put in stock and are ready to use.
By some external cause, broken items sometimes cannot be repaired locally. These items are sent for
repair to the central repair shop. Here the same policy is used as in the local repair shops. At the mo-
ment a broken item arrives at the central repair shop, an item from the central stock is sent to the
stock at the local repair shop. The broken item is repaired and put in the central stock. We assume that
for every item transportation to the central repair shop is available when needed. At all repair shops,
both local and central, several servers can be installed. Arriving requests which cannot be served im-
mediately, are put in a queue (backordered). At the local repair shops, these so called backorders, are
of course undesirable. The probability that a customer does not have to wait for service is called the
fill rate.

A scheme of a repair shop is displayed inFig. 1. The arrows on the left- and right-hand side originate
from, respectively point to clusters of customers. There are a number of servers and three buffers. The
two buffers connected to the servers, contain items and the other buffer represents the waiting line of
customers.

A similar scheme for the central repair shop is presented inFig. 2. The left and the right arrows originate
from, respectively point to transportation nodes.

One has to decide where to open repair shops (facilities), how many repair servers to install and what
the base stock levels should be, in order to insure the specified fill rate at the lowest expected cost. The
costs we consider are related to the stock levels, the opening of local repair shops, the installation of
repair servers, transportation from customers to local repair shops, transportation from the local repair
shops to the central facility and vice versa. All the transportation costs are considered proportional to the
distances.
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Fig. 1. Local repair shopj .

Fig. 2. Central repair shop.

To model this situation, we introduce the following notations:
Inputs and parameters:

D: set ofN clusters of customers (demand points);
F : set ofM locations where local repair shops can be opened;
dij : time units needed for customers in clusteri to reach locationj ;
dLj : time needed to reach the central repair shop from a local repair shopj;
fj : amortization (over time) of the cost of opening a repair shop at locationj ;
hj : unit cost (per unit time) of holding stock at locationj;
hC: unit cost (per unit time) of holding stock at the central location;
sC: server cost per unit time at the central facility;
sj : server cost per unit time at locationj ;
wL: the unit cost for the internal transportation from the local repair shops to the central repair shop;
wD: the external transportation cost of customers;
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�: the probability that a broken item cannot be repaired at a local repair shop and is sent for repair to
the central one;

�i : the rate at which requests for repair are generated at clusteri;
�C: the arrival rate at the central repair shop, i.e.,�C = �

∑
i∈D�i ;

�j : service rate of a single server at local repair shopj;
�C: service rate of a single server at the central repair shop;
�: the prescribed minimal value of the fill rate.

Decision variables:

yj : variable indicating whether a repair shop at locationj ∈ F is open;
xij : variable indicating if clusteri of demand points goes to repair shopj ∈ F ;
Vj : base stock level at local repair shopj ∈ F ;
VC: base stock level at the central repair shop;
kj : number of servers at local repair shopj ∈ F ;
kC: number of servers at the central repair shop;
�j : the rate at which requests for repair arrive at a local repair shopj.

For simplicity of the presentation, assume thatdij �= dik for j �= k, j, k ∈ F andi ∈ D. Since each cluster
of clients is assigned to the closest open repair shop, the value of the vectorx is completely determined
by the vectory, namely

xij =
{

1 if yj = 1 anddij �dik for all k such thatyk = 1,
0 otherwise.

(1)

Condition (1) can be rewritten as∑
k∈F

dikxik�(dij − �)yj + �, for eachj ∈ F,

where� is a large number, e.g.,� = max{dij : i ∈ D, j ∈ F }.

Remark 1. We assume that an item cannot be repaired at a local repair shop by some external cause, for
instance, if the item is severely damaged. This assumption implies that�, the probability that an item can
not be repaired locally, is an input parameter and has to be specified. Another model can be developed if
the value of� depends on the available equipment (lower� corresponding to higher server costs). In this
case,� would be a decision variable.

We are interested in the inventory holding costs and the fill rates as functions of the decision variables.
Denote the actual local and central inventory levels byIj andIC. To analyse these inventory levels and
fill rates, we introduce the following stochastic model.

A repair shop at locationj can be opened by installingkj >0 servers. We assume that these installed
servers have exponential distributed service times with expectation 1/�j . The requests originating from
demand pointi with i ∈ D form independent Poisson processes with rate�i , respectively. The arriving
requests at an open repair shop at locationj are a combination of a number of independent Poisson
processes and form, therefore, a Poisson process with arrival rate�j =∑

i∈D �ixij . Arriving items are,
independently, locally repairable with probability�. Thus, both the input to the servers and the items
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sent from locationj to the central location are filtered Poisson processes with rate(1 − �)�j and��j ,
respectively. In order to satisfy the stability requirements, we impose, at every open repair shop, an
arrival rate smaller than the service rate. In other words, for eachj ∈ F ,

(1 − �)�j = (1 − �)
∑
i∈D

�ixij < �j kjyj .

Similarly, the total arrival rate at the central repair shop is�
∑

i∈D �i = �C. In order to have stability at the
central repair shop, the following relation should hold

�C<kC�C.

In the next section, we use this stochastic model to analyse the behavior of the inventory levels and fill
rates.

Remark 2. For the stochastic modeling of the repair shops we make two major assumptions. The as-
sumption that the arrival of requests form a Poisson process, is often justified by the data. In many
practical situations, where the first moment of the service times is already hard to come by, the choice of
exponentially distributed service times is very common. Although the exponential distribution may not
give the most accurate description, it enables the analysis of the model.

The total expected cost (the cost of opening facilities, the expected inventory costs and the expected
transportation costs) per unit time can be written as

∑
j∈F

(fj + kj sj )yj + hCE(IC)+ sCkC +
∑
j∈F

hjE(Ij )yj + 2
∑
j∈F

∑
i∈D

(wDdij + wLd
L
j �)�ixij ,

whereE(IC) andE(Ij ) are the expected inventory levels at the central repair shop, respectively lo-
cal repair shopj . These expectations are functions of the number of servers and the base stock levels.
The expected transportation costs are found by applying Little’s Law (cf.[17]). A detailed descrip-
tion of how the expected values appearing in the objective function can be calculated will be given in
next section.

For covering the situation where the “customers” are a part of the company (see the example in the
introduction), we include the transportation costs for the customers in the objective function. If the amount
that customers pay for transportation, do not play a role in the decision process, they may be neglected.
The analysis of the model and the proposed heuristic will remain unchanged.

We arrive at the following mathematical programming formulation:

min
∑
j∈F

(fj + sj kj )yj + hCE(IC)+ sCkC +
∑
j∈F

hjE(Ij )yj

+ 2
∑
j∈F

∑
i∈D

(wDdij + wLd
L
j �)�ixij
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s.t.
∑
j∈F

xij = 1, for eachi ∈ D, (2)

xij �yj , for eachi ∈ D andj ∈ D, (3)∑
k∈F

dikxik�(dij − �)yj + �, for eachi ∈ D andj ∈ F, (4)

(1 − �)
∑
i∈D

�ixij < �j kjyj , for eachj ∈ F, (5)

�C<kC�C, (6)

Fillrate

(
Vj , kj ,

∑
i∈D

�ixij , VC, kC

)
��yj , for eachj ∈ F, (7)

yj ∈ {0,1}, for eachj ∈ F,

kj , kC, Vj , VC ∈ Z+, for eachj ∈ F.

Constraints (2) and (3) insure that each cluster of customers is assigned to an open local repair shop, (4)
insures that each cluster of customers is assigned to the closest open repair shop, (5), respectively (6)
insure stability at each local, respectively central repair shop and (7) insures the required quality of service
at an open repair shop. Note that without constraint (7), the problem reduces to a variant of the capacitated
facility location problem, in which inventory is also taken into account. However, the intractability of
constraint (7) increases considerably the degree of difficulty of the described problem. In the next section
we will derive an approximation of the fill rate, that can be easily described analytically.

3. The fill rate and the expected inventory level

In our model, we are interested in the steady state behavior of the system, therefore we will omit the
time dependence of all the stochastic variables. Throughout the remainder of the paper, we will use the
following notations:

NC: number of items that are either being processed or waiting to be processed at the central location;
Nj : the number of broken items that are either waiting to be processed or being processed at location

j ∈ F ;
Tj : total number of items that is on transport from repair shopj ∈ F to the central repair shop and vice

versa;
BC: number of backorders at the central repair shop, i.e.,BC = max{NC − VC,0}.
BCj : number of backorders at the central repair shop originating at locationj ∈ F . Note thatBC =∑

j∈F BCj .

The fill rate at locationj, i.e., the probability that a customer does not have to wait for service at a
locationj, follows from the PASTA property[18] and is equal to

Fillrate

(
Vj , kj ,

∑
i∈D

�ixij , VC, kC

)
= P(Nj + Tj + BCj <Vj ).
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Fig. 3. Central facility with a special server.

If we knew the distribution of((Nj , Tj , BCj ), j = 1, . . . , N), we could easily calculate the fill rate.
However, finding this distribution turns out to be a difficult task, since, on the one hand, due to the
deterministic transportation times, the vector process is not Markovian, and on the other hand, due to the
inventory at the central repair shop, the network has no product form. If the transportation times were
exponentially distributed, the process((Nj , Tj ,NC), j = 1, . . . , N) viewed over time, would indeed be a
Markov process, and the fill rate could, in principal, be computed. However, it would still be intractable
due to the large state space.

As an alternative, we use the product form approximation described in Avsar and Zijm[15] for the
distribution of ((Nj , Tj , BCj ), j = 1, . . . , N). They show that the network has a product form if one
replaces the central facility, with its base stock policy, by a special state dependent server (seeFig. 3).

The server works at speed min{VC + k, kC}�C, whenever there arek >0 backordered items at the
central facility. If an arriving item finds the server free, the item is served at infinite speed with probability
q = (NC<VC)/(NC�VC) and therefore leaves the central facility immediately, otherwise it is served
with finite speed. The probability that an item is served at infinite speed can be interpreted, in the original
model, as the probability that a replacement is available when an item arrives to find no backorders at the
central facility. By choosingq in this way, the number of backlogged items in the original system and the
modified system, have the same steady state distribution as it is shown in[15]. From now on, we do not
distinguish the number of backlogged items in the original system (BC) and in the modified system (BC).
The steady state distribution of the number of backordered items at the central repair shop is given by

P(BC = k)= P(BC = k)=
{

P(NC�VC), k = 0
P(NC = VC + k), k = 1,2, . . . .

(8)

Since the arrival process at the central location does not depend on the way customers are assigned to
local repair shops, the number of items that have to be repaired at the central location (NC) is just the
number of customers at a simpleM/M/kC system with arrival rate�C and mean service time 1/�C.

In the following, suppose that the central facility is replaced by the special server as proposed in Avsar
and Zijm[15]. In this modified model, the steady state distribution has a product form, hence the stochastic
variablesNj, Tj andBCj , j = 1, . . . , N can be treated separately. Next we will discuss the distributions
of each of these variables, and then we will present two ways of calculating the fill rate.

For each local repair shopj, the random variableNj is just the number of customers at anM/M/kj
queue with arrival rate�j and mean service time 1/�j .

By definition,Tj is composed of two streams of items: items being transported from repair shopj
to the central facility and items being transported from the central facility to repair shopj. From repair
shop j, items depart towards central facility according to a Poisson process with rate��j . Hence, the
number of items in transportation is Poisson distributed with expectation��j d

L
j . From the product form
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of the network follows that the number of items in transportation in the two streams are independent, and
therefore the number of traveling items is Poisson distributed with expectation�j = 2��j d

L
j , i.e.,

P(Tj = k)= �kj

k! e−�j , k = 0,1, . . . .

Finally, the steady state distribution ofBCj , the number of backorders at the central repair shop originating
at locationj, can be calculated as follows:

P(BCj = i)=
∞∑
n=i

P(BCj = i|BC = n)P(BC = n).

From the viewpoint ofj, two types of items arrive at the central facility, one originating at the local repair
shopj and the other originating at the rest of the local repair shops. Denote bypj the probability that an
arrival at the special server is an item fromj. Clearly,

pj = ��j /��C = �j /�C.

Moreover, due to the independence of the Poisson arrivals from different local repair shops, the probability
that an item backordered at the central repair shop came from repair shopj, ispj . Hence,

P(BCj = i|BC = n)=
(
n

i

)
pij (1 − pj )

n−i .

Based on the distributions ofNj, Tj andBCj , the fill rate at locationj can be calculated as follows:

P(Nj + Tj + BCj <Vj )=
Vj−1∑
r=0

r∑
s=0

r−s∑
q=0

P(Nj = s)P(Tj = q)P(BCj = r − s − q). (9)

Note that this direct calculation of the fill rate is not very efficient for implementations, due to the large
number of operations involved. Next we will present a set of recursions that considerably improve the
time needed to calculate the fill rate.

3.1. A faster method of calculating the fill rate

Due to the independence of the variablesNj , Tj andBCj , the fill rate at facilityj can be calculated by
the formula

P(Nj + Tj + BCj <Vj )=
kj∑
k=0

P(Nj = k)P(BCj + Tj <Vj − k)

+ P(Nj > kj ,Nj + Tj + BCj <Vj ). (10)

In this formula, several quantities can be calculated recursively, as will be described below.
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• Recursion formula forP(Nj = k).

Based on the known results about anM/M/kj queue, P(Nj = k), k = 0, . . . , satisfy (see Ross[17]):

P(Nj = k + 1)=
{

P(Nj = k)
kj�j
k+1 for k = 0, . . . , kj − 1

P(Nj = k)�j for k = kj , kj + 1, . . . ,
(11)

where

P(Nj = 0)=

kj−1∑

i=0

(kj�j )
i

i! + (kj�j )
k

kj !
1

1 − �j




−1

and

�j = (1 − �)�j

kj�j
.

Note that a similar recursion formula holds for P(BC = k) (see (8)).

• Recursion formula forP(Nj > kj ,Nj + Tj + BCj <Vj ).

For calculating recursivelyR(Vj , kj )= P(Nj > kj ,Nj + Tj + BCj <Vj ), we proceed as follows:

R(Vj + 1, kj )=
Vj+1∑
k=kj+1

P(Nj = k)P(Tj + BCj <Vj + 1 − k)

=
Vj+1∑
k=kj+1

�jP(Nj = k − 1)P(Tj + BCj <Vj − (k − 1))

= �j
(
R(Vj , kj )+ P(Nj = kj )P(Tj + BCj <Vj − kj )

)
, (12)

where the second equality follows from (11). Note that both relations (10) and (12) contain P(BCj +
Tj <m) for m= 0, ..., Vj . We will concentrate on the distribution ofBCj in Lemma 3. Subsequently, we
describe a recursion for the computation of P(BCj + Tj <m).

• Recursion formula forP(BCj = k).

Let

k+
C = min{1, kC − VC}

and

�Cj = pj�C

1 − (1 − pj )�C
, where�C = �C

kC�C
.
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Lemma 3. The distribution ofBCj is given fori = 0, . . . , k+
C by

P(BCj = i)=
k+

C −1∑
n=0

P(BC = n)

(
n

i

)
pij (1 − pj )

n−i

+ P(BC�k+
C )

i∑
m=0

(
k+

C
m

)
pmj (1 − pj )

k+
C −m(1 − �Cj )(�Cj )

i−m

and fori = k+
C , k

+
C + 1, . . . by

P(BCj = i)= (�Cj )
i−k+

C P(BCj = k+
C ).

Proof. We start with the case wherei=k+
C , k

+
C +1, . . .. Note that whenBCj �k+

C , the server at the central
facility works at full speedkC�C. It follows that

P(BCj = k)=
∞∑
m=k

P(BCj = k|BC =m)P(BC =m)=
∞∑
m=k

(
m

k

)
pkj (1 − pj )

m−kP(BC =m)

=
∞∑
m=k

(

(
m− 1
k − 1

)
+
(
m− 1
k

)
) pkj (1 − pj )

m−kP(BC =m)

=pj

∞∑
m=k

(
m− 1
k − 1

)
pk−1
j (1 − pj )

m−1−(k−1)P(BC =m)

+ (1 − pj )

∞∑
m=k

(
m− 1
k

)
pkj (1 − pj )

m−1−kP(BC =m)

=pj�CP(BCj = k − 1)+ (1 − pj )�CP(BCj = k),

where we used that(m
n
)= 0 form<n and that P(BC = k + 1)= �cP(BC = k) for k = k+

C , k
+
C + 1, . . ..

Now it is readily seen that

P(BCj = k)= pj�C

1 − (1 − pj )�C
P(BCj = k − 1)= (�Cj )

k−k+
C P(BCj = k+

C ).

Consider now the casei�k+
C . In the modified system, the server works at different speeds, depending on

the number of backlogged items. The probability that the server works at speed(kC + n− k+
C )�C equals

P(BC = n) for n= 0, . . . , k+
C − 1 and equals P(BC�k+

C ) for n= k+
C . By conditioning on the number of

backlogged items, we obtain that

P(BCj = i)=
k+

C −1∑
n=0

P(BCj = i|BC = n)P(BC = n)+ P(BCj = i|BC�k+
C )P(BC�k+

C )

=
k+

C −1∑
n=0

(
n

i

)
pij (1 − pj )

n−iP(BC = n)+ P(BCj = i|BC�k+
C )P(BC�k+

C ). (13)
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Denote bySCj the number of items coming from locationj that are in the firstk+
C places of the queue at

the central facility. Then

P(BCj = i|BC�k+
C )=

i∑
m=0

P(BCj = i|SCj =m,BC�k+
C )P(SCj =m|BC�k+

C ). (14)

Clearly,

P(SCj =m|BC�k+
C )=

(
k+

C
m

)
pmj (1 − pj )

k+
C −m. (15)

Note thatBCj − SCj is the number of items coming from locationj , waiting at the central facility. The
probability that exactly% items coming from locationj are waiting, given that all servers are busy, can
be found by conditioning on the total number of waiting items, as follows:

P(BCj − SCj = %|BC�k+
C )=

∞∑
n=%

P(BC = k+
C + n|BC�k+

C )

(
n

%

)
p%j (1 − pj )

n−%

=
∞∑
n=%

�nC(1 − �C)

(
n

%

)
p%j (1 − pj )

n−% = (pj�C)
%(1 − �C)

[1 − �C(1 − pj )]l+1

= (�Cj )
%(1 − �Cj ). (16)

By combining relations (13)–(16) we obtain the first part of the lemma.�

In the next paragraph we present a recursion scheme for the computation of P(BCj + Tj <m).

• Recursion formula forP(BCj + Tj <m).

By splitting up the eventBCj + Tj <m+ 1 in disjoint subsets according to the value ofBCj , we get:

P(BCj + Tj <m+ 1)=
k+

C∑
i=0

P(BCj = i)P(Tj <m+ 1 − i)

+ P(BCj > k+
C , BCj + Tj <m+ 1).

The previous lemma now gives (cf. formula (12)) that

P(BCj > k+
C , BCj + Tj <m+ 1)= �CjP(BCj > k+

C , BCj + Tj <m) (17)

+ �CjP(BCj = k+
C )P(Tj <m− k+

C ). (18)

The last recursion scheme we give regards P(Tj < k + 1).

• Recursion formula forP(Tj < k + 1).

Note that P(Tj < k + 1) can be also calculated recursively as P(Tj < k + 1) = P(Tj < k) + P(Tj = k).
SinceTj has a Poisson distribution with parameter�j = 2��j d

L
j ,

P(Tj = k)= �j

k
P(Tj = k − 1) for k = 1,2, . . . .
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3.2. Expected inventory levels

In this subsection we concentrate on the expected inventory levels at the facilities. These quantities
are needed to calculate the total expected cost of a solution with given base stock levels and numbers of
servers.

For the expected inventory level at the central facility, we have to return to the original model, since,
in the modified system, we only focus on the number of backlogged items, which is positive only when
the stock is empty. For the expected inventory level at the local facilities, we use the fill rates that were
computed in the previous subsection. In both cases, we use that the expectation of a non-negative discrete
random variableL is given byE(L)=∑∞

k=1P(L�k).
For the expected inventory level at the central facility, remember thatIC=max{0, VC−NC}. If VC�kC,

then

E(IC)=
VC∑
k=1

P(IC�k)=
VC−1∑
k=0

P(NC<k).

SinceNC is the number of items in anM/M/kC queue,E(IC) can now easily be computed.
If VC�kC, remark thatIC = VC −NC + max{0, NC − VC} so

E(IC)= VC − E(NC)+ E(max{0, NC − VC}).
To find the expectations in the right-hand side, we proceed as follows:

E(max{0, NC − VC})=
∞∑
k=1

P(NC�VC + k)

=
∞∑
k=1

P(NC = kc))�
Vc−kC
C

�kC
1 − �C

= P(NC = kc)�
Vc−kC
C

�C

(1 − �C)
2 .

The value ofE(NC) can either be found as the expected number of customers in anM/M/kC queue or
by combining the formulas for the two casesVC�kC andVC�kC.

The expected inventory level at the local facilities are easy to compute once we know the fill rates at
these facilities for all base stock levelsk = 1, . . . , Vj , namely

E(Vj )=
Vj∑
k=1

P(Ij �k)=
Vj∑
k=1

P(Nj + Tj + BCj < k).

4. A local search heuristic

The model presented in the Section 2 is a variant of the capacitated facility location problem with
additional nonlinear constraints regarding the fill rates. Even the linear variant of the capacitated facility
location problem is considered very difficult (see[19] for a discussion on the implication of the capacity
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constraints). Many methods have been proposed for tackling the linear capacitated facility location prob-
lem, such as Lagrangian relaxation (e.g.[20–22]), polyhedral approach Aardal[23], branch and bound
[24,25] and local search Kuehn and Hamburger[26]. In this paper we opt for a local search approach,
based on the procedure developed by Kuehn and Hamburger in[26]. Local search heuristics have proved
to give good results for facility location problems, both experimentally and from worst case point of view
[27,28].

Suppose for the moment that we have developed a procedure calledCost_set_facilities(S)which returns
the costs involved when one knows that the facilities inSare open. The local search heuristic then proceeds
as follows. Start with a setFo of open facilities and in each step execute the operation with the largest
cost improvement among the following three: open a new facilityi ∈ F\Fo, i.e.,Fo := Fo ∪{i}, close an
already opened facilityj ∈ Fo, i.e.,Fo := Fo\{j} or swap facilities (open a closed facilityi ∈ F\Fo and
close an open facilityj ∈ Fo), i.e.,Fo := Fo ∪ {j}\{i}. The procedure stops when no cost improvement
is possible.

The procedure is summarized below.

Local Search Procedure:
Start with a set of open facilitiesFo

Find the setF̃o for which minimum
F̃o:|F̃o\Fo|�1

Cost_set_facilities(F̃o) is attained.

WhileCost_set_facilities(F̃o)�Cost_set_facilities(Fo)

ReplaceFo with F̃o(Fo := F̃o).
Return the setFo.

Remark 4. The procedure presented above, is the simplest form of local search. A combination with
other methods, e.g. Tabu Search (see[29]) or the Heuristic concentration method (see[11]), may improve
the results of the algorithm. However, we have chosen for the simple procedure above, since our goal is
to show how the analysis of the model can be combined with a procedure for facility location problems
which is based on the comparison of the costs of several combinations of open facilities.

Next we describe the procedureCost_set_facilities(F̃o), for calculating the cost associated with a set
of open facilitiesF̃o. Let facility ji be the closest facility iñFo to clienti ∈ D. Assume that we have at our
disposal a procedure, calledServers_Inventory(F̃o), for calculating the inventory and the number of servers
with minimal expected costs at the facilities iñFo and at the central facility, which insure the required fill
rate. ThenCost_set_facilities(F̃o) consists of the following quantities: the costs of opening the facilities in
F̃o, i.e.,

∑
j∈F̃o

fj , the expected transportation costs, i.e., 2
∑

i∈D(wDdij i +wLd
L
ji

�)�i and the inventory

and server costs at the facilities iñFo and at the central facility, i.e.,Servers_Inventory(F̃o). Denote
byOT (F̃o) the total expected cost associated withF̃o for opening the facilities and the transportation,
that is

OT (F̃o)=
∑
j∈F̃o

fj + 2
∑
i∈D

(wDdij i + wLd
L
ji

�)�i .

Then the total cost associated with̃Fo is given by

Cost_set_facilities(F̃o)=OT (F̃o)+ Servers_Inventory(F̃o).
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The necessary number of servers and the inventory (stock) at facilities inF̃o and at the central facility,
given byServers_Inventory(F̃o), is decided as follows. For each feasible combination of servers/inventory
at the central facility,(kC, VC), calculate the combinations{(kj , Vj ), j ∈ F̃o}, that ensure the required
fill rate and have minimal expected costs. For calculating the feasible combinations(kC, VC) we proceed
as follows.

Let min_cost be the minimum total expected cost associated with a set of open facilities that was
analysed so far. Denote byMC(F̃o) the total expected cost associated withF̃o when there are always
items in the central stock at zero cost (inventory levelVC = ∞ with expected inventory costs 0 and the
number of central serverskC = 0 since the inventory is always full). Clearly,MC(F̃o) is the expected
cost for the local servers and inventories and the transportation costs for the case where there are never
backlogged items at the central facility. Hence,MC(F̃o) is a lower bound of the real cost associated with
F̃o. If min_cost<MC(F̃o), we stop analysing̃Fo, sinceF̃o will not give us a solution of lower costs than
the one of costmin_cost. If min_cost>MC(F̃o), we can interpret the quantitymin_cost−MC(F̃o) as
being the available budget for acquiring servers and inventory at the central facility when the facilities in
F̃o are open.Based on this available budget, we can calculate the maximum number of servers that can
be acquired at the central facility, i.e.,�min_cost− MC(F̃o)/sC� and the maximum stock for a fixed
number of serverskC, i.e.,E(IC)hC�min_cost−MC(F̃o) − kCsC (remark thatE(IC) is a function of
VC andkC). For a givenkC, define the maximal inventory level that keeps the expected cost for the actual
inventory belowt�0 by

Vmax
C (t)= max{VC|E(IC)� t/hC}.

The minimal number of servers that should be installed at the central facility is given bykC=��C/�C�+1
and the minimal stock level is 0.

Let Local_SI(kC, VC,Cost_so_far, Vj , kj ) be the procedure that, for given(kC, VC) calculates the
cheapest combination of stock and servers(kj , Vj ) , such that a fill rate above the prescribed value is
assured. Then, the procedureServers_Inventory(F̃o) can be described in detail as follows.

Servers_Inventory(F̃o)

LetMC(F̃o)=OT (F̃o)+ ∑
j∈F̃o

(Local_SI(0,∞,OT (F̃o), Vj , kj ))

If min_cost>MC(F̃o)

ForkC = ��C/�C� + 1 to �min_cost−MC(F̃o)
sC

� do

ForVC = Vmax
C (min_cost−MC(F̃o)− kCsC) down to 0 do

SI(kC, VC)= E(IC)hC + sCkC

+ ∑
j∈F̃o

Local_SI(kC, VC,OT (F̃o)+ E(IC)hC + sCkC, Vj , kj )

If SI(kC, VC)+OT (F̃o)<min_cost then
min_cost= SI(kC, VC)+OT (F̃o)

rememberkC andVC
Return minimum

(kC,VC)
SI (kC, VC).

We conclude by presenting the procedureLocal_SI(kC, VC,Cost_so_far,Vj , kj ), which optimizes the
stock and servers at a local facility locationj ∈ F̃o. Note that, in this procedure,(kC, VC,Cost_so_far)
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are input parameters, whereasVj andkj are output parameters. Recall thatmin_costwas a variable
storing the minimum expected cost of an analysed solution. As in the case of the central facility, we
can define a maximal available budget for acquiring servers and inventory at locationj. As before, this
budget is the amount that can be spent on servers and inventory without increasing the costs of the
solution abovemin_cost. Deciding the inventory and the number of servers is done as follows. For
every affordable (within the budget) amount of inventory, we check if, within the available budget, we
can acquire the amount of servers necessary to ensure a fill rate higher then the prescribed one (�).
The cheapest combination of servers and inventory is chosen among the feasible ones. More precisely,
Local_SI(kC, VC,Cost_so_far, Vj , kj ) proceeds as follows.

Local_SI(kC, VC,Cost_so_far, Vj , kj )
Let kmin

j = ��j /�j� + 1
Let budget=min_cost− Cost_so_far
Let min_ser_cost= ∞
V = 1
While Fillrate(V − 1, kmin

j , �j , VC, kC)�� andkmin
j sj + E(Ij )hj �budgetdo

k = kmin
j

While Fillrate(V , k, �j , VC, kC)�� andksj + E(Ij )hj �budgetdo
k = k + 1

If ksj + E(Ij )hj �min {budget,min_ser_cost} then
min_ser_cost= ksj + E(Ij )hj
Vj = V andkj = k

V = V + 1
Returnmin_ser_cost

In the next section we will present some computational results obtained with the heuristic described
above.

5. Computational study

This section focuses on numerical results for a number of randomly generated instances. After describ-
ing how we constructed the test instances, we discuss the results obtained by the algorithm we proposed
in Section 4. For some cases we give a graph of the layout and the chosen locations of the repair shops
and discuss the influence of the parameters on the obtained solutions. Since the problem was not treated
in the literature before, we cannot compare our results to known ones.

We compare results obtained by three different approaches. We call the procedure that checks all the
possible configurations of open facilities and inventories and chooses the one with the lowest cost “Brute
Force”. Let “Sequential Optimization” be the procedure that first opens facilities at the locations which
give minimum costs, without looking at inventories and servers, and then optimizes the number of servers
and the inventories at these locations. Finally, we refer to the procedure described in Section 3 as “Local
Search”. In all three procedures, the central facility is replaced by the special server as done by Avsar and
Zijm in [15] and described in Section 3.

We consider seven sets of instances with 50 demand points and 15 locations where repair shops may be
opened. Set I can be considered as the basic setting and the other sets as its variants. For all instances, the
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Table 1
System parameters

Parameters Set I Set II Set III Set IV Set V Set VI Set VII

Costs of opening facilitiesfj U(30,40) U(30,40) U(30,40) U(30,40) U(30,40) U(10,20) U(10,20)
Costs of local serverssj U(10,20) U(10,20) U(10,20) U(20,30) U(20,30)/4 U(10,20) U(10,20)
Costs of local inventory (per item)hj fj /4 fj /4 fj /4 fj /4 fj /4 fj fj /4
Repair probability� 0.95 0.95 0.95 0.99 0.90 0.95 0.95
Expected local repair time 1/�j U(0.1,0.2) U(0.1,0.2) U(2,3) U(0.1,0.2) U(0.1,0.2) U(0.1,0.2) U(0.1,0.2)
Internal transportation costswL 10 1 10 10 10 10 10
External transportation costswD 5 5 5 5 5 5 30
Demand rate�i U(10,50) U(10,50) U(10,50) U(10,50) U(10,50) U(10,50) U(0.02,0.04)

Table 2
Relative errors with respect to the “Brute Force” approach

Relative error Relative error
“Local Search” “Sequential Optimization”

Average 0.16% 4.24%
Maximal 9.42% 29.58%
Minimal 0.00% 0.00%

positions(x, y) of the demand points and the facility locations are taken randomly on(−1,1)× (−1,1),
i.e. bothx andy areU(−1,1) whereU(a, b) denotes the uniform distribution with parameters a and b.
The central facility is located at (0,0). We set the cost of a central serversC = 40, the expected central
service time 1/�C = 0.9, the central inventory cost per itemhC = 1.5 and the fill rate� = 0.95. The other
key parameters of the system are defined as shown inTable 1.

First of all, these experiments were aimed to check the quality and the speed of the proposed “Local
Search” heuristic. Therefore, we compare the proposed heuristic with the “Brute Force” algorithm and
with the “Sequential Optimization” approach. InTable 2we present the average and the minimal and
maximal values of the relative errors of the “Local Search” heuristic and the “Sequential Optimization”
procedure with respect to the “Brute Force” approach. For the instances with 15 locations, the “Local
Search” heuristic was, on the average, 8.96 times faster than the “Brute Force” approach. For instances with
more locations, the differences in speed are even bigger. On the other hand, the “Sequential Optimization”
heuristic was, on the average, 13.84 times faster than the “Local Search” heuristic. The proposed “Local
Search” heuristic requires more computational time, since for each combination of open facilities which
is analysed, it optimizes the stock levels and the numbers of servers. However, as can be seen inTable 2,
the experiments show that “Local Search” finds a better solution than “Sequential Optimization”.

It is interesting to compare the errors obtained for different parameter settings (Table3). In the exper-
iments in set VII, the big errors occur because of the low demand. That is, given the low demand, and
reasonably high installation costs, only one facility is opened in the optimal solution. In our heuristics,
we start with all facilities open. Apparently, while closing down the facilities, the procedure gets trapped
in a local optimum. When the procedure starts with all facilities closed, “Local Search” finds the optimal
solution in all the instances in set VII but “Sequential Optimization” still gets a maximal error of 21%.
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Table 3
Comparison of error of different heuristics (in %)

Set I Set II Set III Set IV Set V Set VI Set VII

Heur. Seq. Heur. Seq. Heur. Seq. Heur. Seq. Heur. Seq. Heur. Seq. Heur. Seq.

Aver. 0.01 3.23 0.00 1.84 0.00 4.42 0.00 3.82 0.03 1.68 0.00 1.94 1.22 13.15
min. 0.00 1.51 0.00 0.61 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.31 0.00 0.00
max. 0.12 5.00 0.00 3.24 0.00 7.63 0.00 13.56 0.25 6.55 0.00 3.68 9.42 29.58

Fig. 4. Example of optimal locations: possible locations(left), optimal facility locations for higher (center) and lower (right) local
repair probabilities.

For other choices of the parameters, however, starting with all facilities closed, both heuristics give worse
results than our original approach. The best results could be found, at the cost of computational time,
by a combination of the two approaches; start the procedure with all facilities open and if in the found
solution only a few facilities are open, restart the procedure with all facilities closed and take the best
solution of the two approaches.

In the remaining of this section, we discuss the behavior of the solution found by “Local Search”
depending on the input parameters. First of all we focus on set I, IV and V, where a decrease in the server
price together with a decrease in the local repair probability, causes that more facilities are opened and
that the facilities tend to be closer to the center (seeFig. 4). Due to a smaller local repair probability, the
transportation costs from the local repair shops to the central one play a bigger role.

Other factors that we have analysed are the numbers of servers (Table4) and the inventory levels (Table
5). For each instance, we have first determined the average number of installed servers per open location
and the total number of servers installed in the system. Then we have found the average, minimum and
maximum of these quantities for each set of instances. Finally, we have used the same procedure for the
inventory levels.

Obviously, the increase in the service time (Set III) causes an increase in the number of servers and
the stock levels. We can also see that the change of the transportation cost from the local facilities to the
central (Set II) has little influence on the numbers of installed servers and the stock levels. Set IV and
V indicate that the smaller the local repair probabilities and the local server costs, the lower the average
amount of installed servers and the average stock levels but the higher the sums of these values. Intuitively,
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Table 4
Comparison of average and total number of servers in the system

Set I Set II Set III Set IV Set V Set VI Set VII

Aver. Total Aver. Total Aver. Total Aver. Total Aver. Total Aver. Total Aver. Total

Aver. 27.0 276.2 26.6 276.8 323.2 2939.3 30.6 222.7 23.8 328.3 22.4 271.1 1 2
min. 21.3 260 21.3 264 259.0 2892 22.6 202 20.9 241 17.9 239 1 2
max. 32.3 297 29.6 297 371 2990 42.2 245 27.6 361 26.3 300 1 2

Table 5
Comparison of average and total inventory levels in the system

Set I Set II Set III Set IV Set V Set VI Set VII

Aver. Total Aver. Total Aver. Total Aver. Total Aver. Total Aver. Total Aver. Total

Aver. 80.9 679.6 80.1 681.4 474.5 4283.5 78.4 546.6 70.2 714.8 68.6 675.6 2.8 2.8
min. 61.4 603 61.4 644 388.1 4164 66.0 471 45.4 460 58.6 597 2 2
max. 92.2 737 91.3 737 534.8 4398 96.6 655 80.5 779 73.5 769 3 3

this is because sharing of servers is less necessary when the servers cost less and so more facilities will
be opened (cf.Fig. 4). The results for set VI show that even for high stock and service cost the optimal
stock levels and numbers of servers remain on approximately the same level. The last set of parameter
settings results in low stock levels and small numbers of servers due to the small demand. In these cases
only one local facility is opened.

6. Concluding remarks

In this paper, we have developed a model for a logistic problem that combines facility location with
spare part management. Under specific assumptions (exponential service times, Poissonian demand), we
were able to analyse the model and consequently propose a local search heuristic for finding a solution of
the problem. The experimental results show that the algorithm we have designed, behaves well in practice.
There are many interesting questions raised by the presented problem. One of the assumptions made in
this article is that, at an open location, one can install as many servers as needed in order to handle the
demand. However, in many practical situations, one can install only a limited number of servers, due to
budget constraints. Another assumption is that customers go to the nearest open repair shop. A further
research topic is to analyse the situation where the customers may be assigned to a more distant repair
shop.
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