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Abstract

In this article, we investigate the profitability of remanufacturing option when the manu-

factured and remanufactured products are segmented to different markets and the production

capacity is finite. It is assumed that remanufactured products can be substituted by the manu-

factured ones. A single period profit model under substitution is constructed to investigate the

system conditions under which remanufacturing is profitable. We present analytical findings

and computational results to show profitability of remanufacturing option under substitution

policy subject to a capacity constraint of the joint manufacturing/remanufactruing facility.
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Consider the supply chain of a tire manufacturer and its retail outlet. Both brand new and

retreated tires are manufactured and sold to customers. There is a natural segmentation (pri-

marily based on exogenously set unit selling prices) of market demand for tires, and customers

for each segment (brand new and retreated) arrive in two independent streams. Concerned

with losing potential customers, manufacturer’s possible market strategy is to allow demand

substitution among different tire classes. Specifically, customers for retreated tires are allowed

to purchase a brand new tire, by paying the price of a retreated tire, if the retail store is out

of retreated tire stock. Production and/or logistics stages utilized by brand new and retreated

tires show some commonality (these may include production resources, storage and transporta-

tion space). Due to demand substitution strategy employed and use of common resources, stock

replenishment decision of both classes of tires should be made in coordination. Therefore, the

manufacturer has to determine the amounts of inventory to stock from brand new and retreated

tires in the face of uncertain demand and common capacity constraint.

In this article we consider such a segmented market for manufactured and remanufactured

products. Examples for such environments can be found in the studies reporting the real life ap-

plications of remanufacturing on reconditioned photocopiers, retreated tires and reconditioned

(upgraded) computers. Ferrer [1] reports that reconditioned and new computers are segmented

to completely different markets. Another example for segmented market is given by Ferrer [2].

He reports that, although the manufacturers give the same quality warranties for retreated tires

as the new ones, they are sold at a lower price than the new ones. The same situation is reported

by Ayres et al. [3] and Maslennikova and Foley [4] for reconditioned copiers. Maslennikova and

Foley [4] report that reconditioned copiers are sold at a lower price level than the brand-new

ones. Ayres et al. [3] report that for the case of reconditioned copiers, demand is higher than

supply and the demand for reconditioned copiers is satisfied by the new ones when there is no

reconditioned product available.

Inventory planning for the remanufacturers is investigated by several authors in the litera-

ture. Richter [5], Richter and Dobos [6], Richter and Sombrutzki [7], Teunter [8] are examples

for the deterministic models where the main aim is to investigate the effect of returns on the

optimal order quantity. Stochastic version of the problem is studied by van der Laan et al.

[9], [10], [11], [12], van der Laan and Salomon [13], Toktay et al. [14], Bayındır et al. [15],
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Inderfurth et al. [16], Keismüller and van der Laan [17], Inderfurth and van der Laan [18].

In all these studies in the literature it is assumed that the customers are indifferent between

buying manufactured or remanufactured products. In other words, the manufactured and re-

manufactured products are identical for the customers, and customer demand is generated from

a single stream.

Debo et al. [19] consider strategic level, joint market segmentation and technology selection

problem. It is assumed that the manufacturer is a monopolist so that he can determine the

price level of both manufactured and remanufactured products, in addition he is able control

the remanufacturability level by choosing the production technology. The objective is to find

level of remanufacturibility and price levels of manufactured and remanufactured products

maximizing average profit over infinite planning horizon. Their main focus is the investigation

of profitability of remanufacturing as an option of satisfying demand of low-end customers who

are willing to pay less and the operational issues are ignored in the study.

Inventory planning under demand substitution is studied by several authors in the literature.

Parlar [20], [21], Pasternack and Drezner [22], Wang and Parlar [23], Bassok et al. [24], Smith

and Agrawal [25] consider single period problem. The multi-period case of the problem is

studied by Ignall and Veinott [26], McGillivray and Silver [27], Avsar and Baykal-Gürsoy [28]

and Bayındır et. al. [29]. In most of the work done, two substitutible products are considered

and game theory is utilized to determine the stock levels([22], [24], [28]). The model studied in

[22] is the closest one to our study. The differences are discussed in Section 1. To the best of

our knowledge the current study is the first attempt to include the capacity constraint under

substitution policy in a single period setting.

The main aim of our study is to investigate the system conditions; under which utilization

of remanufacturing option provides profit improvement. The system conditions investigated are

different revenue/cost schemes, the capacity requirement of manufacturing and remanufactur-

ing operations, and demand for manufactured and remanufactured products. There is a distinct

demand for the remanufactured product. Our analysis is focused on the case where it is possi-

ble to substitute remanufactured products by brand new ones. While constructing the model,

returns to be remanufactured are not explicitly considered. We assume that a sufficient return

flow can be maintained incurring some cost that is included in the unit cost of remanufacturing.
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Therefore, the main objective of this study is to investigate the question ”if the return avail-

ability can be maintained by the producer, to what extent remanufacturing option is utilized?”.

Due to not considering the return flow explicitly in the analysis, the model constructed can

be used to analyze more general systems in addition to joint manufacturing/remanufacturing

environment, where the assumptions on unit cost and revenue parameters and capacity scheme

are valid.

Our work extends the existing research and makes five major contributions by:

i. investigating a model under a capacity constraint with two customer classes,

ii. deriving analytical conditions for profitability of remanufacturing,

iii. obtaining characterization for behavior of optimal solution with respect to system param-

eters,

iv. investigating risk reducing benefits of substitution policy,

v. computational analysis to investigate optimal utilization ratio of remanufacturing.

The outline of the paper is as follows: In Section 1 the problem definition is made. In Section

2 construction of the expected profit function is given for unconstrained and constrained versions

of the problem. In Section 3 the results of the experimental study carried out are discussed.

Finally, in Section 4 the managerial insights drawn from the analytical and numerical findings

are discussed.

1 Problem Definition

We consider a situation where the manufactured (PM) and remanufactured products (PR) are

non-identical, therefore the customers have a preference to buy one of them, and there are two

distinct demand streams for two types. We consider the situation where the manufacturer is

a price taker and has no control on market prices. The selling price of PM is assumed to be

greater than or equal to the selling price of PR, like in most of the real life cases. At the

given price levels of the products, demand for manufactured and remanufactured products are

independent of each other. We assume that demand for each type is stochastic with known

underlying distributions. Unsatisfied demand is lost. There is no penalty cost for lost sales,

other than opportunity cost of earning profit margin.
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One-way substitution policy is employed by the manufacturer. When the PR inventory

runs out of stock, PM product, if available, is sold to PR customers at the quoted price of PR.

We assume that all PR customers accept the substitution. There is no cost associated with

substitution. We allow unit cost of manufacturing and remanufacturing to be non-identical and

do not make any assumptions on their relative values.

The main reason behind applying such a substitution policy without considering the unit

costs of manufacturing and remanufacturing, is not to lose the remanufacturing customers’

goodwill. There may be situations where the producer would employ such a policy, even though

the unit profit earned by substituting remanufactured product may be very low, even negative,

especially during early phases of remanufacturing application. In these cases, it is meaningful

to keep the customers for remanufactured product satisfied and try to maintain their loyalty

with the hope that remanufacturing technology will improve in the future and as a result unit

costs will be lowered. Alternatively, there may be some restrictions taking place in legislation

regarding environmental issues that may enforce such a policy.

In this study our main objective is to investigate the basic system conditions under which

utilization of remanufacturing option provides profit improvement under substitution policy

considered. The system conditions investigated are revenue and cost schemes and capacity

requirements for remanufacturing and manufacturing options. While doing that, we do not

explicitly consider (i) the availability of returns, and (ii) fixed costs of manufacturing and

remanufacturing operations under which additional economies exist due to batching decisions.

We think that sufficient return flow can be maintained incurring some cost that can be included

in unit remanufacturing cost. Therefore, carrying out sensitivity with respect to unit cost of

remanufacturing, we determine the desired level of remanufacturing giving the desired level of

returns. Concerns on the feasibility, i.e. either economical viability or simply profitability, of

remanufacturing can be questioned and analyzed by simple models, i.e. single period problem

for strategic decisions, or by more detailed models, i.e. multi-period problem, for tactical level

decisions. In that respect, determining a ”feasible” set of unit remanufacturing costs becomes

a very important factor before considering alternative actions for returns.

It is assumed that lead time of remanufacturing and manufacturing is less than a period.

In other words we ignore the effect of lead times. There is no fixed cost associated with
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manufacturing or remanufacturing. Unit manufacturing and remanufacturing costs are allowed

to be non-identical. The variable cost of remanufacturing includes the cost reverse logistics, i.e.

necessary payments to the customers and costs associated for the collection of returns.

The capacity of the system is finite. Manufacturing and remanufacturing operations are per-

formed utilizing the common system capacity. We do not consider the stages of manufacturing

and remanufacturing. Instead, we assume that manufacturing (or remanufacturing) a product

requires the utilization of certain amount of available capacity. Unit capacity requirement for

manufacturing and remanufacturing are allowed to be non-identical.

The objective is to maximize expected profit when order-up-to levels for two types of prod-

ucts are decision variables. Given the features of the environment, the problem under single

period planning horizon resembles to a newsboy environment with two products under one way

stock-out based substitution. The solution of this model is a myopic solution to the multi-period

case and can be implemented as a heuristic solution.

Capacity restriction imposes a linear constraint on order-up-to levels of manufactured and

remanufactured products (under the assumption that initial inventory levels are zero for both

types) on the problem.

The unconstrained model constructed is in the spirit of the one proposed by by Pasternack

and Drezner [22]. The main differences between the model by Pasternack and Drezner [22] and

our unconstrained model are, (i) in the former study the analysis depends on the joint demand

density distribution, and (ii) revenue and cost items are different. In the model by Pasternack

and Drezner [22], the selling prices, unit purchasing and shortage costs and unit salvage values

of the products are included in the analysis. It is assumed that in case of substitution, a unit

revenue different than the selling price is gained. We ignore the shortage cost and salvage value

which are, in general, difficult to estimate and focus on basic unit revenue and cost parameters.

2 Characterization of the Expected Profit Function and the

Optimal Inventory Policy

In the introduction of this section we introduce first the notation used throughout this article

and expected profit function under substitution policy. In Section 2.1 we present the optimality
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conditions of the unconstrained problem (through joint concavity of the objective function)

and a partial characterization of the optimal solution (Theorem 1). In Section 2.2 we derive

optimality conditions for the constrained problem, and in Theorem 2 and Theorem 3 we present

the behavior of the optimal solution with respect to system parameters. In Section 2.3 we

investigate the implications of employing the substitution policy on the optimal order-up-to

levels.

Parameters

pm : unit selling price for PM,

pr : unit selling price for PR, pr ≤ pm,

cm : unit manufacturing cost,

cr : unit remanufacturing cost,

Xm : random variable denoting demand/period for PM,

Xr : random variable denoting demand/period for PR,

fm(.) : probability density function for demand/period for PM,

fr(.) : probability density function for demand/period for PR,

F̄m(.) : complementary cumulative distribution function for demand/period for PM,

F̄r(.) : complementary cumulative distribution function for demand/period for PR,

Li(.) : expected number of sales under fi(.), i ∈ {r, m},

Li(y) =

y
∫

0

xifi(xi)dxi +

∞
∫

y

yfi(xi)dxi, y ≥ 0, xi ∈ {xr, xm}

C : available capacity in a period,

am : capacity requirement for producing one unit of PM,

ar : capacity requirement for producing one unit of PR,

Decision Variables

Sm : order-up-to level for PM items,

Sr : order-up-to level for PR items.

2.1 Unconstrained Problem

Since pm ≥ pr, PM products are used to satisfy demand for PM with priority. In other words,

the available stock for PM faces first its original demand and then, the remaining items are
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treated as PR. Hence expected profit becomes:

P (Sr, Sm) = pmmin{Sm, xm} − cmSm

+prmin{Sr + max{Sm − xm, 0}, xr} − crSr.

Therefore expected profit is,

E [P (Sr, Sm)] = pmLm(Sm) − cmSm

+pr

Sm
∫

0

Lr(Sr + Sm − xm)fm(xm)dxm

+pr

∞
∫

Sm

Lr(Sr)fm(xm)dxm − crSr. (1)

In the expected profit expression given in (1) it can be observed that expected number of

PR sales depends on the PM demand realization, xm. If the realized demand for PM is less

than corresponding order-up-to level, i.e. xm < Sm, expected PR sales can be expressed as if

the order-up-to level for PR is Sr +Sm−xm. Otherwise, expected PR sales are in regular form.

2.1.1 The Behavior of the Expected Profit Function

The first order optimality conditions with respect to decision variables Sr and Sm are,

∂E [P (Sr, Sm)]

∂Sm
= pmF̄m(Sm) − cm + pr

Sm
∫

0

F̄r(Sr + Sm − xm)fm(xm)dxm (2)

∂E [P (Sr, Sm)]

∂Sr
= pr





Sm
∫

0

F̄r(Sr + Sm − xm)fm(xm)dxm + F̄r(Sr)F̄m(Sm)



− cr. (3)

E [P (Sr, Sm)] is jointly concave in (Sr, Sm) as it is shown in Appendix I. Therefore, (Sr, Sm)

pair maximizing E [P (Sr, Sm)] can be found by equating equations (2) and (3) to zero.

The optimality conditions enable us to characterize some of the system conditions under

which utilization of remanufacturing option is not profitable. The following theorem character-

izes such a condition.
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Theorem 1 When the capacity is not limited (C = ∞), it is not profitable to utilize reman-

ufacturing option, that is, the optimal Sr value, S∗

r , is zero, if unit cost of remanufacturing is

greater than unit cost of manufacturing (cr > cm).

Proof : See Appendix II.

2.2 Effect of Finite Production Capacity

The following problem should be solved to find optimal order-up-to level for PM and PR

maximizing expected profit function subject to capacity constraint.

Max E [P (Sr, Sm)] = pmLm(Sm) − cmSm

+pr

Sm
∫

0

Lr(Sr + Sm − xm)fm(xm)dxm

+pr

∞
∫

Sm

Lr(Sr)fm(xm)dxm − crSr

s.t. amSm + arSr ≤ C

For the problem instances where the solution of the unconstrained problem violates the

capacity constraint, Lagrangian approach should be utilized. Lagrangian relaxation gives the

following Lagrangian function and optimality conditions:

Λ(Sr, Sm, θ) = E [P (Sr, Sm)] + θ(C − amSm − arSr) (4)

∂Λ(Sr, Sm, θ)

∂Sm
=

∂E [P (Sr, Sm)]

∂Sm
− θam = 0 (5)

∂Λ(Sr, Sm, θ)

∂Sr
=

∂E [P (Sr, Sm)]

∂Sr
− θar = 0 (6)

∂Λ(Sr, Sm, θ)

∂θ
= C − amSm − arSr = 0 (7)

where ∂E[P (Sr,Sm)]
∂Sm

, and ∂E[P (Sr,Sm)]
∂Sr

are defined in (2) and (3), respectively, and θ ≥ 0 is the

Lagrange multiplier and can be interpreted as the expected profit of utilizing one extra unit
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of capacity at the given capacity level, C, or alternatively as the expected cost of utilizing one

less unit capacity at the given capacity level C. hence we name θ as the opportunity cost of

utilizing a unit of capacity.

Since the imposed constraint is a linear function of both Sr and Sm, the concavity results

drawn for E[P (Sr, Sm)] are also valid for the Lagrangian function Λ(Sr, Sm, θ). Therefore,

(Sr, Sm, θ) tuple satisfying (5), (6) and (7) maximizes Λ(Sr, Sm, θ) and gives the optimal solution

to the problem.

Using the concavity property of Λ(Sr, Sm, θ) and optimality conditions, it is possible to

figure out the effect of capacity constraint on the optimal order-up-to level of PR. Theorem

2 summarizes the effect when the remanufacturing option is inferior to manufacturing with

respect to unit costs, whereas in Theorem 3 the opposite case is considered.

Theorem 2 When the capacity is limited (C < ∞) and remanufacturing option is inferior to

manufacturing with respect to unit cost (cr > cm),

(a.) if remanufacturing option is also inferior with respect to unit capacity requirement (ar >

am), the optimal Sr value, S∗

r , is always zero, i.e. it is not profitable to utilize remanu-

facturing option under all available capacity levels, C,

(b.) if remanufacturing option has unit capacity requirement advantage (ar < am),

(i.) under available capacity levels, C, for which opportunity cost of utilizing a unit of

capacity, θ, is less than θ0 = cr−cm

am−ar

, the optimal Sr value, S∗

r , is always zero, i.e. it

is not profitable to utilize remanufacturing option,

(ii.) under tighter available capacity levels, C, for which θ > θ0, as the capacity gets

tighter (as θ increases), the optimal Sr value, S∗

r , shows a non decreasing behavior.

Proof : See Appendix II.

Theorem 3 When the capacity is limited (C < ∞) and remanufacturing option has unit cost

advantage over manufacturing (cr < cm),

(a.) if remanufacturing option is inferior to manufacturing with respect to unit capacity re-

quirement (ar > am),
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(i.) as the available capacity levels, C, gets tighter (as θ increases), the optimal Sr value,

S∗

r , shows a non increasing behavior.

(ii.) under available capacity levels, C, for which θ > θ0 = cr−cm

am−ar

, S∗

r , is always zero, i.e.

it is not profitable to utilize remanufacturing option.

(b.) if remanufacturing option has also unit capacity requirement advantage (ar < am), the

optimal Sr value, S∗

r , shows a non decreasing behavior.

Proof : See Appendix II.

Table 1 summarizes the effect of increase in opportunity cost of utilizing a unit of capacity

which is equivalent to a decrease in available capacity levels on the optimal Sr depending on

the conditions on unit cost and unit capacity requirements that are given in Theorem 2, and 3.

Place Table 1 here

Theorem 2 shows that, if the remanufacturing option is inferior to manufacturing with re-

spect to both unit cost and capacity requirement, it is never utilized in the optimal solution

under the substitution scheme considered. From the same theorem, it can be observed that for

the cases where manufacturing has unit cost and remanufacturing has the capacity requirement

advantages, as the available capacity gets tighter, remanufacturing option is utilized since the

unit cost of utilizing one unit of capacity will increase. In order for remanufacturing to be prof-

itable, that is in order for S∗

r > 0, when it is inferior to manufacturing with respect to unit cost,

its capacity requirement should be lower than the capacity requirement of manufacturing and

the opportunity cost of utilizing one unit of capacity, θ, should be large enough. θ or equiva-

lently C value, under which remanufacturing starts to be utilized depends on cost and capacity

requirement of both modes of production. Given the parameters of manufacturing option, as

the unit cost and unit capacity requirement of remanufacturing decreases remanufacturing is

utilized under a wider range of available capacity levels.

Theorem 3 states that when the remanufacturing channel has both unit cost and capacity

requirement advantages, its order-up-to level is non decreasing while the capacity gets tighter.

In this case, it is always profitable to utilize the remanufacturing option. On the other hand,
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when the remanufacturing option is inferior with respect to unit capacity requirement, order-up-

to level for PR decreases as the capacity gets tighter and remanufacturing channel is not utilized

starting with a certain capacity level, even if it has a unit cost advantage. It can be observed

that, the range of capacity levels under which remanufacturing is utilized increases as, the

difference between both unit costs and capacity requirements of two options increases. In other

words, as in the previous case, as the unit cost and capacity requirement of remanufacturing

decreases it is utilized under a wider range of capacity levels.

2.3 Effect of Substitution Policy on the Optimal Order-up-to Levels

In this section, several properties describing the effect of substitution policy on the optimal

order-up-to levels of two products are discussed.

When substitution policy is not applied, i.e. two inventory systems operate independently,

expected profit function can be expressed as follows:

ENS [P (Sr, Sm)] = pmLm(Sm) − cmSm + prLr(Sr) − crSr

It can be easily shown that the function ENS [P (Sr, Sm)] is jointly concave in (Sr, Sm) and

the optimal order-up-to levels, SNS
r and SNS

m can be found using the following equations:

F̄r(S
NS
r ) =

cr

pr
(8)

F̄m(SNS
m ) =

cm

pm
(9)

On the other hand, when there is an active capacity constraint, Lagrangian relaxation yields

the following optimality conditions:

F̄r(S
NS
r ) =

cr + θ

pr
(10)

F̄m(SNS
m ) =

cm + θ

pm
(11)

SNS
m + SNS

r = C (12)
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Note that in this case the effect of capacity restriction on the optimal order-up-to levels is

obvious: While the capacity gets tighter both SNS
r and SNS

m decreases since complementary

cumulative distribution function is non increasing and due to (10), (11) and (12).

Using the optimality conditions under this case and substitution policy, the following prop-

erties can be shown.

Property 1: When there is no capacity restriction, the optimal order-up-to level for PM,

S∗

m obtained under substitution policy, is greater than or equal to the optimal order-up-to level

for PM, SNS
m , obtained under non-substitution policy.

Proof: See Appendix III.

Property 2: When there is no capacity restriction, the optimal order-up-to level for PR,

S∗

r obtained under substitution policy, is less than or equal to the optimal order-up-to level for

PR, SNS
r , obtained under non-substitution policy.

Proof: See Appendix III.

Property 3: When there is an active capacity constraint, the optimal order-up-to level for

PM, S∗

m obtained under substitution policy, is greater than or equal to the optimal order-up-to

level for PM, SNS
m , obtained under non-substitution policy, at the same opportunity cost of

utilizing a unit of capacity, i.e. at the same θ level.

Proof: See Appendix III.

Property 4: When there is an active capacity constraint, the optimal order-up-to level for

PR, S∗

r obtained under substitution policy, is greater than or equal to the optimal order-up-to

level for PR, SNS
r , obtained under non-substitution policy, at the same opportunity cost of

utilizing a unit of capacity, i.e. at the same θ level.

Proof: See Appendix III.

Properties 1 and 2 show that for unconstrained problem under substitution the order-up-to

level for PM increases, whereas it decreases for PR with respect to the no-substitution problem.

On the other hand, when the capacitated problem is considered, these properties are valid at

the same opportunity cost of utilizing a unit capacity (θ). However, note that we do not know

whether the implied capacity levels corresponding to a certain θ level for substitution and no-

substitution problems are the same or not. Similarly, the effect of substitution policy on the

sum of order-up-to levels is not clear.
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These properties are the results of risk-reducing benefits of substitution. Under substitution

policy, manufacturing channel can be utilized to satisfy both types of demands. Therefore, the

order-up-to level of manufactured products is higher with respect to no-substitution case to

prevent the leftovers for PR. Pasternack and Drezner [22] report Property 1 and 2, both for the

unconstrained problem .

Note that the value of optimal order-up-to level of PR and the behavior of the order-up-to

level under substitution policy and capacity restriction give a little idea about the profitability

of remanufacturing option. This is basically due to the fact that the order-up-to level heavily

depends on the demand size. Therefore, it is hard to comment on the optimal utilization

of remanufacturing option just concentrating on the the order-up-to level of remanufactured

products. In order to derive general managerial insights on the profitability of remanufacturing

option, we consider the utilization ratio of remanufacturing option, r = Sr

Sr+Sm

, as a measure.

Note that since we do not have any analytical observations on the effect of substitution policy

or capacity restriction on the optimal system-wide order-up-to level, Sr + Sm, we carried out

a numerical study. In Section 3, the profitability of remanufacturing option is investigated for

a set of problems under substitution, as well as under no-substitution using utilization ratio of

remanufacturing option as an indicator of profitability of remanufacturing.

3 Numerical Study

The main aim of the computational study is to investigate the optimal utilization ratio of

remanufacturing option and effect of substitution policy on profitability of remanufacturing

option under different unit revenue/cost parameters and unit capacity requirements at different

capacity levels.

We study a number of scenarios. In all scenarios unit price of PR and PM, pr and pm, is set to

1.5 and 2, respectively. The profit margin of PM is kept unvaried by setting unit manufacturing

cost to 0.75. The following three cases are considered for the unit remanufacturing cost.

Case A: Unit profit margin is significantly higher for the remanufactured product, cr =

0.1(< cm),

Case B: Unit profit margin is slightly higher for the manufactured product, cr = 0.375(<
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cm)

Case C: Unit profit margin is significantly higher for the manufactured product, cr =

0.8(> cm).

Similarly, unit resource requirement of manufacturing, am, is set to 1, while for the param-

eter ar, three different levels, 0.5, 1 and 2 are considered.

Under each case, 6 different demand scenarios are considered;

S1. xr, xm ∼ Poisson, E[xr] = E[xm] = 4,

S2. xr, xm ∼ Poisson, E[xr] = 4, E[xm] = 2,

S3. xr, xm ∼ Poisson, E[xr] = 2, E[xm] = 4,

S4. xr, xm ∼ Exponential, E[xr] = E[xm] = 4,

S5. xr, xm ∼ Exponential, E[xr] = 4, E[xm] = 2,

S6. xr, xm ∼ Exponential, E[xr] = 2, E[xm] = 4,

Under each demand scenario, all three cases are considered with three different ar levels.

Different available capacity levels are considered by varying Lagrange multiplier, θ, for θ ∈

[0, θu], where θu = max{pm−cm

am

, pr−cr

ar

}. Notice that under θu either of the products’ profit

margin (including opportunity cost of utilizing a unit of capacity) drops to zero under the

available capacity.

For each problem instance, the optimal (Sr, Sm) pair is found under substitution policy and

for the case where the substitution policy is not applied, as well. We consider the utilization

ratio of remanufacturing option, r = Sr

Sr+Sm

, as a measure. rS and rNS are referred for the

utilization ratio of remanufacturing under one-way substitution and independent operation of

two systems, respectively.

For the problems settings in S4, S5, S6, the derived optimality conditions are used to

find optimal (Sr, Sm) pair. On the other hand, when the demand parameters are Poisson

random variables, we could neither prove that the objective function is jointly concave in

decision variables nor found counter examples. Therefore, a full search procedure that evaluates
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the expected profit function at each step is utilized. Nevertheless, aside from the difficulties

associated with discrete functions, we expect that the expected profit function to be discrete

concave under Poisson demands.

The raw results are available upon request. Investigating the results obtained yields the

following observations:

Observation 1. rS is always less than rNS at the same θ level.

A typical case is depicted in Figure 1. Although we do not observe any consistent effect of

substitution on system-wide order-up-to level, Sr + Sm, under all of the problem settings

considered the effect of substitution policy on the utilization ratio of remanufacturing

option is the same as the effect on the optimal Sr as it is shown analytically in Section

2.3. Note that the observation on Sr + Sm is also reported by Pasternack and Drezner

[22].

Place Figure 1 here

Observation 2. When the capacity requirement is higher for PR (ar > am), both rS

and rNS decreases, as the available capacity gets tighter.

A typical case is given in Figure 2 and in Figure 3 for the substitution and no-substitution

policies, respectively. Note that, under substitution for Case C where cr > cm, the

remanufacturing is not utilized at all available capacity levels due to Theorem 2 when

ar > am. As it can be seen in Figure 2 and in Figure 3 the effect of the capacity

constraint on r is the same as on the optimal Sr value shown analytically in Theorem 3.

Place Figure 2 and Figure 3 here

From these figures it can be observed that, as the capacity gets tighter, the optimal

utilization ratio of remanufacturing decreases and hits zero at a certain capacity level,

call it C0, even if the PR product has unit profit margin and / or unit cost advantages.

At capacity levels tighter than C0 remanufacturing is not utilized in the optimal solution,

i.e. the pure strategy where only manufacturing is utilized is optimal. In Table 2 and Table
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3, C0 values are reported under substitution and no-substitution, respectively. Note that

the results in Table 2 under the Column Case C have already been described by Theorem

2. The following observations are made on these tables;

Place Table 2 and Table 3 here

Observation 2.1. When the capacity requirement is higher for PR, as the unit cost

of PR increases (and consequently unit profit margin of PR decreases), the range

of capacity levels under which remanufacturing is not utilized increases under both

substitution and no-substitution.

As the unit cost of PR increases, the desired service-level for PR decreases under

both substitution and no-substitution. When the system has finite capacity, the

utilization ratio of remanufacturing hits zero at a greater capacity level. Therefore,

C0 values increase from Case A to Case C. This observation is consistent with our

analytical findings on optimal Sr and θ values under which Sr drops to zero given

in Theorem 3.

Observation 2.2. When the capacity requirement for PR is higher, remanufactur-

ing is utilized under a wider range of capacity levels when the substitution policy is

not applied.

Due to the fact that applying substitution gives an opportunity of satisfying demand

for PR by PM which require less resources, C0 values are higher under substitution.

When substitution policy is applied, it is better to allocate whole capacity to PM

products at fairly tighter capacity levels, since they can be utilized to satisfy both PR

and PM demand. On the other hand, when two inventory systems operate indepen-

dently, some capacity is allocated to PR product which has a positive profit margin

at the same capacity level. Even if the unit profit margin earned by substitution is

lower than regular profit margin of PR (Case A and Case B), this behavior which

shows the risk-pooling opportunity of substitution policy, is observed.

Observation 3. When the capacity requirement is lower for PR (ar < am), optimal

utilization ratio of remanufacturing increases, as the available capacity gets tighter under

both substitution and no-substitution policies.
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A typical case is given in Figure 4 and in Figure 5 for the substitution and no-substitution

policies, respectively.

Place Figure 4 and Figure 5 here

From these figures it can be observed that, as the capacity gets tighter, the optimal uti-

lization ratio of remanufacturing increases (like the optimal Sr which is shown in Theorem

3) and reaches to one at some capacity level, call it C1, even if the PM product has unit

profit margin and / or unit cost advantages. At capacity levels tighter than C1 manu-

facturing is not utilized in the optimal solution, i.e. under the capacity levels lower than

C1, the pure strategy where only remanufacturing is utilized is optimal. In Table 4 and

Table 5, C1 values are reported under substitution and no-substitution, respectively. The

following observations are made on these tables;

Place Table 4 and Table 5 here

Observation 3.1. When the capacity requirement is lower for PR, under both

substitution and no-substitution policies as the unit cost of PR decreases (and con-

sequently unit profit margin of PR increases), the range of capacity levels under

which whole capacity is allocated to remanufacturing (and therefore) only remanu-

facturing is utilized increases.

As the unit cost of PR decreases, the desired service level for PR increases. In

addition when the substitution policy is applied, unit profit margin loss due to sub-

stitution increases, when the unit cost of PR is lower. Therefore, the pure strategy

with remanufacturing is utilized for a wider range of capacity levels.

We expect to observe that the range of capacity levels where only remanufacturing

is utilized is narrower under substitution, at least for Case C where PR is inferior

with respect to both unit cost and unit profit margin. However, no consistent effect

of substitution policy on C1 values is observed.

Observation 4. Profit improvement by substitution mostly depends on the available

capacity level and relative resource requirements of PM and PR. As the opportunity cost of
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utilizing a unit of capacity increases and the unit capacity requirement of remanufacturing

increases, the percent profit improvement by substitution policy over the case where two

systems operate independently increases.

It is observed that the substitution policy improves the expected profit figures even if the

unit cost of PM is higher than unit cost of PR, if the opportunity cost of utilizing one

unit of capacity is sufficiently high. In Figure 6, a typical case is depicted. Notice that

the figure is for Case A where remanufacturing has the highest unit cost advantage. In

other cases, percent improvement figures are higher than this case and it is substantial

when the capacity is even tighter.

Place Figure 6 here

One-way substitution is most beneficial for the systems where

– remanufacturing requires more capacity than manufacturing,

– capacity of the system is very tight,

– unit cost of PR is higher than the unit cost of PM.

Although we do not have any sensitivity results with respect to relative prices of PM and

PR, it is obvious that substitution is more profitable when unit prices are close to each

other.

4 Conclusion

In this study, we consider a segmented market for manufactured and remanufactured products.

Mainly we focused on the case, where it is possible to substitute remanufactured products by

manufactured one. The computational analysis is restricted to the single period problem to

investigate the effect of substitution on optimal utilization of remanufacturing option under

capacity constraint.

The analytical results and the observations on the computational study result in the follow-

ing managerial insights;
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• When remanufacturing is inferior in unit cost and capacity requirement with respect to

manufacturing, it is optimal to satisfy whole demand by manufactured ones if substitution

is possible. In these cases, substitution improves the expected profits.

• When remanufacturing is inferior in unit cost, but requires less capacity than manufactur-

ing, at tight capacity levels it is utilized even if substitution is possible. As the difference

between unit costs decreases and/or the unit capacity requirement of remanufacturing

decreases, remanufacturing becomes a plausible option under a wider range of available

capacity levels.

• When remanufacturing is inferior in unit capacity requirement, even if it has a unit cost

advantage it is not profitable under tight capacity levels.

• When the cost of utilizing a capacity is high, application of the substitution policy im-

proves the profit figures even if remanufacturing is superior to manufacturing in unit cost,

unit profit margin and capacity requirement.

• Optimal utilization of remanufacturing mostly depends on the capacity requirement and

available capacity of the system under both substitution and no-substitution. It is optimal

to utilize only the channel with lower capacity requirement when the available capacity

is low. The range of capacity levels under which remanufacturing is not utilized is lower

under substitution.

The current work can be extended to multi-period environment for more tactical and oper-

ational level decisions using dynamic programming (DP) formulation. In this way it is possible

to capture the effects of having non-identical lead-times of the options, inventory carrying and

fluctuating capacity over the periods. The substitution decision may be included in the model

by considering the amount of PR demand substituted in each period. However, note that all

these additional properties will result in a relatively difficult problem for solution, even if one

can come up with a DP formulation.

Appendix I-Concavity of Expected Profit Function under Substitution Policy

The second order optimality conditions can be expressed as,
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∂2E [P (Sr, Sm)]

∂S2
m

= −fm(Sm)
[

pm − prF̄r(Sr)
]

− pr

Sm
∫

0

fr(Sr + Sm − xm)fm(xm)dxm ≤ 0 (13)

since pm > pr, F̄r(Sr) ≤ 1, fr(.), fm(.) ≥ 0. Therefore, E [P (Sr, Sm)] is concave in Sm ≥ 0 for

a given Sr ≥ 0 value.

∂2E [P (Sr, Sm)]

∂S2
r

= −pr





Sm
∫

0

fr(Sr + Sm − xm)fm(xm)dxm + F̄m(Sm)fr(Sr)



 ≤ 0 (14)

since F̄m(.) ≥ 0, fr(.), fm(.) ≥ 0. Therefore, E [P (Sr, Sm)] is concave in Sr ≥ 0 for a given

Sm ≥ 0 value.

∂2E [P (Sr, Sm)]

∂SmSr
= −pr

Sm
∫

0

fr(Sr + Sm − xm)fm(xm)dxm

Determinant of the Hessian matrix can be expressed as,

|H| =
∂2E [P (Sr, Sm)]

∂S2
m

.
∂2E [P (Sr, Sm)]

∂S2
r

−

(

∂2E [P (Sr, Sm)]

∂SmSr

)2

= p2
r

[

fm(Sm)

(

pm

pr
− F̄r(Sr)

)]

Sm
∫

0

fr(Sr + Sm − xm)fm(xm)dxm

+p2
rF̄r(Sm)fr

[

fm(Sm)

(

pm

pr
− F̄r(Sr)

)

+

Sm
∫

0

fr(Sr + Sm − xm)fm(xm)dxm



 ≥ 0 (15)

since, 0 ≤ F̄r(.) ≤ 1, pm ≥ pr, fr(.), fm ≥ 0.

E [P (Sr, Sm)] is jointly concave in (Sr, Sm) due to (13), (14) and (15).

Appendix II-Proof of Theorems

Proof of Theorem 1: Let S∗

m(Sr) be the optimal order-up-to level for PM, for given value

of Sr. Under S∗

m(Sr),
∂E[P (Sr,Sm)]

∂Sm

= 0. Therefore from (2),
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Sm
∫

0

F̄r(Sr + Sm − xm)fm(xm)dxm =
cm − pmF̄m(Sm)

pr
. (16)

Plugging (16) into (3) yields,

∂E [P (Sr, S
∗

m(Sr))]

∂Sr
= F̄m(Sm)

(

prF̄r(Sr) − pm

)

+ cm − cr < 0 ∀Sr,

since F̄m(.) ≥ 0, F̄r(.) ≤ 1, pr ≤ pm, cm < cr. Therefore, E[P (Sr, S
∗

m(Sr))] is a non increasing

function of Sr. Therefore, the optimal Sr = 0, when cr > cm.

The following Lemma 1 and 2 are used to prove Theorem 2 and 3.

Lemma 1 For the problem instances where the solution of the unconstrained problem violates

capacity constraint, when Sm is set such that it is optimal for a given value of Sr ≥ 0, the

derivative of the Lagrangian

function that is given in (4) with respect to Sr can be expressed as follows:

∂Λ(Sr, S
∗

m(Sr), θ)

∂Sr
= F̄m(Sm)

(

prF̄r(Sr) − pm

)

+ cm − cr + θ(am − ar) (17)

where S∗

m(Sr) is the optimal Sm, for given value of Sr.

Proof: When the capacity constraint is binding, under S∗

m(Sr), the optimality condition

given in (5) holds. Therefore from (5),

Sm
∫

0

F̄r(Sr + Sm − xm)fm(xm)dxm =
cm + θam − pmF̄m(Sm)

pr
. (18)

Plugging (18) into ∂Λ(Sr,Sm,θ)
∂Sr

expression given in (6) yields (17).

Lemma 2 For a given value of θ > 0,

(i.) if cm − cr + θ(am − ar) < 0 , ∂Λ(Sr,S∗

m
(Sr),θ)

∂Sr

< 0 for ∀Sr ≥ 0, and the optimal Sr, S∗

r = 0.

(ii.) otherwise ∂Λ(Sr,S∗

m
(Sr),θ)

∂Sr

decreases from positive to negative as Sr increases and under S∗

r

∂Λ(Sr,S∗

m
(Sr),θ)

∂Sr

given in (17) is zero.

Proof:
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(i.) When cm − cr + θ(am − ar) < 0, ∂Λ(Sr,S∗

m
(Sr),θ)

∂Sr

< 0 for ∀Sr, since F̄m(.) ≥ 0, F̄r(.) ≤ 1,

pr ≤ pm. Therefore, Λ(Sr, S
∗

m(Sr), θ) is a non increasing function of Sr, hence S∗

r = 0.

(ii.) In this case ∂Λ(Sr,S∗

m
(Sr),θ)

∂Sr

does not show any monotonous behavior. The given behavior

and condition for S∗

r are direct consequences of concavity of Λ(Sr, S
∗

m(Sr), θ) with respect

to Sr.

Proof of Theorem 2:

(a.) When the capacity constraint is non-binding Theorem 1 holds. Otherwise, since, cm < cr

and am < ar, cm − cr + θ(am − ar) < 0 for ∀θ > 0. So, due to part (i.) of Lemma 2,

S∗

r = 0, for ∀θ > 0.

(b.) Since, cm < cr and am > ar,

(i.) cm − cr + θ(am − ar) < 0 for ∀θ < θ0 = cr−cm

am−ar

. So, due to part (i.) of Lemma 2,

S∗

r = 0, ∀θ > θ0.

(ii.) cm − cr + θ(am − ar) > 0 for ∀θ > θ0. Due to part (ii.) of Lemma 2. under (S∗

r , S∗

m)

for a given value of θ > θ0,
∂Λ(S∗

r
,S∗

m
,θ)

∂Sr

= 0. Suppose θ is increased to θ′. Under

the same (S∗

r , S∗

m), ∂Λ(S∗

r
,S∗

m
,θ′)

∂Sr

> 0. Therefore due to Lemma 2, part (ii.), Sr value

maximizing Λ(S∗

r , S∗

m, θ′) should be greater than or equal to S∗

r .

Proof of Theorem 3:

(a.) Since, cm > cr and am < ar,

(i.) cm − cr + θ(am − ar) > 0 for ∀θ < θ0 = cr−cm

am−ar

. Due to part (ii.) of Lemma 2.

under (S∗

r , S∗

m) for a given value of θ < θ0,
∂Λ(S∗

r
,S∗

m
,θ)

∂Sr

= 0. Suppose θ is increased

to θ′ < θ0. Under the same (S∗

r , S∗

m), ∂Λ(S∗

r
,S∗

m
,θ′)

∂Sr

< 0. Therefore due to Lemma 2,

part (ii.), Sr value maximizing Λ(S∗

r , S∗

m, θ′) should be less than or equal to S∗

r .

(ii.) cm − cr + θ(am − ar) < 0 for ∀θ > θ0 = cr−cm

am−ar

. So, due to part (i.) of Lemma 2,

S∗

r = 0, ∀θ > θ0.

(b.) Since, cm > cr and am > ar, cm − cr + θ(am − ar) > 0 for ∀θ > 0. Due to part (ii.)

of Lemma 2. under (S∗

r , S∗

m) for a given value of θ > 0, ∂Λ(S∗

r
,S∗

m
,θ)

∂Sr

= 0. Suppose θ is
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increased to θ′. Under the same (S∗

r , S∗

m), ∂Λ(S∗

r
,S∗

m
,θ′)

∂Sr

> 0. Therefore due to Lemma 2,

part (ii.), Sr value maximizing Λ(S∗

r , S∗

m, θ′) should be greater than or equal to S∗

r .

Appendix III-Proofs of Properties on the Effect of Substitution Policy on the

Optimal Order-up-to Levels

Let (S∗

r , S∗

m) be the optimal order-up-to levels of PR and PM, respectively, under substitu-

tion policy.

Proof of Property 1: In this case under S∗

m, equation (2) is equal to zero. Equating (2)

to zero and re-writing it yields:

F̄m(S∗

m) = −
pr

pm

S∗

m
∫

0

F̄r(S
∗

r + S∗

m − xm)fm(xm)dxm +
cm

pm

Since pr

pm

S∗

m
∫

0
F̄r(S

∗

r + S∗

m − xm)fm(xm)dxm ≥ 0, due to optimality condition given in (9) for

the case where substitution policy not applied

F̄m(S∗

m) ≤
cm

pm
= F̄m(SNS

m ).

Therefore, S∗

m ≥ SNS
m since F̄m(.) is a non increasing function.

Proof of Property 2: In this case under S∗

r , equation (3) is equal to zero. Equating (3)

to zero and re-writing it yields:

Sm
∫

0

F̄r(S
∗

r + Sm − xm)fm(xm)dxm + F̄r(S
∗

r )F̄m(Sm) =
cr

pr
. (19)

Note that F̄r(S
∗

r + Sm − xm) ≤ F̄r(S
∗

r ) for ∀xm ∈ [0, Sm] since F̄r(.) is a non increasing

function. Therefore from (19) and (8),

F̄r(S
∗

r )F̄m(Sm) +

Sm
∫

0

F̄r(S
∗

r )fm(xm)dxm ≥
cr

pr
= F̄r(S

NS
r )

F̄r(S
∗

r )F̄m(Sm) + F̄r(S
∗

r )(1 − F̄m(Sm)) ≥ F̄r(S
NS
r )

F̄r(S
∗

r ) ≥ F̄r(S
NS
r )
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Therefore, S∗

r ≤ SNS
r since F̄r(.) is a non increasing function.

Proof of Property 3: can be shown as in Property 1 using optimality conditions (5) and

(11) instead of (2) and (9).

Proof of Property 4: can be shown as in Property 2 using optimality conditions (6) and

(10) instead of (3) and (8).
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Table 1: The Behavior of S∗

r with respect to an increase in θ, (θ0 = cr−cm

am−ar

)

cr < cm cr > cm

non decreasing - S∗

r = 0 up-to θ0 ,

ar < am - non decreasing

-non increasing S∗

r = 0

ar > am -hits zero at θ0

Table 2: Available Capacity Levels under which the Utilization Ratio of Remanufacturing

Option Drops to Zero under Substitution (ar = 2)

Scenario Case A Case B Case C

S1 39 45 ∞

S2 8 8 ∞

S3 20 ∞ ∞

S4 4.21 5.51 ∞

S5 2.67 3.62 ∞

S6 3.49 4.52 ∞
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Table 3: Available Capacity Levels under which the Utilization Ratio of Remanufacturing

Option Drops to Zero under No-Substitution (ar = 2)

Scenario Case A Case B Case C

S1 16 19 24

S2 2 2 3

S3 17 21 27

S4 0.75 0.90 1.38

S5 0.64 0.80 1.31

S6 1.42 1.76 2.55

Table 4: Available Capacity Levels under which the Utilization Ratio of Remanufacturing

Option Reaches 1 under Substitution (ar = 0.5)

Scenario Case A Case B Case C

S1 28 18 2

S2 31 20 4

S3 3 1 4

S4 2.91 1.62 0.21

S5 2.91 1.62 0.21

S6 1.45 0.81 0.1
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Table 5: Available Capacity Levels under which the Utilization Ratio of Remanufacturing

Option Reaches 1 under No-Substitution (ar = 0.5)

Scenario Case A Case B Case C

S1 28 18 3

S2 31 20 4

S3 3 2 2

S4 1.45 0.81 0.11

S5 2.98 1.62 0.21

S6 1.42 0.81 0.10

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00


0
 5
 10
 15
 20
 25


Opportunity cost of utilizing a unit of 

capacity


S
r/

(S
r+

S
m

)


substitution


no-substitution


Figure 1: Capacity allocated to remanufacturing under the optimal solution under substitution

and no-substitution, Case A, S4, ar = 0.5
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Figure 2: Optimal Utilization Ratio of Remanufacturing, r = Sr/(Sr + Sm), at Different Avail-

able Capacity Levels under Substitution, S1, ar = 2.
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Figure 3: Optimal Utilization Ratio of Remanufacturing, r = Sr/(Sr + Sm), at Different Avail-

able Capacity Levels under No-Substitution, S1, ar = 2.
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Figure 4: Optimal Utilization Ratio of Remanufacturing, r = Sr/(Sr + Sm), at Different Avail-

able Capacity Levels under Substitution, S4, ar = 0.5.
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Figure 5: Optimal Utilization Ratio of Remanufacturing, r = Sr/(Sr + Sm), at Different Avail-

able Capacity Levels under No-Substitution, S4, ar = 0.5.
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Figure 6: Percent Expected Profit Improvement by Substitution, S3, Case A.
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