
Single-machine Scheduling with Periodic Maintenance

to Minimize Makespan

Min Ji1 2

Email: jimkeen@math.zju.edu.cn

Yong He1

Email: mathhey@zju.edu.cn

T. C. E. Cheng2

Corresponding author. Email: LGTcheng@polyu.edu.hk

1Department of Mathematics, and State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027,
P.R. China

2Department of Logistics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

This is the Pre-Published Version.

Abstract

We consider a single-machine scheduling problem with periodic maintenance activities. Although

the scheduling problem with maintenance has attracted researchers’ attention, most of past studies

considered only one maintenance period. In this research several maintenance periods are considered

where each maintenance activity is scheduled after a periodic time interval. The objective is to find

a schedule that minimizes the makespan, subject to periodic maintenance and nonresumable jobs.

We first prove that the worst-case ratio of the classical LPT algorithm is 2. Then we show that there

is no polynomial time approximation algorithm with a worst-case ratio less than 2 unless P = NP ,

which implies that the LPT algorithm is the best possible.

Keywords. Single-machine scheduling; Periodic maintenance; Nonresumable jobs; Approximation

algorithm; Non-approximability

1

1 Introduction

Most literature on scheduling theory assumes that machines are continuously available. However,

this assumption may not be valid in a real production situation due to preventive maintenance (a

deterministic event) or breakdown of machines (a stochastic phenomenon). It is not uncommon

to observe in practice that machines are awaiting maintenance while there are jobs waiting to be

processed by these machines. This is due to a lack of coordination between maintenance planning and

production scheduling. Uncertain machine breakdowns will make the shop behavior hard to predict,

thus reducing the efficiency of the production system. Maintenance can reduce the breakdown rate

with minor sacrifices in production time. The importance of maintenance has increasingly been

recognized by decision makers. Therefore, scheduling the maintenance of manufacturing systems

has gradually become a common practice in many companies. The work of periodic maintenance

includes periodic inspections, periodic repairs, and preventive maintenance. With proper planning of

periodic maintenance, the shop can improve production efficiency and safety, resulting in increased

productivity and heightened safety awareness [2].

As maintenance is scheduled periodically in many manufacturing systems, there is a need to

develop an approach to handle the scheduling of jobs for processing in systems with periodic mainte-

nance, which usually have more than one maintenance period. However, to the best of our knowledge,

only Liao and Chen [12] have considered such a scheduling problem for the objective of minimizing

the maximum tardiness. They proposed a branch-and-bound algorithm to derive the optimal sched-

ule and a heuristic algorithm for large-sized problems. They also provided computational results to

demonstrate the efficiency of their heuristic. In this paper we consider the scheduling problem with

periodic maintenance to minimize the makespan.

Formally, the considered problem can be described as follows: We are given n independent non-

resumable jobs J = {J1, J2, · · · , Jn}, which are processed on a single machine. Here nonresumable

means that if a job cannot be finished before a maintenance activity, it has to restart. The processing

time of job Ji is pi. All the jobs are available at time zero. The amount of time to perform each

maintenance activity is t. Let the length of the time interval between two consecutive maintenance

periods be T . We assume that T ≥ pi for every i = 1, 2, · · · , n, for otherwise there is trivially

no feasible schedule. We think of each interval between two consecutive maintenance activities as a

batch with a capacity T . Thus, a schedule π can be denoted as π = (B1, M1, B2,M2, · · · ,ML−1, BL),

where Mi is the ith maintenance activity, L is the number of batches, and Bi is the ith batch of

jobs. An illustration of the considered problem in the form of a Gantt chart is given in Figure 1.

Let Ci be the completion time of job Ji, then the objective is to minimize the makespan, which is

defined as Cmax = maxi=1,2,···,n Ci. Using the three-field notation of Graham et al. [5], we denote

this scheduling problem as 1/nr − pm/Cmax. It can easily be shown that this problem is strongly

NP -hard [9], but no approximation algorithm has been provided and analyzed in the literature.

We use the worst-case ratio to measure the quality of an approximation algorithm. Specifically,

2

J
 [
 1
]
 M
 L
-
1
M
 1
 .
.
.
.
.
.
J
 [
 j
]
 M
 2
J
 [
 j
+
1
]
 .
.
.
 .
.
.
 J
 [
n
]

T
t
 .
.
.
.
.
.
T
 T
t
 t

B
 1
 B
 2
 B
 L

.
.
.

Figure 1: An illustration of the problem under consideration, where J[j] denotes the job placed in the j-th
position of the given schedule.

for the makespan problem, let CA denote the makespan produced by an approximation algorithm

A, and COPT the makespan produced by an optimal off-line algorithm. Then the worst-case ratio

of algorithm A is defined as the smallest number c such that for any instance I, CA ≤ cCOPT .

The single-machine scheduling problem with single maintenance and nonresumable jobs has

been well studied. For the objective of minimizing the makespan, Lee [9] showed that the Longest

Processing Time (LPT) rule has a tight worst-case ratio of 4/3, and He et al. [7] presented a fully

polynomial time approximation scheme. For the objective of minimizing the total completion time,

Lee and Liman [10] proved that the worst-case ratio of the Shortest Processing Time (SPT) rule is

9/7. Sadfi et al. [13] proposed a modified algorithm MSPT with a worst-case ratio of 20/17. He et

al. [8] presented a polynomial time approximation scheme. Moreover, Lee [9] presented heuristics for

other objectives, such as minimizing the maximum lateness, the number of tardy jobs, and the total

weighted completion time, etc. Graves and Lee [6] extended the problem to consider semiresumable

jobs. For details on related research, the reader may refer to the survey paper [14].

In this paper we first show that the worst-case ratio of the classical LPT algorithm is 2. Then

we prove that there is no polynomial time approximation algorithm with a worst-case ratio of less

than 2, which implies that LPT is the best possible algorithm. Finally, we present some concluding

remarks.

2 The LPT algorithm and its worst-case ratio

In this section we analyze the LPT algorithm, which is a classical heuristic for solving scheduling

problems. It can be formally described as follows.

Algorithm LPT : Re-order all the jobs such that p1 ≥ p2 ≥ · · · ≥ pn; then process the jobs

consecutively as early as possible.

Note that if we take each batch as a bin, then the LPT algorithm is equivalent to the First Fit

Decreasing (FFD) algorithm, which is a classical heuristic for solving the bin-packing problem. The

worst-case ratio for the FFD is 3/2 [11], i.e.,

b ≤ 3
2
b∗, (1)

where b is the number of bins (i.e., batches) obtained by the FFD (i.e., LPT) algorithm and b∗ is

3

the optimal number of bins (batches) for the bin-packing (scheduling) problem. Before analyzing

the LPT algorithm, we first present some properties and lemmas, which are all straightforward.

Property 1 The optimal schedule must have the minimum number of batches, i.e., it corresponds

to an optimal solution for the bin-packing problem.

Lemma 1 (see [3], p. 574) In the LPT schedule, if b > b∗, then the processing time of each job in

batches Bb∗+1, Bb∗+2, · · · , Bb is not larger than T/3.

Lemma 2 (see [3], p. 574-575) In the LPT schedule, if b > b∗, then the total number of jobs in

batches Bb∗+1, Bb∗+2, · · · , Bb is not greater than b∗ − 1.

Let the total processing times of the jobs in the last batch of the optimal schedule and the LPT

schedule be x and y, respectively. Then from Property 1, the makespan of the optimal schedule is

COPT = (b∗ − 1)(T + t) + x, (2)

while the makespan of the LPT schedule is

CLPT = (b− 1)(T + t) + y. (3)

(2) implies that

b∗ = 1 +
COPT − x

T + t
. (4)

Substituting (4) into (1), we obtain

b ≤ 3
2

(
1 +

COPT − x

T + t

)
. (5)

Substituting (5) into (3), we establish

CLPT ≤
[
3
2

(
1 +

COPT − x

T + t

)
− 1

]
(T + t) + y

=
3
2
COPT +

1
2
(T + t)− 3

2
x + y

≤ 3
2
COPT +

1
2
(T + t) + y. (6)

On the other hand, it is clear that y ≤ T . Combining it with (6), we obtain

CLPT ≤ 3
2
COPT +

1
2
(3T + t). (7)

Now we are ready to obtain the worst-case ratio of the LPT algorithm.

Theorem 3 For the problem 1/nr − pm/Cmax, the worst-case ratio of the LPT algorithm is 2.

4

Proof. We first claim that b∗ > 1. Otherwise, we have CLPT = COPT , and we are done. If b = b∗,

then from (2) and (3), we see that

CLPT = COPT + y − x ≤ COPT + T < 2COPT ,

where the last inequality holds because b∗ > 1, i.e., T < COPT . So, we assume in the following that

b > b∗.

Case 1 b∗ ≥ 4. Thus, from (2), we have COPT ≥ 3(T + t) > 3T + t. Combining it with (7), we

obtain CLPT ≤ 2COPT .

Case 2 b∗ = 3. Then, from Lemma 2, we know that in the LPT schedule, the total number of

jobs in batches Bb∗+1, Bb∗+2, · · · , Bb is not greater than 2. Combining it with Lemma 1, we conclude

that y ≤ 2
3T . As b ≤ 3

2b∗ = 9
2 and b > b∗, we know that b = 4. By (3) and y ≤ 2

3T , we have

CLPT = 3(T + t) + y < 4(T + t). (2) states that COPT = 2(T + t) + x > 2(T + t). Hence, we have

CLPT < 2COPT .

Case 3 b∗ = 2. By the same reasoning as Case 2, we conclude that b = 3, the number of jobs

in the 3th batch of the LPT schedule is 1, and y ≤ T
3 . Thus, we have COPT = (T + t) + x and

CLPT = 2(T + t) + y.

Denote P =
∑n

i=1 pi. Let A be the total processing time of the jobs in the first batch of the

optimal schedule, and B, C be the total processing times of the jobs in the first and the second

batches of the LPT schedule, respectively. Then, we have B + C + y = P = A + x. Combining it

with A ≤ T , we have

B + C + y ≤ T + x. (8)

On the other hand, by the LPT rule, we have B+y > T and C+y > T , and hence B+C+y > 2T−y.

Combining it with (8), we obtain x > T − y, and hence x > 2
3T (since y ≤ T

3). Therefore, we obtain

COPT = (T + t) + x > 5
3T + t, and CLPT = 2(T + t) + y ≤ 7

3T + 2t, implying CLPT < 2COPT .

Hence, we have completed the proof that the worst-case ratio of the LPT algorithm is not greater

than 2. To show that the ratio cannot be smaller than 2, consider the following instance: Let T = 12,

p1 = 6, p2 = p3 = p4 = 4, p5 = p6 = 3, and t be an arbitrary integer. Applying LPT , we obtain

B1 = {J1, J2}, B2 = {J3, J4, J5}, B3 = {J6}, and the makespan is CLPT = 2t + 27. However, an

optimal solution has two batches, where the first batch contains J1, J5, J6 while the second batch

contains J2, J3, J4. Hence, COPT = t + 24. It follows that CLPT
COPT

= 2t+27
t+24 → 2 as t → ∞. The LPT

schedule and an optimal schedule are illustrated in Figure 2.

5

J
 1
 M
 1
 M
 2
T
h
e
 L
P
T

s
 c
 h
e
 d
u
l
e

M
 1
 M
 2

J
 3
J
 2
 J
 6
J
 4
 J
 5

J
 1
 J
 5
 J
 6
 J
 2
 J
 3
 J
 4
A
n

o
 p
t
 i
m
 a
l

s
 c
 h
e
 d
u
l
e

Figure 2: An instance showing the tightness of the worst-case ratio.

3 Non-approximability

It is well known that it is impossible to have a polynomial time approximation algorithm for the

bin-packing problem with a worst-case ratio of less than 3/2 unless P = NP [4]. However, for our

problem, the lower bound can be larger. In fact, we show that if there is an approximation algorithm

with a worst-case ratio of 2− ε for any 0 < ε < 1, then it can be used to establish a polynomial time

algorithm for solving the PARTITION problem, which is NP -hard [4], leading to a contradiction (if

P 6= NP). Hence, such an algorithm for the considered problem cannot exist unless P = NP .

PARTITION: Given n positive integers h1, h2, · · · , hn with
∑n

i=1 hi = 2H, does there exist a set

U ⊆ {1, 2, · · · , n} with
∑

i∈U hi = H?

For any fixed positive number ε < 1 and an instance I of the PARTITION problem, we construct

an instance II of our scheduling problem as follows: There are n jobs: J1, · · · , Jn, and the processing

time of job Ji is pi = hi. Let the time of the maintenance period be t = d2H(1 − ε)/εe, and the

time of the interval between two consecutive maintenance periods be T = H. It is clear that this

construction can be performed in polynomial time. We first give some lemmas.

Lemma 4 If there exists a solution to the instance I, then the optimal makespan for the instance

II is COPT = 2H + t.

Proof. Suppose that there exists such a subset U for the instance I such that
∑

i∈U hi = H. We

process jobs {Ji | i ∈ U} in the first batch and all the remaining jobs in the second batch. Hence,

the corresponding makespan equals 2H + t, which achieves the trivial lower bound for the optimal

makespan and is thus optimal.

Lemma 5 If there is no solution to the instance I, then the optimal solution value for the instance

II satisfies the inequality COPT ≥ 2H + 2t + 1.

Proof. If there is no solution to the instance I, then it can easily be verified that the optimal

schedule for instance II has to use at least three batches. Therefore, the optimal value COPT ≥
2(T + t) + 1 = 2(H + t) + 1.

Lemma 6 If there exists a polynomial time approximation algorithm Aε with a worst-case ratio

of 2 − ε for some positive number ε < 1, then there exists a polynomial time algorithm for the

PARTITION problem.

6

Proof. Given any instance I of the PARTITION problem, we construct the corresponding instance

II of our scheduling problem in polynomial time as above. Define an upper threshold Z = 2(H + t).

Then the instance I of the PARTITION problem can be answered by merely comparing the values

of CAε and Z.

To see this is the case, let us apply Aε to the instance II. If CAε ≤ Z = 2(H + t), then

COPT ≤ CAε ≤ 2(H + t). By Lemma 5, we deduce that there is a solution to the instance I of the

PARTITION problem. On the other hand, if CAε > Z, since COPT ≥ CAε
2−ε by the assumption that

Aε has a worst-case ratio of 2− ε, and since t = d2H(1− ε)/εe implies ε ≥ 2H
2H+t , we have

COPT >
2(H + t)

2− ε
≥ 2(H + t)

2− 2H
2H+t

= 2H + t.

Combining it with Lemma 4, we deduce that there is no solution to the instance I.

Hence, we have shown that the schedule for the instance II produced by Aε gives us a right

answer about whether there exists a solution to the instance I. Since the times for constructing

instance II and Aε are all polynomial, Aε can solve I, an arbitrary instance of PARTITION problem

in polynomial time. This completes the proof.

By Lemma 6, and the fact that any NP -hard problem cannot be solved by a polynomial time

algorithm unless P = NP , we establish the following main result.

Theorem 7 Unless P = NP , the LPT algorithm is the best possible polynomial time approximation

algorithm for the problem 1/nr − pm/Cmax.

4 Conclusions

We showed that the worst-case ratio of the classical LPT algorithm is 2 for the problem 1/nr −
pm/Cmax. We also showed that 2 is the best possible for all the polynomial time approximation

algorithms unless P = NP . So in future research, it is worth considering the design of approximation

algorithms with a lower time complexity than the LPT algorithm, while maintaining the worst-case

ratio of 2. It is also worth considering the problem with respect to other objectives and in parallel-

machine systems.

Acknowledgement

This research was supported in part by the National Natural Science Foundation of China under

grant numbers (10271110, 60021201); the Teaching and Research Award Program for Outstand-

ing Young Teachers in Higher Education Institutions of the MOE, China; and The Hong Kong

Polytechnic University under grant number G-T997.

7

References

[1] I. Adiri, E. Frostig, A.H.G. Rinnooy Kan, Scheduling on a single machine with a single break-

down to minimize stochastically the number of tardy jobs, Naval Research Logistics, 38, 261-271,

1991.

[2] R.H.P.M. Art, G.M. Knapp, M.J. Lawrence, Some aspects of measuring maintenance in the

process industry, Journal of Quality in Maintenance Engineering, 4, 6-11, 1998.

[3] S. Baase, A.V. Gelder, Computer Algorithms: Introduction to Design and Analysis (3rd edition),

Addison-Wesley, U.S.A., 2000.

[4] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

completeness, W.H. Freeman and Company, New York, 1979.

[5] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approxima-

tion in deterministic sequencing and scheduling: a survey, Annals of Operations Research, 5,

287-326, 1979.

[6] G.H. Graves, C.Y. Lee, Scheduling maintenance and semiresumable jobs on a single machine,

Naval Research Logistics, 46, 845-863, 1999.

[7] Y. He, M. Ji, T.C.E. Cheng, Single machine scheduling with a restricted rate-modifying activity,

Naval Research Logistics, 52, 361-369, 2005.

[8] Y. He, W.Y. Zhong, H. K. Gu, Improved algorithms for two single machine scheduling problems,

AAIM 2005, Lecture Notes in Computer Science 3521, 66-76, 2005.

[9] C.Y. Lee, Machine scheduling with an availability constraint, Journal of Global Optimization,

9, 395-416, 1996.

[10] C.Y. Lee, S.D. Liman, Single machine flow-time scheduling with scheduled maintenance, Acta

Informatica, 29, 375-382, 1992.

[11] D. Simchi-Levi, New worst-case results for the bin packing problem, Naval Research Logistics,

41, 579-585, 1994.

[12] C.J. Liao, W.J. Chen, Single-machine scheduling with periodic maintenance and nonresumable

jobs, Computers and Operations Research, 30, 1335-1347, 2003.

[13] C. Sadfi, B. Penz, C. Rapine, J. BÃlazewicz, P. Formanowicz, An improved approximation al-

gorithm for the single machine total completion time scheduling problem with availability con-

straints, European Journal of Operational Research, 161, 3-10, 2005.

[14] G. Schmidt, Scheduling with limited machine availability, European Journal of Operational

Research, 121, 1-15, 2000.

