
Single-machine scheduling with deteriorating jobs

under a series-parallel graph constraint

Ji-Bo Wanga,b,1 C.T. Ngb T.C.E. Chengb

aDepartment of Science, Shenyang Institute of Aeronautical Engineering,

Shenyang 110034, People’s Republic of China
bDepartment of Logistics, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong

Abstract

This paper considers single-machine scheduling problems with deteriorating jobs, i.e., jobs

whose processing times are an increasing function of their starting times. In addition, the jobs are

related by a series-parallel graph. It is shown that for the general linear problem to minimize the

makespan, polynomial algorithms exist. It is also shown that for the proportional linear problem

to minimize the total weighted completion time, polynomial algorithms exist, too.

Keywords: Scheduling; single machine; deteriorating jobs; series-parallel graph; makespan; total

weighted completion time

1 Introduction

In classical scheduling theory it is assumed that the processing time of a job is constant.

However, this assumption is invalid for the modelling of many modern industrial processes. There

is a growing interest in the literature to study scheduling problems with deteriorating jobs, i.e.,

jobs whose processing times are an increasing function of their starting times. Such deterioration

appears, e.g., in scheduling maintenance jobs or cleaning assignments, where any delay in processing

a job is penalized and often implies additional time for accomplishing the job. Extensive surveys of

different models and problems concerning deteriorating jobs can be found in Alidaee and Womer

[1], and Cheng et al. [8].

Most of these studies focus on single-machine settings. Browne and Yechiali [4] considered a

single-machine scheduling problem with deteriorating jobs. In this problem, the job processing

time is a non-decreasing, start-time dependent linear function. They presented an optimal solu-

tion for makespan minimization. Mosheiov [12] considered the problem in which all the jobs are

characterized by a common positive basic processing time. Using this basic assumption, Mosheiov
1 Corresponding author. E-mail addresses: wangjibo75@yahoo.com.cn; lgtctng@polyu.edu.hk;

lgtcheng@polyu.edu.hk

1

This is the Pre-Published Version.

proved that the optimal schedule to minimize flowtime is symmetric and has a V-shaped property

with respect to the increasing rates of the job processing times. Mosheiov [13] considered the

following objective functions: makespan, total flow time, sum of weighted completion times, total

lateness, maximum lateness and maximum tardiness, and the number of tardy jobs. When the

values of the normal processing time equal zero, all these problems can be solved polynomially.

Sundararaghavan and Kunnathur [18] considered the single-machine scheduling problem in which

the processing time is a binary function of a common start-time due date. The jobs have processing

time penalties for starting after the due date, and the objective is to minimize the sum of weighted

completion times. Three special cases of this problem can be solved optimally. Cheng and Ding

[7] considered some problems with a decreasing linear model of the job processing times, but with

ready time and deadline restrictions. They identified some interesting relationships between the

linear models with decreasing and increasing start-time dependent parts. Bachman and Janiak

[2] showed that the maximum lateness minimization problem under the linear deterioration as-

sumption is NP-hard, and presented two heuristic algorithms. Bachman et al. [3] considered the

problem of minimizing the total weighted completion time introduced by Browne and Yechiali [4].

They proved that the problem is NP-hard. Wu and Lee [20] considered the problem with deteri-

orating jobs to minimize the makespan on a single machine where the facility has an availability

constraint. They showed that the problem can be solved by 0-1 integer programming. Hsu and Lin

[10] considered a single-machine problem with deteriorating jobs to minimize the maximum late-

ness. They designed a branch-and-bound algorithm for deriving exact solutions by incorporating

several properties concerning dominance relations and lower bounds.

Chen [6] and Mosheiov [14] considered scheduling linear deteriorating jobs on a group of parallel

identical machines. Chen [6] considered minimum flow time and Mosheiov [14] studied makespan

minimization. Mosheiov [15] considered makespan minimization and its computational complexity

of flow shop, open shop and job shop problems. He introduced a polynomial-time algorithm for the

two-machine flow shop and proved its NP-hardness when an arbitrary number of machines (three

and above) is assumed. Wang and Xia [19] considered no-wait or no-idle flow shop scheduling

problems with job processing times dependent on their starting times. In these problems the job

processing time is a simple linear function of a job’s starting time and some dominating relationships

between machines can be satisfied. They showed that for the problems to minimize makespan or

weighted sum of completion times, polynomial algorithms still exist. When the objective is to

minimize maximum lateness, the solutions of a classical version may not hold.

In this paper we consider single-machine scheduling problems with deteriorating jobs under a

series-parallel precedence constraints. The remaining part of the paper is organized as follows. In

next section, a precise formulation of the problem with increasing job processing times is given.

2

The problems of minimizing the makespan and the total weighted completion time are studied in

the third section and the fourth section, respectively. The last section contains some concluding

remarks.

2 Basic notation, definition and observation

There are given a single machine and a set N = {J1, J2, . . . , Jn} of n independent and non-

preemptive jobs. The schedule of the jobs must comply with a series-parallel graph precedence

constraint imposed by a given digraph G = (N, A). Each node Jj ∈ N is identified with a job. Job

Ji precedes job Jj if there is a directed path from Ji to Jj in G. Let pj denote the processing time

of job Jj (j = 1, 2, . . . , n). Throughout the paper, we will consider deteriorating processing times

in two forms: general linear pj(t) = pj + αjt, and proportional linear pj(t) = pj(a + bt), where

pj > 0, αj ≥ 0, a ≥ 0, b ≥ 0, and t ≥ 0 is the job starting-time. For any j, the coefficients of pj (or

apj) and αj (or bpj) are called the normal processing time and deterioration rate. All the jobs are

available for processing at time t0 ≥ 0.

For any schedule π = [Jπ(1), Jπ(2), . . . , Jπ(n)], where Jπ(j) means the jth job in schedule π,

Cj = Cj(π) represents the completion time of job Jj . The objective is to find a feasible schedule for

which either the makespan Cmax is minimized or the total weighted completion time
∑n

j=1 wjCj is

minimized. In the remaining part of the paper, all the problems considered will be denoted using

the three-field notation scheme α|β|γ introduced by Graham et al. [9].

3 Makespan problem

First, we need to introduce some notation and terminology; these will be the same as those

used by Lawler [11] and Sidney [17] wherever possible.

Definition 1 [11]. The class of transitive series-parallel graphs is defined recursively as follows:

1. A graph consisting of a single node, e.g., G = ({Ji}, ∅), is transitive series-parallel.

2. If G1 = (N1, A1) and G2 = (N2, A2), where N1 ∩N2 = ∅, are transitive series-parallel, then:

(a) The graph

G = (N1 ∪N2, A1 ∪A2 ∪ (N1 ×N2))

is also transitive series-parallel. G is said to be formed by the serial composition of G1 and G2.

(b) The graph

G = (N1 ∪N2, A1 ∪A2)

is also transitive series-parallel. G is said to be formed by the parallel composition of G1 and G2.

3

A graph G is said to be series-parallel if and only if its transitive closure is transitive series-

parallel. Given a series-parallel graph G, it is possible to repeatedly decompose G into series and

parallel components, so as to show that the transitive closure of G is obtained by rules 1-2. The

result is a rooted binary tree, which Lawer [11] called a decomposition tree, which is a binary tree

with the leaves denoting jobs and the internal nodes denoting either a parallel or series composition

of the two corresponding subtrees. Parallel and series composition of each internal node are labeled

“P” and “S”, respectively, where by convention the left son precedes the right son in “S”. Figure

2 shows a decomposition tree T for the graph G in Figure 1.

µ´
¶³
J1

©©©©©*µ´
¶³
J2

HHHHHj
µ´
¶³
J3

©©©©©*µ´
¶³
J4

HHHHHj
µ´
¶³
J5G

Figure 1 Series-parallel graph.

µ´
¶³
S4

¡
¡

¡

@
@

@

µ´
¶³
J1

µ´
¶³
P3

¡
¡

¡

@
@

@
µ´
¶³
J3

µ´
¶³
S2

¡
¡

¡

@
@

@

µ´
¶³
J2 µ´

¶³
P1

¡
¡

¡

@
@

@

µ´
¶³
J4 µ´

¶³
J5

T

Figure 2. Decomposition tree.

Definition 2 [17]. A non-empty subset M ⊆ N is a (job) module if, for each job Jj ∈ N −M ,

exactly one of the following three conditions holds:

(a) Jj must precede every job in M ,

(b) Jj must follow every job in M ,

(c) Jj is not constrained with respect to any job in M .

Definition 3 [17]. Let M be a module. A subset I ⊆ M is an initial set of M , if for each job

Jj ∈ I, all the predecessors of Jj in M are also in I.

Suppose that π = [Jπ(1), Jπ(2), . . . , Jπ(n)] is any schedule of N and U = {Jπ(l), Jπ(l+1), . . . , Jπ(m)} ⊂
N , let

ρ(U, π) =

∑m
i=l(1 + απ(i))− 1∑m

i=l pi
∏m

j=i+1(1 + απ(j))
, (1)

4

where
∏m

j=m+1(1 + απ(j)) := 1.

Now, we define

ρ(U) = sup
π
{ρ(U, π)}, (2)

the supremum being taken over all feasible schedules of N .

Definition 4 [17]. Let M be a module. An initial set I of M is said to be ρ-maximal for

G = (M, A) if ρ(I) ≥ ρ(V) for any initial set V in M .

Definition 5 [17]. Let M be a module. An initial set I∗ of M is said to be ρ∗-maximal for

G = (M, A) if

(a) I∗ is ρ-maximal for G;

(b) there is no proper subset V ⊂ M (V 6= I∗) which is ρ-maximal for G.

Every module M admits at least one ρ-maximal initial set, possibly M itself.

Lemma 1 [21] For the problem 1|pj(t) = pj + αjt|Cmax, if the sequence is π = [J1, J2, . . . , Jn] and

the starting time of the first job is t0 ≥ 0, then the makespan is

Cmax(π) =
n∑

i=1

pi

n∏

k=i+1

(1 + αk) + t0

n∏

k=1

(1 + αk),

where
∏n

k=n+1(1 + αk) := 1.

For a given subschedule π = [J1, J2, . . . , Jm], where {J1, J2, . . . , Jm} is any subset of N , let

ρ(π) = ρ([J1, J2, . . . , Jm]) =
∑m

i=1(1 + αi)− 1∑m
i=1 pi

∏m
j=i+1(1 + αj)

.

If job Ji must occur before job Jj in every feasible schedule, then we say that job Ji has

precedence over job Jj and denote it by Ji → Jj . For the problem 1|chains, pj + αjt|Cmax, we

consider two chains of the jobs first. One chain, say L1, consists of the jobs:

L1 : J1 → J2 → . . . → Jk,

and the other chain, say chain L2, consists of the jobs:

L2 : Jk+1 → Jk+2 → . . . → Jn.

The next lemma is based on the assumption that if the scheduler decides to start processing

jobs of one chain, he has to complete the entire chain before he is allowed to work on the jobs of

the other chain.

5

Lemma 2 [21] Consider two feasible schedules α = [U,L1, L2, V] and β = [U,L2, L1, V], where U

and V are any subsequences. Cmax(α) ≤ Cmax(β) if and only if ρ(L1) ≥ ρ(L2).

Proof. Let the completion time of the last job in U be t. From Lemma 1, we have

Cmax([U,L1, L2]) =
n∑

i=k+1

pi

n∏

l=i+1

(1 + αl) +
k∑

i=1

pi

k∏

l=i+1

(1 + αl)
n∏

l=k+1

(1 + αl) + t
n∏

l=1

(1 + αl),

Cmax([U,L2, L1]) =
k∑

i=1

pi

k∏

l=i+1

(1 + αl) +
n∑

i=k+1

pi

n∏

l=i+1

(1 + αl)
k∏

l=1

(1 + αl) + t

n∏

l=1

(1 + αl).

Cmax(α) ≤ Cmax(β)

if and only if

Cmax([U,L1, L2]) ≤ Cmax([U,L2, L1])

if and only if ∑k
l=1(1 + αl)− 1∑k

i=1 pi
∏k

l=i+1(1 + αl)
≥

∑n
l=k+1(1 + αl)− 1∑n

i=k+1 pi
∏n

l=i+1(1 + αl)
,

i.e.,

ρ(L1) ≥ ρ(L2).

This complete the proof. 2

Lemma 3 For any b > 0, d > 0 and k ≥ 0, a
b > c

d if and only if a+kc
b+kd > c

d .

Lemma 4 For any b > 0, d > 0 and k > 0, a
b > c

d if and only if a
b > kc+a

kd+b .

Lemma 5 If J1 −→ J2 −→ . . . −→ Ju −→ Ju+1 −→ . . . −→ Jl∗ and

ρ([J1, J2, . . . , Jl∗]) > ρ([J1, J2, . . . , Ju]),

then, we can obtain

ρ([Ju+1, Ju+2, . . . , Jl∗]) > ρ([J1, J2, . . . , Jl∗]).

Proof. From ρ([J1, J2, . . . , Jl∗]) > ρ([J1, J2, . . . , Ju]), we have

∏l∗
i=1(1 + αi)− 1∑l∗

j=1 pj
∏l∗

i=j+1(1 + αi)
>

∏u
i=1(1 + αi)− 1∑u

j=1 pj
∏u

i=j+1(1 + αi)

(
∏u

i=1(1 + αi)− 1)
∏l∗

i=u+1(1 + αi) +
∏l∗

i=u+1(1 + αi)− 1
∑u

j=1 pj
∏u

i=j+1(1 + αi)
∏l∗

i=u+1(1 + αi) +
∑l∗

j=u+1 pj
∏l∗

i=j+1(1 + αi)
>

∏u
i=1(1 + αi)− 1∑u

j=1 pj
∏u

i=j+1(1 + αi)

6

From Lemma 3, we have
∏l∗

i=u+1(1 + αi)− 1
∑l∗

j=u+1 pj
∏l∗

i=j+1(1 + αi)
>

∏u
i=1(1 + αi)− 1∑u

j=1 pj
∏u

i=j+1(1 + αi)
. (3)

From (3) and Lemma 4, we have

∏l∗
i=u+1(1 + αi)− 1

∑l∗
j=u+1 pj

∏l∗
i=j+1(1 + αi)

>
(
∏u

i=1(1 + αi)− 1)
∏l∗

i=u+1(1 + αi) +
∏l∗

i=u+1(1 + αi)− 1
∑u

j=1 pj
∏u

i=j+1(1 + αi)
∏l∗

i=u+1(1 + αi) +
∑l∗

j=u+1 pj
∏l∗

i=j+1(1 + αi)
,

i.e.,

ρ([Ju+1, Ju+2, . . . , Jl∗]) > ρ([J1, J2, . . . , Jl∗]).

This completes the lemma. 2

Lemma 6 If S = [J1, J2, . . . Ju], I∗ = [Ju+1, Ju+2, . . . , Jv], and

ρ(I∗) > ρ(S ∪ I∗),

then, we can obtain

ρ(I∗) > ρ(S).

Proof. From ρ(I∗) > ρ(S ∪ I∗), we have
∏v

i=u+1(1 + αi)− 1∑v
j=u+1 pj

∏v
i=j+1(1 + αi)

>

∏v
i=1(1 + αi)− 1∑v

j=1 pj
∏v

i=j+1(1 + αi)

∏v
i=u+1(1 + αi)− 1∑v

j=u+1 pj
∏v

i=j+1(1 + αi)
>

(
∏u

i=1(1 + αi)− 1)
∏v

i=u+1(1 + αi) +
∏v

i=u+1(1 + αi)− 1∑u
j=1 pj

∏u
i=j+1(1 + αi)

∏v
i=u+1(1 + αi) +

∑v
j=u+1 pj

∏v
i=j+1(1 + αi)

From Lemma 4, we have
∏v

i=u+1(1 + αi)− 1∑v
j=u+1 pj

∏v
i=j+1(1 + αi)

>

∏u
i=1(1 + αi)− 1∑u

j=1 pj
∏u

i=j+1(1 + αi)
,

i.e.,

ρ(I∗) > ρ(S).

This completes the lemma. 2

An important characteristic of chain L1 is defined as follows: Let l∗ be the smallest integer

satisfying

ρ∗(L1) =
∏l∗

i=1(1 + αi)− 1∑l∗
j=1 pj

∏l∗
i=j+1(1 + αi)

= max
1≤s≤k

{ ∏s
i=1(1 + αi)− 1∑s

j=1 pj
∏s

i=j+1(1 + αi)

}
.

7

The ratio on the left-hand side is called the ρ∗-factor of chain L1 : J1 → J2 → . . . → Jk, which

is denoted by ρ∗(L1). Job Jl∗ is referred to as the job that determines the ρ∗-factor of the chain

(Similar to the concept of ρ∗-factor of a chain in Pinedo [16], page 37). Suppose now that the chain

can be interrupted by the jobs of other chains.

Lemma 7 [21] For the problem 1|chains, pj +αjt|Cmax, if job Jl∗ determines ρ∗(L1), then there ex-

ists an optimal sequence that processes jobs J1, J2, . . . Jl∗ one after another without any interruption

by the jobs of other chains.

Proof. Similar to the proof of Pinedo [16] (page 37, Lemma 3.1.3). We assume that the theorem is

false and show that such an assumption will lead to a contradiction. Here we assume that under the

optimal sequence the processing of the subsequence J1, J2, . . . , Jl∗ is interrupted by a job, say job

Jv, from another chain. Let π = [J1, J2, . . . , Ju, Jv, Ju+1, . . . , Jl∗] be a subsequence of an optimal

sequence. It is sufficient to show that either with subsequence π′ = [Jv, J1, J2, . . . Jl∗], or with

subsequence π′′ = [J1, J2, . . . Jl∗ , Jv], the makespan is less than that with subsequence π. If it is not

less than that with the subsequence π′, then it has to be less than that with the subsequence π′′,

and vice versa. From Lemma 2, it follows that if the makespan of π is less than or equal to those

with π′ and π′′, then
∏u

i=1(1 + αi)− 1∑u
j=1 pj

∏u
i=j+1(1 + αi)

≥ αv

pv
≥

∏l∗
i=u+1(1 + αi)− 1

∑l∗
j=u+1 pj

∏l∗
i=j+1(1 + αi)

. (4)

Since job Jl∗ is the job that determines the ρ∗-factor of I∗ : J1, J2, . . . Jl∗ , then
∏l∗

i=1(1 + αi)− 1∑l∗
j=1 pj

∏l∗
i=j+1(1 + αi)

>

∏u
i=1(1 + αi)− 1∑u

j=1 pj
∏u

i=j+1(1 + αi)
. (5)

From (5) and Lemma 5, we can obtain
∏l∗

i=u+1(1 + αi)− 1
∑l∗

j=u+1 pj
∏l∗

i=j+1(1 + αi)
>

∏u
i=1(1 + αi)− 1∑u

j=1 pj
∏u

i=j+1(1 + αi)
.

It is a contradiction to (4). The same argument can be applied if the interruption of the chain is

caused by more than one job. We have proved the theorem. 2

Theorem 1 Let M be a module of G = (N, A) and I∗ be a ρ∗-maximal for (M, A), then there

exists an optimal schedule for N in which the jobs in I∗ precede all the other jobs in M.

Proof. In order to prove this theorem, let’s consider the related network (M, A′), where A′ =

A− {Ji → Jj |Ji ∈ I∗, Jj ∈ M\I∗}. Obviously the set of feasible schedules for (M, A′) contains the

set of feasible schedules for (M, A).

8

We assume that the theorem is false and show that such an assumption will lead to a contradic-

tion. We assume that π = [S, I∗, T] is an optimal schedule for (M, A′), where S and T are disjoint

subsets of M with S ∪ T = M\I∗. Then from Lemma 2, we have

ρ(S) ≥ ρ(I∗) ≥ ρ(T). (6)

Obviously, S∪I∗ is initial in (M, A), so from the I∗ be a ρ∗-maximal, we have ρ(I∗) > ρ(S∪I∗).

Then from Lemma 6, we have ρ(I∗) > ρ(S). It is a contradiction to (6). This completes the proof.

2

Theorem 2 Let M be a module of G = (N, A) and I∗ be a ρ∗-maximal, then I∗ is a consecutive

subschedule in every optimal schedule for G = (N, A).

Proof. It is the same as Lemma 7, except that: Here we assume that under the optimal sequence

the processing of the subsequence I∗ : J1, J2, . . . , Jl∗ is interrupted by a job, say job Jv, from M\I∗,
and there is no precedence constraint between Jv and I∗. 2

Theorem 3 Let M be a module of G = (N, A) and σ be an optimal schedule for M . Then there

exists an optimal schedule for N that is consistent with σ (i.e., in which the jobs in M appear in

the same order as in σ).

Proof. Similar to the proofs in Lawler [11] and Sidney [17]. 2

Hence, from Theorems 1, 2 and 3, we can generalize the method of Lawler [11] and Brucker [5]

to the problem 1|sp− graph, pj + αjt|Cmax.

To describe the algorithm in more details we need some notations. Let f be an internal node

of the decomposition tree, Mf be the union of the two sets M1 and M2. Similar to the algorithm

of Lawer [11] and Brucker [5], we are going to proceed the algorithm from the bottom of the

decomposition tree upward, finding an optimal sequence by using the series composition and parallel

composition.

Algorithm 1

1. WHILE there exists an internal node f with two leaves as sons Do

BEGIN

2. Ji:= leftson(f) Jj := rightson(f); M1 = {Ji},M2 = {Jj};
3. IF f has label P THEN

4. Mf := M1 ∪M2

Else

9

5.

5.1 Find Ji ∈ M1 such that ρ(Ji) = min{ρ(Jk)|Jk ∈ M1} and Jj ∈ M2 such that ρ(Jj) =

max{ρ(Jk)|Jk ∈ M2}. If ρ(Ji) > ρ(Jj), let Mf = M1 ∪M2 and halt. Otherwise, remove

Ji from M1, Jj from M2 and form the composite Jk = (Ji, Jj).

5.2

5.2.1 Find Ji ∈ M1 such that ρ(Ji) = min{ρ(Jk)|Jk ∈ M1}. If ρ(Ji) > ρ(Jk) (ρ(Jk) is

computed by (1)), go to Step 5.3.1.

5.2.2 Remove Ji from M1 and form the composite job Jk = (Ji, Jk). Return to Step 5.2.1.

5.3

5.3.1 Find Jj ∈ M2 such that ρ(Jj) = max{ρ(Jk)|Jk ∈ M2}. If ρ(Jk) > ρ(Jj), let

Mf = M1 ∪M2 ∪ {Jk} and halt.

5.3.2 Remove Jj from M2 and form the composite job Jk = (Jk, Jj). Go to Step 5.2.1.

END {IF}
6. Eliminate Ji and Jj and replace f by a leaf with label Mf .

END {WHILE}
7. Construct π∗ by concatenating all the subsequences of the single leaf in non-increasing order

of ρ-values.

The following example illustrates the working of Algorithm 1.

Example 1 Consider the problem with a precedence constraint given by graph G in Figure 1, and

with normal processing times and deterioration rates as shown in Table 1. t0 = 0.

Table 1. Values of pj and αj

jobs J1 J2 J3 J4 J5

pj 3 4 7 2 5

αj 0.1 0.2 0.4 0.3 0.5

For P1, ρ(J4) = 3/20 > ρ(J5) = 1/10, hence P1 : M1 = {J4, J5}. For S2, ρ(J2) = 1/20 < ρ(J4) =

3/20, hence J2 and J4 form a composite job (J2, J4), ρ(J2, J4) = 14/165 < ρ(J4) = 1/10, hence,

S2 : M2 = {(J2, J4, J5)}. Similarly, P3 : M3 = {(J2, J4, J5), J3}, S4 : M4 = {(J1, J2, J4, J5), J3}.
Hence, the optimal sequence is [J1, J2, J4, J5, J3] and the optimal value of the makespan is 38.948.

4 Total weighted completion time problem

If αj = 0, the model pj(t) = pj + αjt is the classical model due to Lawler [11]; hence for

arbitrary precedence constraints, the problem 1|prec, pj + αjt|
∑

wjCj is NP-hard. In this section,

10

we consider a special case, namely pj(t) = pj(a + bt).

Similar to Section 3, for the problem 1|sp−graph, pj(a+bt)|∑wjCj , we can define the ρ-values

as follows:

Suppose that π = [Jπ(1), Jπ(2), . . . , Jπ(n)] is any schedule of N and U = {Jπ(l), Jπ(l+1), . . . , Jπ(m)} ⊂
N , let

ρ(U, π) =

∑m
i=l wπ(i)

∏i
j=l(1 + bpπ(j))∏m

j=l(1 + bpπ(j))− 1
. (7)

Similar to Section 3, the problem 1|sp− graph, pj(a + bt)|∑wjCj can be solved by Algorithm

1 with modified ρ-values given by (7).

The following example illustrates the working of the algorithm for the problem 1|sp−graph, pj(a+

bt)|∑wjCj .

Example 2 Consider the problem with a precedence constraint given by graph G in Figure 1, and

with normal processing times and weights as shown in Table 2. a = 1, b = 0.1, t0 = 0.

Table 2. Values of pj and wj

jobs J1 J2 J3 J4 J5

pj 3 5 7 2 10

wj 6 3 4 3 5

For P1, ρ(J4) = 12 > ρ(J5) = 10, hence P1 : M1 = {J4, J5}. For S2, ρ(J2) = 9 < ρ(J4) = 12,

hence J2 and J4 form a composite job (J2, J4), ρ(J2, J4) = 99/8 > ρ(J4) = 12, hence, S2 : M2 =

{(J2, J4), J5}. Similarly, P3 : M3 = {(J2, J4), J5, J3}, S4 : M4 = {J1, (J2, J4), J5, J3}. Hence, the

optimal sequence is [J1, J2, J4, J5, J3] and the optimal value of the total weighted completion time

is 548.94.

5 Conclusions

In this paper we considered the problems of scheduling jobs with start-time increasing processing

times (deterioration). The two objectives of the scheduling problems are to minimize the makespan

and the total weighted completion time, respectively. Under the series-parallel graph precedence

constraint assumption, the problems were proved to be polynomially solvable. In addition, we

presented algorithms to solve these problems.

Acknowledgements—– The authors are grateful to the one anonymous referee for his/her helpful

comments on an earlier version of this paper. This research was supported in part by The Hong

11

Kong Polytechnic University under the grant number G-YX72. The research of the first author

was also partially supposed by the foundation of Shenyang Institute of Aeronautical Engineering

under grant number: 05YB08.

References

[1] Alidaee B. Womer N.K. Scheduling with time dependent processing processing times: review

and extensions. Journal of the Operational Research Society 50 (1999) 711-720.

[2] Bachman A. Janiak A. Minimizing maximum lateness under linear deterioration. European

Journal of Operational Research 126 (2000) 557-566.

[3] Bachman A. Janiak A. Kovalyov M.Y. Minimizing the total weighted completion time of

deteriorating jobs. Information Processing Letters 81 (2002) 81-84.

[4] Browne S. Yechiali U. Scheduling deteriorating jobs on a single processor. Operations Research

38 (1990) 495-498.

[5] Brucker P. Scheduling algorithms. Third Edition, Springer 2001.

[6] Chen Z-L. Parallel machine scheduling with time dependent processing times. Discrete Applied

Mathematics 70 (1996) 81-94.

[7] Cheng T.C.E. Ding Q. The complexity of scheduling starting time dependent task with release

dates. Information Processing Letters 65 (1998) 75-79.

[8] Cheng T.C.E. Ding Q. Lin B.M.T. A concise survey of scheduling with time-dependent process-

ing times. European Journal of Operational Research 152 (2004) 1-13.

[9] Graham R.L. Lawler E.L. Lenstra J.K. Rinnooy Kan A.H.G. Optimization and approximation

in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5 (1979)

287-326.

[10] Hsu Y.S. Lin B.M.T. Minimization of maximum lateness under linear deterioration. Omega

31 (2003) 459-469.

[11] Lawler E.L. Sequencing jobs to minimize total weighted completion time subject to precedence

constraints. Annals of Discrete Mathematics 2 (1978) 75-90.

12

[12] Mosheiov G. V-shaped policies for scheduling deteriorating jobs. Operations Research 39

(1991) 979-991.

[13] Mosheiov G. Scheduling jobs under simple linear deterioration. Computers and Operations

Research 21 (1994) 653-659.

[14] Mosheiov G. Multi-machine scheduling with linear deterioration. INFOR 36 (1998) 205-214.

[15] Mosheiov G. Complexity analysis of job-shop scheduling with deteriorating jobs. Discrete

Applied Mathematics 117 (2002) 195-209.

[16] Pinedo M. Scheduling: Theory, Algorithms, and Systems. Prentice Hall, 2002.

[17] Sidney J.B. Decomposition algorithms for single-machine sequencing with precedence relations

and deferral costs. Operations Research 22 (1975) 283-298.

[18] Sundararaghavan P.S. Kunnathur A.S. Single machine scheduling with start time dependent

processing times: some solvable cases. European Journal of Operational Research 78 (1994)

394-403.

[19] Wang J.-B. Xia Z.-Q. Flow shop scheduling with deteriorating jobs under dominating machines.

Omega 34 (2006) 327-336.

[20] Wu C.-C. Lee W.-C. Scheduling linear deteriorating jobs to minimize makespan with an avail-

ability constraint on a single machine. Information Processing Letters 87 (2003) 89-93.

[21] Zhao C. Algorithms for some new classes of scheduling problems. PhD thesis, Northeastern

University, China 2003. (in Chinese)

13

