Centrum voor Wiskunde en Informatica

REPORTRAPPORT

[PIN/2)

Probability, Networks and Algorithms

Probability, Networks and Algorithms

PNA Generalized processor sharing: characterization of the
admissible region and selection of optimal weights

P.M.D. Lieshout, M.R.H. Mandjes

ReporT PNA-RO605 MARrRcH 2006



Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-orienfed structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)
Software Engineering [SEN)
Modelling, Analysis and Simulation [MAS]

Information Systems (INS)

Copyright © 20006, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-3711



Generalized processor sharing: characterization of
the admissible region and selection of optimal
weights

ABSTRACT

We consider a two-class Generalized Processor Sharing (GPS) queueing system, in which each
class has its specific traffic characteristics and Quality-of-Service (QoS) requirements. Traffic of
both classes is assumed to be Gaussian (a versatile family of models that covers both long-
range dependent and short-range dependent traffic). In this paper we address the question how
to select the GPS weight values. To do so, we first characterize the admissible region of the
system for fixed weights. Then we obtain the realizable region by taking the union of the
admissible regions over all possible weight values. The results indicate that, under a broad
variety of traffic characteristics and QoS requirements, nearly the entire realizable region can be
obtained by strict priority scheduling disciplines. In addition, we indicate how the buffer
thresholds, QoS requirements and the traffic characteristics of the two classes determine which
class should get high priority.
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Abstract

We consider a two-class Generalized Processor Sharing (GPS) queueing system, in which
each class has its specific traffic characteristics and Quality-of-Service (QoS) requirements.
Traffic of both classes is assumed to be Gaussian (a versatile family of models that covers
both long-range dependent and short-range dependent traffic). In this paper we address the
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region of the system for fixed weights. Then we obtain the realizable region by taking
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1 Introduction

Future communication networks are expected to support a wide range of heterogeneous ser-
vices, including the ‘traditional’ data, video, and voice-applications, but in addition also more
demanding multimedia applications, such as gaming, remote surgery, etc. Services may not
only have different traffic characteristics, but may also have different Quality-of-Service (QoS)
requirements, where QoS is usually expressed in terms of constraints on loss probabilities (buffer
overflow) or delay. Thus, the integration of heterogeneous applications with different QoS re-
quirements in the network raises the need for service differentiation. An obvious alternative to
service differentiation could be to strive for the most stringent QoS requirement for all classes
and to serve all traffic in a FIFO manner. This policy, however, inevitably leads to a waste of
resources, as some classes get a better QoS than desired, and is therefore unattractive.

Generalized Processor Sharing (GPS) is a queueing discipline that is capable of supporting
heterogeneous QoS-levels. The GPS discipline assigns weights to the traffic classes, and the
link capacity is shared according to the weights of the backlogged classes. Hence, GPS provides
some sort of isolation among competing classes, by guaranteeing a certain minimum rate to each
backlogged class. Assigning all weight to a single class, implies that other classes can only be
served if there is no traffic of this single class queued; i.e., priority queueing can be viewed as a
special case of GPS.

Although the selection of GPS weights is, at least from an operational point of view, a key
problem, most of the work on GPS describes the queueing performance of a GPS system for
fixed weights. Parekh & Gallager [22, 23] derived deterministic worst-case delay guarantees for
leaky-bucket controlled traffic. Subsequent papers focused on statistical performance guarantees,
often based on asymptotic approximations. We briefly mention some results.

Yaron & Sidi [28] derived bounds for GPS queues fed by so-called exponentially-bounded
burstiness traffic. Bertsimas et al. [3], Massoulié [20], and Zhang [29] established large-deviations
results for light-tailed traffic (i.e., short-range dependent) sources. Large-buffer asymptotics for
heavy-tailed traffic (i.e., long-range dependent) processes were obtained in Borst et al. [4, 5] and
Kotopoulos et al. [13]. Van Uitert & Borst [26, 27] extended these results to networks of GPS
queues. Borst et al. [6, 7] analyzed the buffer asymptotics in a two-class GPS system with a
mixture of heavy-tailed and light-tailed traffic.

In practice most (real-time) applications do not tolerate large delays, hence the large buffer
asymptotics are not always appropriate. It can be argued that in many situations the so-
called many-sources asymptotic regime is more justified. Mannersalo & Norros [19] developed
accurate approximations for the overflow probabilities in this regime. They considered a GPS
system shared by two heterogeneous classes of Gaussian sources, with a relatively large number
of sources in both classes. The obtained approximations were validated by extensive simulations.
Mandjes & Van Uitert [17] further justified and refined these approximations, and established
an interesting connection with tandem queues fed by Gaussian traffic, see also [18]. For the
special case of Brownian inputs, Mandjes [16] showed the exactness of the resulting decay rates.

As mentioned, the inverse problem of mapping the QoS requirements on suitable GPS weights
has received considerably less attention in literature. Dukkipati et al. [9] and Panagakis et
al. [21] developed algorithms to allocate optimal weights to leaky-bucket constrained traffic with
deterministic service guarantees, in the presence of best effort traffic, i.e., weights are chosen



such that the throughput of the best effort class is maximized. Again for leaky-bucket regulated
traffic, Elwalid & Mitra [10] first derived the admissible region for a two-class GPS system for
fixed weights (i.e., all combinations of flows that satisfy the QoS for both classes), and then show
that nearly the entire realizable region (i.e., the union of the admissible regions over all possible
weight values) is obtained by selecting either one or two specific weights. Further results along
these lines may be found in Kumaran et al. [14].

The results of Elwalid & Mitra [10] on the weight setting problem rely on the restrictive
assumption of leaky-bucket controlled traffic. The contribution of this paper is that we extend
the results on the weight setting to an extremely general and versatile class of input processes,
covering a broad range of correlations, viz. the class of Gaussian inputs. Importantly, Gaus-
sian models include both short-range and long-range dependent traffic. They arise as limiting
processes of the superposition of a large number independent traffic sources, and are thus ap-
propriate if the aggregation level is sufficiently large. Fraleigh et al. [11] empirically showed that
a relatively low aggregation level is already sufficient for Gaussianity (average rates in the order
of 50 Mbps suffice, and in many cases even considerably lower rates). A complicating issue is
the fact that elastic traffic is controlled through feedback loops like TCP. Kilpi & Norros [12]
however argued that (non-feedback) Gaussian traffic models are still justified as long as the level
of aggregation is sufficiently large (both in time and number of flows).

In this paper we consider a two-class GPS system with Gaussian traffic sources. The QoS
criterion is that the loss probability should be kept below some class-specific value. We focus
on a two-class system, as the majority of the traffic can broadly be categorized into streaming
and elastic traffic (see e.g. [24]), each one having its own QoS requirements, thus justifying our
choice. The large-deviations approximations of Mannersalo & Norros [19] on GPS for Gaussian
inputs are the key tool in our analysis. As a first step, we use these approximations to find
the admissible region for class 1 for fixed weights, i.e., all numbers of sources ni, no of class
1 and class 2 such that the QoS requirement of class 1 is met. By taking the intersection of
the admissible region of both classes, we then obtain the admissible region (of the system), i.e.,
all combinations of flows that satisfy the QoS for both classes. In the special case of Brownian
inputs, we explicitly determine the boundary of the admissible region.

We also explicitly derive the realizable region as the union of the admissible regions over
all possible weights values, in case of Brownian inputs. A remarkable finding is that nearly
the entire realizable region is achieved by strict priority scheduling disciplines. A further key
observation is that the QoS requirements and the buffer thresholds fully determine which class
should have high priority if such a strict priority policy would be imposed. Importantly, the
above two remarkable findings also hold for general Gaussian inputs. As we lack here an explicit
description of the boundary of the realizable region, we have relied on extensive numerical
experimentation.

An important purpose of GPS is to run the system at maximum efficiency, i.e., to realize an
admissible region that is as large as possible. Each application can be guaranteed its required
QoS. As a result GPS outperforms FIFO, in which each class is guaranteed the QoS of the most
stringent class, leading to inefficient use of resources. The results above indicate that from an
efficiency point of view, GPS does not outperform a simple priority discipline. In other words, it
suggests that there is hardly any efficient enhancement due to implementing GPS (compared to
priority), in that the admissible region corresponding to some GPS weight, is contained in the



admissible region corresponding to one of the priority cases. A second purpose of GPS, however,
could be still accomplished: the protection against starvation effects. Under priority scheduling,
low priority traffic may be excluded from service over substantial time intervals, which can be
prevented under GPS.

The remainder of this paper is organized as follows. In Section 2 we describe our two-class
GPS model with Gaussian inputs, and we review the Mannersalo-Norros approximations [19] for
loss probabilities, which consists of three regimes. In Section 3 the stable region is partitioned
into three subsets, each subset corresponding to one of the three regimes. Using the partitioning
of the stable region and the Mannersalo-Norros approximations, we derive the admissible region
in Section 4. In Section 5 we consider Brownian inputs, and we explicitly derive the boundary
of the admissible region and the boundary of the realizable region. In Section 6 we perform
numerical analysis. In particular, we consider systems shared by two types of applications with
heterogeneous QoS requirements, and we numerically derive the realizable regions. In Section 7
we make some concluding remarks.

2 Preliminaries

In this section we introduce the notation of the two-class GPS model and discuss Gaussian
sources. Then we present approximations for the overflow probabilities.

2.1 GPS model

We consider a model with two queues and that share a server of rate C. Traffic of class ¢ is
buffered in queue %, ¢ = 1,2. The scheduling discipline is GPS, with weight ¢; > 0 assigned
to class 4, ¢ = 1,2. Without loss of generality we assume that ¢; + ¢ = 1. The weight ¢;
determines the guaranteed minimum rate for class 7. If a class does not fully use the minimum
rate, then the excess capacity becomes available to the other class.

A formal description of GPS is given by Parekh & Gallager [22]. Let B;(s,t) denote the
amount of traffic of class ¢ served in the time interval [s,t]. If the queue of class i is non-empty
(backlogged) in the corresponding interval, then GPS satisfies the following property:

Bi(37t) > ﬁ
Bj(37t) a ¢j7

Obviously, there is equality in (1) if class j is also continuously backlogged in the interval [s, t].

i=12 j#i (1)

Note that GPS is a work-conserving scheduling discipline. That is, the server always works
at maximum speed if at least one of the queues is non-empty. GPS assumes that a server can
serve different classes simultaneously and that the traffic is infinitely divisible, which is obviously
not true in practice. However, the difference between a real-life implementation of packetized
traffic (e.g., ‘packet-by-packet GPS’) and the ‘theoretical GPS’ is usually negligible (see [22] and
23)).

2.2 Gaussian input traffic, overflow probabilities

As our first goal in Sections 3-4 is to characterize the admissible region (for a given weight), we
first present the Mannersalo-Norros approximations [19] for the overflow probabilities for given
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numbers of sources of both classes.

Let class 1 (class 2) consist of a superposition of n; (ng) i.i.d. flows (or: sources), modeled as
Gaussian processes with stationary increments. Clearly ni,no € Ny, but for convenience we let
ni,ng € Ry; as ny,no are relatively large the resulting error is typically small. We denote the
mean traffic rate and variance function of a single class-i flow by p; > 0 and v;(-) : Ry — Ry,
respectively, for ¢ = 1,2; this mean rate and variance curve fully characterize the probabilistic
behavior of the flow. Hence, if A;(s,t) denotes the amount of traffic generated by a single flow of
type i in the interval [s,t], then EA;(s,t) = p; - (t — s) and VarA;(s,t) = v;(t — s); note that the
assumption of stationary increments entails that the law of A;(s,t) only depends on the length
of the interval [s,t]. To guarantee stability we assume that niu1 + nops < C (which we refer to
as the ‘capacity constraint’). We impose the following (weak) assumptions on v;(-).

Assumption 2.1 Fori=1,2,

A1 vi(+) € C2([0, 00)).

A2 v;(-) is strictly increasing.

A3 For some a < 2 it holds that v;(t)t—* — 0, as t — co.

We need assumptions Al and A3 in order for the results on the overflow probabilities to be
valid. Assumption A2 is needed in the proofs of some lemmas.

As mentioned earlier, the derivation of the admissible regions relies on the Mannersalo-Norros
approximations [19] for the overflow probabilities; these require assumptions Al and A3. On
the basis of extensive simulation experiments, Mannersalo & Norros [19] showed the accuracy
of their approximations.

Let Q; denote the stationary buffer content in the GPS model of class i, and A;(n1,ng) the
Mannersalo-Norros approximation of —log P(Q; > B;). Define t¥ as a minimizer of

B(t) 1= L g (Bt (€= mapn — napio)t)
T 2¢>0 nivi (t) + nav2 (t) ’
and
oF = M2k nava(tF) (Br + (C — nip1 — nope)th)
2 C CtF (nyv1 (tF) + ngva(tF))
Then
(2) %inftzo (B1+(¢;11€;(?)1#1)t)2 for ¢o € [0, 252];
Au(nnyng) = 3 () infis PHOTTRMIE + CCOHEEE for g € (42, 08);
—nip1—n 2
(i) § infimo PR for ¢2 € [¢, 1)

The approximations Ay(n1,ng) are analogous; evidently, we can now approximate P(Q; >
B;) by exp (—Ai(n1,n2)). We now heuristically explain the three regimes (%), (i¢), (4i%). As the
first and the third have the easiest explanation we start there, before proceeding to the second
regime.

In regime (i) we have that ¢2C < naue. That is, the mean traffic rate generated by class 2
exceeds the guaranteed rate of service to class 2 (we call this: class 2 in overload). Therefore,



it is very likely that type-2 sources claim their guaranteed service rate ¢oC' essentially all the
time. Hence, overflow in queue 1 resembles overflow in a FIFO queue with service rate ¢;C.
The approximation Aj(ng,ng) of regime (¢) is based on this principle, cf. [1]. The minimizing ¢
represents the (most likely) length of the interval between the epoch queue 1 starts to build up,
until it reaches buffer content Bj.

Regime (ii) requires ¢ to be at least as large as ¢& . It can be verified (by using the explicit
formulae for conditional means of Normal random variables) that ¢4 is equal to the value of ¢2
for which

E (A(—t",0)|A1(=t",0) + Ax(—t",0) = By + Ct")

equals ¢oCtF. Hence, if ¢g > d)f , conditioned on the total queue building up B in ¢t time
units, then all this traffic is in queue 1, and queue 2 is essentially empty.

Regime (%) applies if class 2 is underloaded, but ¢2 < d)g . When the total queue reaches level
By, it is now very likely that the queue of class 2 is non-empty. Hence, an additional constraint
must be imposed to keep the buffer content of queue 2 small. The approximation is such that
the flows of class 1 generate B; + ¢1Ct, while the class-2 sources generate ¢oC% (i.e., the class-2
sources claim their guaranteed rate). Note that in the approximation it is used that the interval
in which the class-2 sources claim rate ¢2C coincides with the interval in which queue 1 builds
up. For a refinement of this approximation we refer to [17], which allows scenarios in which the
first queue starts to build up before the queue reaches traffic rate ¢2C.

3 Partitioning of the stable region

In order to derive the admissible region (for given weights) of the two-class GPS system, we
have to determine the admissible region of each class separately and then take the intersection
of these two. In Sections 3-4, without loss of generality, we focus on the admissible region of
the first class (i.e., the set of sources (ni,n2) for which the class-1 sources receive the desired
QoS), as the second one can be treated in the same fashion. Before the admissible region of
the first class can be obtained, which we will do in Section 4, we first determine all (n1,ng) for
which (i) ¢ € [0, n2u2/C), (ii) 2 € (nau2/C,#%) and (iii) [¢L, 1], thus partitioning the stable
region T := {(n1,n2) : nip1 + nous < C} into three sets. In these three sets we can use the
approximation of A1(ni,ng) presented in Section 2.2.

Lemma 3.1 Let ¢1 € (0,1). Then T = Tj(¢1) U T{*(¢1) U T{"($1) for disjoint non-empty
Ti(é1), Ti*(¢1) and T1"(¢1), where

Ti(g) = {(nl,nz) €T:ng> %};
B2
i _ By + (410 —nyp)t" (20 — napa)t” |
) = {(nl’n2) €T: nyvy (¢F) ~ nava (tF) }’
o _ . $2C  Bi+ (1C —nip)t! _ (¢2C — napg)t”
"(¢1) = {(nl,nz) €T :ny < uz nyv1 (¢F) < 1202 () )



such that regime (§) applies in TV (¢1), for j € {i, i, iii}.

Proof: Ti(¢1) follows from the fact that we must have ¢o € [0,n2u2/C]. In order to be in
T (¢1) we must have that ¢o € (noua/C,#%), or equivalently ng < $2C/u2 and ¢o < ¢k . The
latter inequality can be rewritten as

T (n2v2(tF) (B1+ (C —nipa — n2,u2)tF)>

¢2 < C CtF (n1v1(tF) + nava(¢F))

Multiply both sides with Ct¥, and rearrange the right-hand side to obtain

F DX (tF) (Bl + CtF - nl,u,ltF) ni1v1 (tF)nz,uth
P20t < F F F F\*
n1v1 (t ) —+ Nov2 (t ) n1v1 (t ) —+ Nnav2 (t )

Multiplying both sides with njv1(t¥) + nove(t¥') and collecting ‘equivalent terms’ leads to
niv1 (tF) (d)thF — 'I’LQ/,LQtF) < nzvg(tF) (Bl + ¢1CtF — nlth) .
Dividing both sides by njv1(tf) and nova(tF') respectively gives

B1 + (01C — nap))tf (20 — ngug)tt
ni1v1 (tF) ’I’LQ’UQ(tF)

(2)

Note that the constraint ng < ¢oC/us is redundant, as it is automatically satisfied if ¢o < @&
(given that (n1,m2) € T). The characterization of T%%(¢;) follows similarly.

In case ¢1 € (0,1), all three sets are non-empty, and this proves the stated. Note that
T = T#(0) for ¢1 = 0 and T = T}(1) for ¢1 = 1. O

Remark. Note that ¢ implicitly depends on n; and ny (see Section 2.2), i.e., tf' = t¥(ny, ny).
Due to A3, limy_, 1 (t) = lim;_,o 9 (t) = 00, and thus a minimizer ¥ of 1(-) clearly exists, but
it is not necessarily unique. Debicki & Mandjes [8] find a sufficient condition for the minimizer
to be unique, but this condition is not necessarily fulfilled under A1-A3. In virtually all cases we
considered tf was unique; in fact, it turned out to be a non-trivial exercise to find a situation
with multiple minimizers. Our example, depicted in Figure 1, has a correlation structure with
strong negative correlations on short time scales (due to v;(-)), and strong positive correlations
on long time scales (due to vz(-)). Since t¥ is non-unique, we have that ¢ is not continuous
in n; and ng. This is also illustrated in Figure 1 (right). By slightly increasing (n1,n2), the
minimizing ¢ jumps from 0.2773 to 32.3586. For a related example, see Section 5 of [15].

Now consider the boundary between T§(¢1) and T (¢1), i.e., combinations of (n1,n2) such
that (2) holds with equality. For most of the v;(-) curves we considered, this boundary could
not be explicitly expressed in terms of a function fi(n2) = n1; to compute the boundary, one
needs to resort to numerical methods. However, the following characteristics of fi(-) can easily
be derived: f1(0) = 0; f1(¢$2C/p2) = $1C/p1; fi(-) only intersects the nj-axis and ng-axis at
(n1,n2) = (0,0); fi(-) only intersects the capacity constraint at (n1,n2) = (¢1C/u1, p2C/u2);
fi(-) only intersects the line ny = ¢2C/ua at (n1,n2) = (¢1C/p1,$2C/p2). In our numerical
experiments with ‘popular’ variance functions v;(-) (as the ones presented in [1]), f1(-) is strictly
increasing, see Figure 2. By choosing rather ‘extreme’ v;(-), however, we have been able to
construct fairly ‘exotic’ shapes for fi(-).
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Figure 1: Left: The function #(-) with parameters ny = ng =1, C = 1, By = 0.04, u1 = 0.4,
po = 0.5, v1(t) = t%% and vo(t) = 1.4955¢t1%8. The minimizers are ¢! = 0.2773 and t}" = 27.6691,
with ¢ (tf") = (tf) = 0.00754. Right: The same setting but now with nq = ne = 1.01. The
minimizer is ¢t¥' = 32.3586.
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Figure 2: The partitioning of the stable region T’

4 Analysis of the admissible region

In this section we analyze the admissible region of the first class (for given weights), i.e., all
combinations of (n1,n2) that satisfy Ai(ni1,n2) > 1, for some §; > 0. We show that this
set consists of three disjoint subsets: S1(¢1) = Si(¢1) U S¥(¢1) U St (¢y), with S3(¢1) C TY,
j € {i,i3,44i}, which we derive below. Finally, we present our main result that characterizes
the boundary of Si(¢1). Again we concentrate on S1(¢1), but of course S2(¢1) can be treated
analogously, thus determining the admissible region S(¢1) := S1($1) N Sa(P1)-

4.1 Region Si(¢;)
We define S%(¢1) as the subset of T§(¢1) (see Section 3), for which Aq(n1,n2) > §1. That is,

_ 1. (Bi+ (10— mm)t)?
Al(nl, n2) a 2 g(f) ni1v1 (t)

> 01.
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Figure 3: The partitioning of the admissible region of the first queue Si(¢1). Top, left: Si(¢1).
Top, right: Si(¢1). Bottom: Si%(¢y).

Rearranging and collecting terms yields

nlgmax{nlz VtZO:th%-l-Y}nl—l—thO},

where
X, = pit?
Y; = —2Bipt —241Cut? — 26101 (t);
Zy = B?+ ¢IC*? +2B1¢Ct.

This eventually leads to

.Y =Y -4X,Z,
:= inf .

Q1
1 t>0 2Xt (3)

n<n

Note that A1(¢1C/p1,n2) of regime (2) equals 0, as it is minimized for ¢ = co by A2. Since we
assumed that Aq(n1,n2) > &1 > 0, this implies that ny! < $1C/pu1. An example of a set S%(¢1)
is depicted in Figure 3 (top, left).



4.2 Region Si'(¢)
In this regime Si¢(¢;) consists of all combinations (n1,n2) in T (¢;) such that Aq(n,ng) =

1. o (Bi+ (810 —mp)t)* | ($2C — nopia)*t?
2 t>0 niv (t) Na2vV2 (t)

> 4.

Proceeding in the same manner as above, this reduces to

=Y, - VY2 -4X,Z,

n2 < gi(m) = %Izl(f) 2X, (4)
where
Xy = pst®/va(t);
 (Bi+ (1C —nmip)t)? 2420 pot? )
Y;f = - - 261,
nlvl(t) Uz(t)
Z, = 207 ua(t).

As g1(-) plays an important role in describing the boundary of Si(¢1), the remainder of this
subsection is devoted to some structural properties of g;(-). First notice that

1. ¢ (B1 4 (1C —nap1)t)? | (20 — nopup)*t?

2 t>0 niv1(t) navs(t)

_ 2 _ 242
Ligg (Bt (910 —mp)t)” | 1, . (620 = napia)™t”
2 t>0 niv (t) 2 t>0 X% (t)

the first part of the right-hand side of the last equation coincides with the loss probability of

regime (¢). By definition all ny < ny'

satisfy the loss constraint of regime (7). Hence, all
n1 < ny' (Vng) satisfy the loss constraint of regime (i¢) as well. One can easily see that if
ng = ¢2C/ 2, then the loss probability of the middle regime reduces to that of the first regime.

Thus, this implies that g; (n?l) = ¢2C/p2 and that g;(-) is only defined on the interval [n?l, 00).
Lemma 4.1 g;(-) is continuous on the interval [n?l, 00).

Proof: gi(n1) can be expressed as inf;>o k(t,n1), see (4). Now, since k(t,n1) is continuous in
n1, infy>0 k(¢, n1) is continuous as well. O

It is tempting to believe that the differentiability assumption imposed on v;(-) (Al),i=1,2,
would imply differentiability of gi(-) as well, but this turns out to be false, and can be seen
as follows. Let t° = t°(n1) be a minimizer of inf;>¢k(¢,n1) (see previous lemma), so that
infy>0 k(t,n1) = k(t°,n1). Now,

dgi(n1)  Ok(t,n) Bk(t, n)

dnq ot t=t° on t=to

n =mnj n=mni

note that the first of the two partial derivatives in the right-hand side is 0 (since t° optimizes
k(t,n1)). As k is continuous in both arguments, we see that gi(-) is differentiable when ¢° is
continuous in nj. As before, counterexamples for the latter property can be constructed, cf. the
remark made in Section 3.
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Lemma 4.2 g;(-) is strictly decreasing on the interval [lel, $1C/pa].

Proof: Consider (n1,n2) = (a,b), with g1(a) = b, where ny' < a < ¢$1C/p1 and b < ¢p2C/ 2, or
equivalently

g (Bt (810 —am)t)® | (2C — bua)’t? _ 5
>0 2av1 (t) 2bvy(t) o

Let an optimizer be denoted by ¢°. Now, consider the point (n1,m2) = (a + €,b + €), with
€a € (0,01C/p1 — a) and €, € (0,p2C/p2 — b). Clearly,

if Bt (10— (a+ €a)p1)t)® | (¢2C — (b+ ep)p2)’t”

t>0 2(0, + Ca)’l)l (t) 2(b + 61,)’[)2 (t)
(B1 + (610 — (a + e)u1)t°)? | ($2C — (b+ ep)u2)?(t°)?
- 2(a + €q)v1(t°) 2(b + ep)va(t°)
< 61,

Thus, (n1,n2) = (a+ €4, b+ €p) cannot satisfy the loss constraint. The same holds for (ny,ns) =
(a+e€q,b) and (n1,n2) = (a,b+€p). In the same manner we can prove that A(a—eq,b—€p) > 41,
with €, € [0,a — ny') and €, € [0,b), but not both 0. Recall that g;(-) corresponds to all
combinations (ni,n2) for which Aj(nq,n2) = ;. This proves that gi(-) must be a strictly
decreasing function of 71 on the interval [n?l, $1C/ ). O

In Section 3 we remarked that under quite general circumstances the function fi(-), which
separates regime (¢7) from regime (4i7), is increasing on the interval [0, p2C/ 2], with f(2C/p2) =
$1C/p1. As g¢1(-) is continuous and strictly decreasing on the interval [n?l,mC/pl], with
91 (n?l) = ¢oC/ 2, we expect that f1(-) and gy (-) intersect at a unique point (ny,n) = (nl', nlt),
with n®' < nd' < $1C/p1 and nl! < $2C/u9; in Section 5 we will show that for Brownian mo-
tion inputs this claim is true. Then a typical shape of the region S%(¢$1) would be like Figure 3

(top, right).

4.3 Region Si%(¢;)
Sii(gy) consists of all combinations of (ny,ns) in Ti%(¢;) such that

1, . (B1+(C—niu — naug)t)?

A = —inf > 1.
1(n1,m2) 2 %20 nivi (t) + nav2 (t) =a
Once again, standard rewriting yields
=Y, — /Y —4X.Z,
< =
ne < ha(m) = jnf X, ®)
where
X, = pith
Y: = 2n1,u1ugt2 — 2511)2(t) — 2B uat — 2Cu2t2;
Zy = B% +2B1Ct + 02t2 + n%u%tQ —2Binit — 2Cn1,u,1t2 — 251n1v1(t).
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Let n"®* denote the value of n; that solves hi(ni) = 0. The following lemma states some
properties of hy(-).

Lemma 4.3 hy(-) is continuous, strictly decreasing on the interval [0,n7"**'] and tighter than

the capacity constraint. Furthermore, g1(n1) > hi(n1) for all ny € [n?l,nllnaxl].

Proof: The proof of the first statement is similar to Lemma 4.1 and the proof of the second
statement is similar to Lemma 4.2. If nypuy + nopug = C, then the optimizing ¢ in the approxi-
mation Aj(ng,ng2) of regime (i) equals co (due to A2). Subsequently, we obtain the inequality
0 > 61, thus contradicting 61 > 0. It follows that nyu1 + nope < C. Note that this also implies
that n"*" < C/p1.

We now show that all combinations of (n1,n2) that meet the loss constraint for regime
(31), will also meet that of regime (i7) for ny € [n?l,ninaxl]. Let a1 := B1 + (¢1C — niu)t,
az := (¢2C — napo)t, v1 := n1v1(t) and ve := nava(t). It can be seen that it suffices to prove
that for all ¢ > 0,

a_%_}_a_%z (a1+a2)2. (6)
V1 V2 V1 + V2

Rearranging (6) yields a3v3 + a3v? — 2ajasvi1vs > 0, which is equivalent to (ajva — agv1)? > 0,
thus proving the last statement. Note that there is equality if ayjv2 = agvi, so in that case
A1(n1,m2) of regime (ii) and (i) coincide and they have the same optimizer . Recall from
Section 3 that ajvy = aguy, with t = tF, corresponds to the line fi(-). m|

As in the case of g1(-), h1(-) is not necessarily differentiable, because its optimizing ¢ might
not be unique (see Section 4.2). By definition, for (n1,n2) = (f1(n2), n2) the approximations of
Ai(n1,ng) are equal for regimes (i7) and (#47) (see previous lemma). Hence, if fi(-) and gi1(+)
intersect at (nd', nl') (see Section 4.2), then this is also the point where fi(-) and hy(-) intersect.

Figure 3 (bottom) illustrates the region Si(¢1).

4.4 Region Si(¢)

S1(¢1) can be obtained by taking the union of the three described regions, i.e., S1(¢1) = Si(¢1)U
St(p1) U Siti(41). We now state our main result, which follows from Sections 4.1, 4.2, and 4.3.

Theorem 4.4 The boundary of the admissible region of the first queue, S1($1), is defined as

follows:
0<mn; <ny': ng = (C —nip1)/ pe;
I
nd <ny <nl: n2 = gi(n1);
n{l <mng <n ng = hi(ny).

In addition, the boundary is continuous.

12



5 Brownian inputs

For most Gaussian inputs that satisfy A1-A3 the boundary of S(¢1) cannot be explicitly com-
puted; consequently, in those cases one has to rely on numerical techniques (as will be done in
the numerical examples in Section 6). For the ‘canonical model” with Brownian inputs though,
we have succeeded in finding closed-form expressions for the boundary. As indicated in [16],
Brownian motions can be used to approximate weakly-dependent traffic streams, cf. also the
celebrated ‘Central Limit Theorem in functional form’. We let the variance functions be char-
acterized through v;(t) = \jt, with A\; > 0,7 =1,2.

5.1 Region Si(¢1)

It is a matter of straightforward calculus to show that t = B;/(C —nijus — nouz). Now, the
Mannersalo-Norros approximation reduces to the following. The critical weight ngg equals

_ AL —ngAg | _ MM +nope)  nim
N1 + nadg o C

Then we get the approximations

(i) 2Bi2Cse e [0,
.. Bi1+ C— t* C— *

Aa(niyng) =14 (id) 3 ;@;m?:*“) E 4 aCopmaliy ) for g € ("2, 65);
(id5) 2By O o for ¢2 € [¢, 1],

with the ‘critical time scale’ t* given by
By
\/(¢1C —n1p1)? + ($2C — napz)? 241

Mandjes [16] shows that the resulting expressions are ‘asymptotically exact’ in the many-sources
regime.

Let us first derive the function fi(-). Recall from Section 3 that fi(-) is equivalent to all pairs
of (n1,mn2) that satisfy (2) with equality. Plugging in the expression for t" and some rearranging
yields

= CA2(1+ ¢1) — n2doue
—d’znc;)‘l + 21 — A p2

=: f1(na). (7)

It can easily be verified that f1(0) = 0 and f1(¢2C/u2) = $1C/u1. The following lemma states
some properties of fi(-); define

(1 +¢1)M1.

$= D112

Lemma 5.1 fi(-) is continuous and has a continuous derivative on the interval [0, p2C/u2).
Furthermore, fi(-) is concave on [0,¢2C/us] if M1 > &Xa; fi(+) is convex on [0, p2C/ua] if
A1 < &X2; fi(+) has a constant positive derivative on [0, p2C/u2] if A1 = &N and this derivative
has the value ¢1u2/(Ppap).

13



Proof: Note that

d2 1—azx —2B8(aB+7)

—- = . 8
da? B/x + (B +~z)3 ®)
In other words, due to (7), fi'(n2) changes sign only at
$2C )\
ng—=————+¢ 9
27 Mpz — 22am ©)

(corresponding to z = —f(/). Note that expression (9) does not lie in [0, p2C/ 2], so fi(-) is
either convex or concave on this interval. From (8) we conclude that there is concavity when
A1 > €)Xg (corresponding to a8 = —v), and convexity otherwise. a

Subsequently, in order to fully characterize the areas Si(¢1), S%(¢1), S4(¢1), we now derive
lel, g1(-) and hi(-). We do this by relying on (3), (4) and (5), respectively. This yields

20.CB1_ _ o,
1A +2Biy
(¢2C — nop2)* B 20108101 _ o1,
noXa (031 + 2B181p1)  O3A1 +2B1Sip ! 7
2C B, 2B1p1 + 61\

_ =:h .
2B1pg + 019 ™ 2B1u2 + 612 ()

Note that hq(-) is linear in n; and that

2C B,
maxi _ —
(™) = <2B1,u1 + 51)\1) 0

Due to Lemma 5.1, fi(+), g1(-) and hq(-) have a unique intersection point (ni,n2) given by

(nlt, pl) = <031(51>\2(1 +¢1) +2B1ugg1)  ¢2CBy )
P (61A1 + 2By p1)(01A2 + Bipo) " d1de + Bipa )

Now we have all the ingredients to describe the boundary of S1(¢1) explicitly. The admissible
region of the second queue can be treated analogously. Both are depicted in Figure 4.

5.2 Region S(¢;)

A combination (n1,ng) is contained in S(¢;) if it satisfies the QoS requirements for both classes.
That is, if it is contained in S1(¢1) N S2(¢1). In this subsection we characterize the boundary of
S(#1). In the analysis below the ratios B1/Bs and §1/d2 turn out to be crucial. We therefore
introduce b := B1/Bs and d := §1/d2. Let us first mention some useful facts.

Lemma 5.2 Ifb < d then hy'(n1) > hi(n1) for all ny that satisfy hy'(n1) >0 and hi(n1) >0

Proof: This can be seen as follows. We know that

2C By oy 2B + 011 ) _1(n1) _ 2C By oy 2Bsp1 + da A1
2B1p2 + 612 2Bip2 + 01Xe” 2 2B g + 022 2Bop2 + d2A2

hi(n1) =
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Figure 4: Left: S1(¢1). Right: Sa(¢1).

Now, h; '(0) > h1(0) implies that

2CBs

S 2CB;
2Ba g + 022

O
2Bypo + 912

rb<d,

but we also have that hy(0) > hy'(0) implies that

2C By
2Bapy + 021

2CB;
> o)
2Byp + 011

rb<d.

Since hy(-) and hy'(-) are linear, this proves the stated. In the remaining this is denoted by
hy'(-) > hyi(-). Likewise, if b > d then hy(-) > hy '(-). Note that hy(-) and hy '(-) are identical
ifb=d. O

Lemma 5.3 Ifb < d/2 then n$' < nl? and n$* > n}'.

Proof: Use the explicit expressions for ny' and n{2. Thus

2¢1C B,
11+ 2By

$1C B3

021 + Bap or 2§3B1A1 + 2B1Bapy < 61BaA1 + 2B1Baps.

Omitting common terms and some rearranging directly yields b < d/2.
Likewise, it holds that ny* > nél, since

2¢2C By
d2A2 + 2Baps

$2C By
0122 + Bipe

or 261Ba)s + 23132[12 > 09B1Ag + 23132/1,2,

reduces to b < 2d. Analogously, if b > 2d then n%* > n!> and n$?> < nl'. If d/2 < b < 2d then
n?l > nl? and n$? > nll. m]

Combining the two previous lemmas leads to the conclusion that we have to distinguish

between three cases: (a) b < d/2, (b) d/2 < b < 2d and (c) b > 2d. Note that in the middle case
it is not clear whether hy'(-) < h1(-) or h;'(-) > hi(-). Below we show that the shape of the
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boundary of S(¢1) depends on (a), (b) or (c) if ¢1 € (0,1). First we characterize the boundary
of S(¢1) for 1 = 0 and ¢1 = 1. The boundary of S(0) is given by

0§n1§n10: nQanh;

maxj

7'1/10 <ng < nq : ng = hl(nl)a

where ny? is evaluated at ¢; = 0, and n§ := hfl(nQQZ). The boundary of S(1) is

0<n; <ny': n2=h2_1(n1),

where anl is evaluated at ¢; = 1.

Remark. One can easily show that S(0) € S(1) if b < d, S(1) € S(0) if b > d and S(0) = S(1)
ifb=d.

In the following we show that there are different generic shapes of the boundary of S(¢1),
¢1 € (0,1), within each of the three cases.
5.2.1 Case b<d/2

It can easily be seen that the boundary of S1(¢1) has four possible shapes in this case (see Figure
5). The shape of the boundary ((a1), (a2), (ag) or (as)) depends on the value of ¢1, but each
shape occurs as will be shown in the following lemmas.

Lemma 5.4 The boundary of S(¢1) has shape (a1) if ¢1 € [X3,1), where

Xy = 52)\2(51)\1 + 231#1)
) 52)\2(51)\1 =+ 231/1,1) + 2)\1/1,2((5132 — 5231) )

Proof: In order to have shape (a;) we must have that hy 1(lel) > ¢2C/ o for some value of
¢1 € (0,1). That is,

2C By _ 2(]51CBl ((52)\1 + 232[[1,1) > (1 — (]51)0

82X + 2Bops  (82A2 + 2Baug)(61A1 + 2B1p1) — pe

One can easily show that this reduces to a constraint of the form —A + B¢, > 0, with A, B > 0.
For ¢1 = 0 the left hand side of the constraint (10) is equivalent to

20B,  C
82X2 + 2Baps  po’

(10)

which is smaller than 0 (assuming that d2, A2 > 0). Hence, the constraint is not satisfied. For
¢1 = 1 the left hand side of (10) equals

9C\1(61Bs — 62B1)
(62A2 + 2Bop2)(01A1 + 2B1p1)’

which is larger than 0 if b/d < 1, which is true, as we required b < d/2. Thus, since the constraint
is a linear function of ¢1, there must be value of ¢; € (0,1) for which h; 1(n?l) = ¢$2C/po.
Straightforward calculus shows there is equality for ¢; = X3. i
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Figure 5: Top, from left to right: shape (a1) and (a2). Bottom, from left to right: shape (a3)
and (a4).

Lemma 5.5 The boundary of S(¢1) has shape (a4) if $1 € (0, X1], where

82 B2 \ou1
(S%B%)\Qul =+ 25%32)\1 (52)\2 =+ 232;1,2) ’

X1 =

Proof: The proof is analogous to that of Lemma 5.4. Shape (a4) occurs if there exists a value
of ¢1 € (0,1) for which gl_l(ngh) > $1C/p1. This constraint can be rewritten as A — B¢ > 0,
with A, B > 0. Since, it is satisfied for ¢y = 0, but not for ¢y = 1, there exists a unique value
of ¢1 € (0,1), X1, such that there is equality, i.e., gl_l(n?z) = $1C/ua- O

Lemma 5.6 The boundary of S(¢1) has shape (a3) if ¢1 € (X1, X2), where Xy is the value of
¢1 such that nk2 = hy1(n?2) = g1 (nP).

Proof: The shape of the boundary is like (a3) if hy 1(nf?) < g1(nf?) and if gfl(ngz) < 1C/p.
The latter constraint is satisfied if ¢; > X; (Lemma 5.5). Unfortunately, the former does not
reduce to a constraint that is a linear function of ¢;. It can be shown that there exists a unique
value of ¢1, Xy, such that hy ! (ni2) = g1 (nl?). Now, the constraint is satisfied for all ¢; € [0, Xa).
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We now show that Xa € (X1, X3). First recall that ¢ (nl) is defined on the interval (n1 ,nin)
in S1(¢1), whereas h;!(n;) is defined on the interval [0, n!?] in Sp(¢;). Therefore, if g1(-) and
hy'(-) are part of the boundary of S(¢#1), then they are defined on (parts of) the mentioned
intervals. If ¢; € (0,X1], then g;(-) is defined on the interval (n¥,n!!), with n¥ > $,C/m
(see shape (a4)). By definition nf2 < $;C/u1, so this implies that g1(-) and h7'(:) cannot
intersect if ¢; € (0,X;]. Furthermore, if ¢, € [X3,1), then hy'(n1) > g1(n1) for all ny €
(nfh,mm{n1 ,n3?}) (see shape (a1)), so Xa ¢ [X3,1). Hence, we conclude 0 < X; < X <
X3 < 1. The expression of X3 is not presented here (as it is quite intransparent); it depends on
the parameters &1, 62, B1, B2, A1, A2, u1 and pe. O

Lemma 5.7 The boundary of S(¢1) has shape (a3) if ¢1 € [X2, X3).

Proof: One observes shape (ag) if hy ( ) < ¢2C/pg and hy 1(nf2) > g1(nf?). From Lemmas
5.4 and 5.6 we know that this coincide with ¢; < X3 and ¢1 > X2 respectively. O

We now state our main result. The proof follows directly from Lemmas 5.4-5.7.

Proposition 5.8 Ifb < d/2, then the boundary of S(¢1) has

shape (a4) for 0 < ¢1 < Xy;

shape (a3) for X1 < ¢1 < Xo;

shape (a2) for Xo < ¢1 < X3;

and shape (a1) for X3 < ¢1 < 1.

Here X, is the value of ¢1 such that g *(n. Qz) = ¢1C/p1, Xo is the value of ¢1 such that
ny = hy'(n?) = g1(n!?), and X3 is the value of ¢y that solves hz_l(n?l) = ¢2C/ p2.

5.2.2 Cased/2<b<2d

As proved in Lemma 5.3, this criterion leads to n¥' > ni? and nd?> > nl'. Now, the boundary
of S(¢1) can have three shapes ((b1), (b2) and (b3)). Shape (b1) is depicted in Figure 6. Shape
(b2) corresponds to (a3), and (b3) to (as) (see Figure 5).
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Figure 7: Left: Shape (c1). Right: Shape (c).

As in the case of b < d/2, one can easily prove that each shape is observed. The proofs are
omitted as they are similar to the proofs of Lemmas 5.4 and 5.5. We directly state the following
proposition.

Proposition 5.9 Ifd/2 < b < 2d, then the boundary of S(¢1) has

shape (b3) for 0 < ¢1 < Yy,

shape (b2) for Y1 < ¢1 < Ya;

and shape (b3) for Yo < ¢ < 1.

Here Y is the value of ¢1 such that g; 1(nQQQ) = ¢1C/p1 and Ys coincides with the value of ¢1
such that g;l(n?l) = ¢2C/ poa.

5.2.3 Caseb>2d

The last case is the counterpart of the first case. Therefore, the proofs are also omitted in the
following. Now, n?l > n{z and ny? < ngl. There are four possible shapes of S(¢1), ¢1 € (0,1).
Shapes (c1) and (c2) are depicted in Figure 7. Shape (c3) corresponds to (a3), and (c4) to (b1)
(see Figures 5 and 6 respectively).

Proposition 5.10 Ifb > 2d, then the boundary of S(¢1) has

shape (c1) for 0 < ¢1 < Z1;

shape (c2) for Zy < ¢1 < Zs;

shape (c3) for Za < ¢1 < Zs;

and shape (cq) for Zs < ¢1 < 1.

Here Zy corresponds to the value of ¢1 such that hfl(ngr") = ¢1C/u1, Zs is the value of ¢1 that
solves ni' = hy Y(nd) = g2(nd!) and Z3 is the value of ¢1 such that g;l(n({?l) = ¢2C/ pa.
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5.3 The realizable region

Let R denote the realizable region, i.e., the admissible region if one would be allowed to adjust
the weights at any time:

R:= (] S(#).
d)1€[0,1]
In the following we show that we do not always need all values of ¢; € [0, 1] to compose R. We

now state our main result.

Theorem 5.11 The realizable region R can be obtained as follows:

b<d/2: R= |J  S(¢);

$1€(0,X2)uU{1}
d/2<b<d R= |J S(u);
¢le(071]
d<b<2d: R= ] S(¢0);
¢1€[071)

b>2d: R= ] S
$1€{0}U(Z2,1)

Proof: Let us consider the case b < d/2. Recall that this implies that S(0) C S(1). Furthermore,
S(¢1) € S(1) for all ¢ € [Xo,1). To see this, compare boundaries (a;) and (az) with the
boundary of S(1), and recall that h;'(-) > hy(-) if b < d/2. However, this does not hold for
all 1 € (0,X2), because otherwise R would be equal to S(1). One can see this as follows.
If ¢1 € (X1,X2) then we must have shape (a3). But then S(¢1) contains (n},n¥), with
hyt(nl¥) < n¥, which cannot be part of S(1). From Lemma 5.6 it follows that for all ¢; €
(X1, X2), nlV (n¥) increases (decreases) as ¢1 increases (but not linearly). That is, we need
all values of ¢1 € (X1,X2) to compose R. Likewise, shape (a4) arises if ¢1 € (0, X;]. The
point (nf ,n2Qz) will then be contained in S(¢;1), which cannot be contained in S(1) either.
From Lemma 5.5 it follows that as ¢; increases in the corresponding interval, ni (nQQQ) linearly
increases (decreases), i.e., we also need all values of ¢; € (0, X;].

The other statements follow in a similar fashion. Recall that for b > d we have S(1) C S(0). O

The boundary of R can now also be determined using Theorem 5.11. Below we discuss each
of the four cases of Theorem 5.11. Let us first introduce some notation. From now on, we write
2(¢1) if z depends on ¢1. Note that ¢o = 1 — ¢1, thus if an expression contains ¢, we can also
easily rewrite it as function of ¢7.

5.3.1 Case b<d/2

We need all values ¢1 € (0, X2) and ¢1 = 1 to compose R. As we will see, S(1) contributes a
large part to the boundary of R. All values of ¢; € (0, X2) contribute to the boundary in the
following way (straightforward calculus):

¢1€(0,X1]:  (n1,m2) = (97" (S ($1)),ng2(¢1)); (11)
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$1 € (X1,X2) 1 (n1,m2) = (n} (¢1),nY (1)), (12)
with

nfl = g7 (n§?(0)) > 0; nF(0) = hy1(0);

g7 (nd2 (X1)) =l (X1);  n$*(X1) = n¥ (X);

ny (X2) = hy' (n}Y (X2)).

As mentioned, it can be shown that (11) and (12) correspond to two lines that decrease in ng as
nj increases (the former linearly, but the latter non-linearly). Let us denote the former by k1(n1)
and the latter by ka(n1). Moreover, ki(-), k2(-) and hy *(-) ‘perfectly connect’ (see Figure 8 (top,
left)), as one can show that

an3? (¢1) onl (1) n¥¥ (¢1) _
23¢>1 _ ?3¢>1 . 0 23¢1 _ Ohy 1(n1)
897 (nD2 on¥ (¢) T anlV(¢) o 0 )
W $1=X1 éd)l : $1=X1 (19¢1 . $1=X> ™

We are now able to describe to boundary of R, which follows from above.

Proposition 5.12 Ifb < d/2, then the boundary of R, denoted by r1 (see Figure 8), is contin-
UOUS.

5.3.2 Cased/2<b<d

The approach is very similar to that in the previous case. We introduce line k3(n1) and k4(n1),
that correspond to the following equations respectively:

¢1 € (Y1,Y2) 1 (n1,m2) = (n] ($1),n3 (1));

$1€[¥a,1):  (n1,n2) = (0 (41), 95 ' (nT (41)))-

Recall that we obtain line k1(-) from ¢; € (0,Y7), as Y1 = X;. It can be shown that k3(-) is a
non-linearly decreasing function, whereas k4(-) is a linearly decreasing function. Furthermore,
it can be shown that ki(-), k3(-) and k4(-) ‘connect perfectly’ (see Figure 8 (top, right)). Now
we have all the ingredients to describe the boundary.

Proposition 5.13 If d/2 < b < d, then the boundary of R, denoted by ro (see Figure 8), is
continuous.

5.3.3 Cased<b<2d

We directly state our result on the boundary of R, since it is very similar to the previous case.

Proposition 5.14 If d < b < 2d, then the boundary of R, denoted by r3 (see Figure 8), is
continuous.
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Figure 8: Top, from left to right: shape (r1) and (r2) (area below dotted line represents S(1)).
Bottom, from left to right: shape (r3) and (r4) (area below dotted line represents S(0)).
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5.3.4 Case b > 2d

We introduce line ks5(n1), that corresponds to the following:

$1 € (Z2,Z3):  (n1,n2) = (n}’ (¢1),n3" (41)).
Note that Z3 = Y,. Once again, we directly state the boundary of R.

Proposition 5.15 If b > 2d, then the boundary of R, denoted by r4 (see Figure 8), is continu-
ous.

Although we need a range of weights to obtain R, the results suggest that almost all of R
is obtained by the priority scheduling discipline, e.g., ¢1 = 0 or ¢1 = 1. In case b < d, the
admissible region S(1) covers most of R, whereas in case b > d the region S(0) approximates R.
We further explore this issue in the next section.

6 Numerical analysis

In this section we numerically compute the boundary of the realizable region for two realistic
examples of Gaussian inputs. As the inputs are non-Brownian, the boundary of the admissible
region (and thus the realizable region) has to be obtained numerically. We compare the realizable
region with the admissible region corresponding to the priority cases. The following examples
illustrate that either S(0) or S(1) (or both) covers most of the realizable region (as was the case
for Brownian inputs, see Section 5).

We remark that, in addition to the examples presented here, we have considered many other
parameter settings. The result that priority strategies cover nearly the entire realizable region
appears to remain valid under quite general circumstances.

6.1 Example 1

Consider two traffic classes sharing a total capacity (C) of 100 Mbps. The first class consists
of data traffic, whereas the second class corresponds to voice traffic. Traffic of the first class is
modeled as fractional Brownian motion, i.e., v1(t) = at??, with H € (0,1). The mean traffic
rate p1 is 0.2 Mbps and its variance function is given by v;(t) = 0.0025¢1% (such that at time
scale t = 1 s the standard deviation is 0.05 Mbps). The value of H = 0.8 is in line with several
measurement studies (one commonly finds a value between, say, 0.7 and 0.85).

Traffic of the second class corresponds to the Gaussian counterpart of the Anick-Mitra-Sondhi
(AMS) [2] model, see Section 3.5 of [1]. In the AMS model work arrives from sources in bursts
which have peak rate h and Exp(f) distributed lengths. After each burst, the source switches
off for an Exp(A) distributed period. The variance curve of a single source is given by

2
nl®) = gy (¢ 550~ op(-( A1) ). 13
We choose h = 0.032, A = 1/0.65 and S = 1/0.352 in (13), in line with the parameters for coded
voice given in Sriram & Whitt [25]. Hence, the mean traffic rate of a source of class 2 (u2) is
0.021 Mbps. Note that traffic of class 1 is long-range dependent (i.e., the autocorrelations are
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Figure 9: Realizable regions of Example 1. The boundary of S(1) is given by the small dashed
line. The long dashed line represents the boundary of S(0). The solid line above the boundary
of S(0) and S(1) is the boundary of R. The thick line on top is the boundary of T. Top, left:
C =100 Mbps. Top, right: C = 50 Mbps. Bottom: C' = 10 Mbps.

non-summable), whereas the traffic of class 2 is short-range dependent. We allow an overflow
probability of 1076 for the first class and 10~2 for the second class (corresponding to d; ~ 13.8
and J2 =~ 6.9). We choose Bj such that B;/C = 0.05 (i.e., 50 ms) and Bs such that By/C = 0.01
(i.e., 10 ms). Hence we allow a (relatively) large delay but small loss for the data traffic, and a
small delay but (relatively) large loss for the voice traffic.

Figure 9 (top, left) depicts the admissible region for the priority cases (S(0) and S(1)), the
realizable region (R) and the stable region (7"). Obviously, R C T, but they almost coincide.
Furthermore, the boundaries of S(0), S(1) and R almost match (the boundaries of S(0) and
S(1) are hardly visible). That is, most of R can be obtained by giving priority to class 1 or 2.
In fact, any weight of ¢1 € [0, 1] yields an admissible region S(¢1) that closely resembles R.

We have also experimented with other values for C as depicted in Figure 9 (top, right and
bottom). As the value of C' becomes smaller (with still B;/C = 0.05, By/C = 0.01, and all
other parameters left unchanged), the difference between the boundary of R and T' becomes
clear. Note that R still closely resembles S(0) and S(1). This indicates that GPS scheduling is
only marginally more effective than a strict priority discipline (¢1 = 0 or ¢; = 1).

As the values of §; and J2 increase, the QoS requirements become more stringent and there-
fore the difference between the regions R and T becomes more substantial. For large values of
C this is hardly visible, and therefore we show this for the case that C = 10 Mbps (with the
parameter values corresponding to Figure 9 (bottom)).
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Figure 10: Realizable regions of Example 1. The boundary of S(1) is given by the small dashed
line. The long dashed line represents the boundary of S(0). The solid line above the boundary of
S(0) and S(1) is the boundary of R. The thick line on top is the boundary of T'. Left: §; = 27.6
and d2 = 13.8. Right: d; = 41.4 and J2 = 27.6.

Figures 9 (bottom) and 10 show the expected impact of the ‘QoS requirements’ §;, i = 1, 2.
Although the difference between R and T becomes larger as §; and &2 increase, R continues to
be closely approximated by S(0) or S(1). Compare Figure 9 (bottom) with Figure 10 (left) and
observe that if the §;s are doubled, then R decreases by less than 15 percent.

6.2 Example 2

In this example we let the two traffic classes share a total capacity of 1 Gbps. The traffic of the
first class is data traffic with a higher access rate, and traffic of the second class with a lower
access rate. The mean traffic rate of a source of the first (second) class is 3 Mbps (0.2 Mbps).
The variance functions are given by 0.5625t16 and 0.0025t!'%, respectively, such that at time
scale t = 1 s the standard deviations are 0.75 Mbps and 0.05 Mbps, respectively. We allow an
overflow probability of 1078 (1073) for the first (second) class (6; ~ 18.4 and J2 ~ 6.9). The
buffer thresholds are such that B;/C = 0.04 and B2/C = 0.01.

Figure 11 (top, left) shows the resulting realizable region. Once again, most of R is covered
by the admissible region of a priority strategy. Furthermore, also the influence of C' is as before,
as can be seen in Figure 11 (top, right and bottom). For large values of C, the boundaries of
S5(0), S(1), R and T' almost coincide. As C decreases, the difference between the boundaries of
R and T becomes significant. Note also that the difference between the boundaries of S(0) and
S(1) becomes visible for small values of C. In all the experiments as depicted in Figure 11, R
nearly coincides with S(1).

For C = 100 Mbps (setting of Figure 11 (bottom)), Figure 12 depicts the sensitivity with
respect to the §;s. Again, R becomes considerably smaller when the QoS requirements become
more stringent (i.e., increasing §;, ¢ = 1.2). Furthermore, the boundary of R still seems to closely
match the boundary of S(1).
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Figure 11: Realizable regions of Example 2. The boundary of S(1) is given by the small dashed
line. The long dashed line represents the boundary of S(0). The solid line above the boundary
of S(0) and S(1) is the boundary of R. The thick line on top is the boundary of 7. Top, left:
C = 1000 Mbps. Top, right: C = 500 Mbps. Bottom: C' = 100 Mbps.

6.3 Discussion

For larger values of C, the boundaries of T', R, S(0) and S(1) match even better than the ones
depicted in Figure 9 (top, left) and Figure 11 (top, left); then the realizable region R nearly
coincides with the stability region 7. For smaller values of C there is some discrepancy between
R and T, particularly when the required overflow probabilities are small. However, it seems that
still either ¢ = 0 or ¢; = 1 suffices to (nearly) cover R.

Note that the results of the two examples suggest that the boundary of the admissible
(realizable) region is approximately linear, which corroborates with the results of Elwalid &
Mitra [10].

In case of Brownian inputs, we saw in Section 5 that R was accurately approximated by
S(1) if b < d, and by S(0) otherwise. Therefore, if the ratio of the buffer thresholds is less than
the ratio of the (exponential) decay rates of the overflow probabilities, then one should select
(¢1,d2) = (1,0), otherwise (¢1,¢p2) = (0,1). Interestingly, this criterion does not involve the
characteristics of the sources. The numerical analysis presented in this section (as well as the
additional numerical experiments that we performed) suggest that for other Gaussian sources
there is a similar criterion. However, it is in general not given by b < d versus b > d; it seems
that the traffic characteristics of the two classes should be taken into account as well.

We now give some arguments that may informally explain why nearly the entire realizable
region is achievable by strict priority scheduling strategies. First consider the scenario that

26



nl

Figure 12: Realizable regions of Example 2. The boundary of S(1) is given by the small dashed
line. The long dashed line represents the boundary of S(0). The solid line above the boundary of
S(0) and S(1) is the boundary of R. The thick line on top is the boundary of T'. Left: §; = 36.8
and d2 = 13.8. Right: d; = 55.2 and J2 = 20.7.

both classes have similar traffic characteristics. In that scenario the buffer asymptotics of each
individual class will resemble that of the aggregate traffic stream, implying that each work-
conserving discipline will give similar performance. Hence, since GPS is a work-conserving
discipline, the performance of the system is insensitive to the weights in this scenario. Now,
consider the scenario that one class has heavy traffic and loose QoS requirements, whereas
for the other class it is the reverse (smooth traffic and stringent QoS requirements). Then
the buffer asymptotics of the bursty traffic class will not be affected by the weights (may be
even completely insensitive), as long as the traffic intensity of the smooth traffic class does not
exceed its weight. The latter will necessarily hold, as otherwise the heavy traffic class would be
negatively influenced by the smooth traffic class. This insensitivity implies that there is little
lost by simply giving strict priority to the smooth traffic class. The only scenario that remains
is where the bursty traffic class has tighter QoS requirements than the smooth traffic class, but
that scenario appears to be atypical.

Our choice to focus in this paper on two-class GPS is motivated by the fact that most traffic
can be categorized into streaming and elastic traffic. In general, in order to keep the complexity
as low as possible, one should attempt to minimize the number of classes. However, the weight
setting problem in the case with more than two classes is not fundamentally different from the
two-class case; we expect our conclusions to carry over.

7 Conclusions

In this paper we determined the admissible region for a two-class GPS system with Gaussian
traffic sources. The analysis relied on the powerful large-deviations approximations of [19,
17]. These are particularly useful, as they cover general correlation structures, thus allowing
both short-range dependent and long-range dependent traffic processes, and avoid the rather
restrictive traffic assumptions in previous work.

We showed that the admissible region for each class may be partitioned into three subsets,
which facilitated the derivation of the joint admissible region for both classes by taking the
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intersection for given weight values. We then obtained the realizable region as the union of the
admissible regions over all possible weight values.

In the case of Brownian inputs, the boundary of the admissible region can be explicitly de-
rived, and it can be shown that nearly the entire realizable region is achievable by simple priority
strategies. A further key observation is that the choice of which class to prioritize is entirely
determined by the Quality-of-Service requirements, particularly the ratio of the buffer thresh-
olds compared to the ratio of the exponential decay rates of the violation probabilities. Thus,
the proper priority ordering is not influenced by the traffic characteristics or even the number
of sources, but of course how many sources of the two classes actually can be supported does
strongly depend on the statistical traffic properties. Extensive numerical experiments indicated
that these remarkable findings also hold for general Gaussian traffic sources. The results suggest
that the precise selection of scheduling weights is not that critical, and that simple priority
strategies may suffice for practical purposes.
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