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Abstract

This paper describes the methodology that we have applied for the solution of an urban
waste collection problem in the municipality of Sant Boi de Llobregat, within the metropoli-
tan area of Barcelona (Spain). The basic nature of the considered problem is that of a
capacitated arc routing problem, although it has several specific characteristics, mainly de-
rived from traffic regulations. We present the model that we have built for the problem,
which results after an appropriate transformation of the problem into a node routing one.
We also present the ant colonies heuristics that we have used to obtain the solutions to the
problem. These combine constructive methods, based on nearest neighbor and on nearest
insertion, with a local search that explores various neighborhoods. The application of the
proposed methods gives results that improve considerably the ones that were previously used
in the municipality.



1 Introduction

The management of urban waste is now undergoing a strong change and innovation phase as
required by the growing environmental concern from citizens and governments. As a result,
in recent years there has been an increasing number of directives from the European Union
and regulations in the different countries. In particular, in 2000 the National Plan for Urban
Waste (PNRU, from its name in Spanish) gave some unifying criteria to be applied in Spain in
this field. According to the plan, municipalities with more than 5,000 inhabitants are forced to
ensure proper separation for selective collection of garbage. New and interesting management
problems arise in the affected municipalities: what collection system should be applied, where to
locate the garbage accumulation areas as well as the collection points, how many containers and
of what type should be assigned to each area, which are the most appropriate collection routes,
which frequency of collection should be applied in each section, how big the fleet of vehicles
should be, and so on.

In Catalonia alone, there are 120 municipalities affected by this regulation, 28 of which belong
to the metropolitan area of Barcelona. Sant Boi de Llobregat, is one such municipality with
more than 80,000 inhabitants. The need to adapt to the new legislation and the desire to renew
equipment and to design a new physical collection system led the Council and the municipal
transportation company, to sign an agreement with the Technical University of Catalonia in 1999
as described by Bautista in [1]. One result of this collaboration is the decision support system
Integrated System of Selective Urban Garbage Collection (SIRUS, from its name in Spanish).
SIRUS was designed to help decision-making in problems related to the management of garbage
collection, on the basis of a set of conditions and criteria given by the new regulations. This work
deals with one of the aspects of the above mentioned project. Namely, the design of collection
routes in Sant Boi de Llobregat and the integration of the proposed method within STRUS.

Similarly to other countries, in Spain waste generated in urban areas is collected by municipal
organizations or its collection is run by private companies under some type of contract. Urban
waste is collected and transported to its final destination, trying to offer a quality efficient service
at minimum cost. Like in other countries of the European Union, in Spain most of the population
is concentrated in urban areas with a very high population density, given that people usually
live in apartment buildings. As a result, the collection technique has evolved away from door-
to-door collection, very common in the USA, and the predominant system consists of collection
points located through the city where citizens leave their refuse. Each collection point is made
up of one or more refuse bins (with dimensions ranging from 1 to 3.2 m?). Different trucks
collect each type of waste and transport the waste to their final destination (a refuse dump,
an incinerator or a recycling plant). One key factor for proper operation of collection systems
is the design of appropriate collection routes for each type of garbage (fraction), which may or
may not be separately collected (in some cases due to technical design constraints and different
treatment processes). In Sant Boi de Llobregat each fraction is collected separately with a fixed
periodicity (established by the municipality). Therefore, in this case the collection of each type
of garbage can be considered as an independent but equivalent problem. In addition, the routes
should be coherent with traffic rules, taking into account forbidden turns and traffic signals
while minimizing collection costs.



Note that the considered problem is an arc routing one since in the actual circumstances of
the problem roads are traversed completely, even if collection points are located in specific points
of the roads. In addition the capacity of the trucks is limited. Thus, the basic nature of the
considered problem is that of a capacitated arc routing problem (CARP). Even if they have not
been so extensively studied as their node routing counterpart, there is a rather vast literature
on arc routing problems (see [10] for a comprehensive text) and on the CARP in particular
(see, for instance, [13, 17, 18, 2]). Nevertheless, the problem that we address presents several
characteristics that make it different from classical arc routing problems. These characteristics
are mainly derived from traffic regulations. On the one hand, the underlying graph of the
problem is a mixed one with both arcs and edges, since in reality some streets can be traversed in
both directions whereas others have only one direction. To the best of our knowledge the CARP
has not been studied on mixed graphs. On the other hand, at the junctions of the streets some
turns will be forbidden, whereas other will be allowed. Again, to the best of our knowledge this is
an issue that has not been considered for capacitated arc routing problems. For problems without
capacities forbidden turns have been considered for routing and scheduling street sweepers in
[3, 4] and for the Rural Postman Problem on mixed graphs with turn penalties in Corberan et
al. [6], where the authors propose a solution approach based on penalizing forbidden turns and
post-processing illegal solutions. In [22] the formulation of the Capacitated Chinese Postman
Problem is adapted to the context of the Canada Post Corporation and a general heuristic is
presented to solve the problem under several hypothesis where, again, penalties are assigned to
forbidden turns.

In this work we build a model for the Mixed Capacitated Arc Routing Problem (MCARP)
where forbidden turns are taken into account in the set of constraints instead of penalizing
forbidden turns via the objective function. We believe that this is more appropriate when the
number of forbidden turns is high, like in the real problem that we have addressed. In Section
2 we describe the problem and in Section 3 we present the proposed model, which results from
a transformation of the problem into a node routing one. In [16] Laporte proved that this
strategy can be successful for addressing several classes of arc routing problems. It has also
been applied to the Rural Postman Problem on mixed graphs with turn penalties in Corberdan
et al. [6]. Our solution approaches are presented in Section 4: Subsections 4.1 and 4.2 describe
two constructive heuristics to obtain feasible solutions, and the neighborhoods that are explored
in the Local Search, respectively. These elements are integrated within two heuristics based
on ant colonies (see Dorigo and Stiiltze [9]) that are presented in Subsection 4.3. Section 5
presents the results obtained when applying the algorithms of Section 4 to the city of Sant
Boi de Llobregat. The routes generated with our heuristics are compared with the ones that
were previously used, obtaining significant improvements. Finally, in Section 6, we present the
conclusions of the work and we give some comments about the integration of the algorithms
within STRUS.

2 The problem

For the scope of this paper, the area of the city where the collection routes are planned is
represented by means of a graph Gy = (Vp, Ep, Ag). The vertices of the graph, Vj are associated
with street junctions and dead-ends, whereas the edges, Ey, and arcs, Ag, are associated with



existing street sections between street junctions. Arcs represent single-way streets while edges
represent two way streets. Any element of Ey U Ay will be called a link. There is one single
depot that throughout the paper will be denoted as vertex 0. Of course, 0 € Vj. Gy is in fact
a multi graph, since multiple streets (corresponding to parallel edges or arcs) may connect two
junctions. In addition, there is a set of rules derived from traffic regulations, that determine
when it is possible to connect two adjacent links through a common vertex as well as some turn
limitations associated with adjacent links when the common angle is too narrow. We will refer
to those regulations as turn constraints. Each link a € Ey U Ag has a length [,. The set of
required links Ry = E(I)% U AZ, is defined as the set of links with at least one collection point.
Each required link a € Eé?' U Ag has a demand d, that represents the quantity of waste that
must be collected while servicing the link a, and corresponds to the total waste generated by
the citizens allocated to the associated collection point as explained by Pereira in [21]. There is
an homogeneous fleet of vehicles, indexed in a set K, with capacity D, to provide service to the
required links. Each required link must be serviced by one single route although, in addition,
other routes might traverse it. The cost of a route is given by the sum of the lengths of the
links that it services or traverses. The Mixed Capacitated Arc Routing Problem with Turn
Constraints (MCARPTC) consists in finding a set of |K| routes such that

e cach route starts and ends at the depot,
e cach required link is serviced by one route,

e the total demand of the links that are serviced by each vehicle does not exceed the capacity
of the vehicle,

e the rules derived from traffic regulation are satisfied,

of minimum total cost.
Remark 1

We say that a path in Gq is feasible for the rules, if it does not violate any of the rules and
turn constraints derived from traffic regulation. Note that for any pair of vertices i,j € Vj it is
possible to know if there exists an ¢ — j-path that is feasible for the rules, and to determine the
value of the shortest path that is feasible for the rules, with respect to the arc lengths /. This
can be achieved with an ad-hoc modification of the Floyd-Warshall algorithm [11, 23], although
there also exist more efficient procedures based on the Dijkstra algorithm (see for instance [5]).
Let P;; denote a shortest i — j—path feasible for the rules in G, with value I(P; ;).

Next, we will transform the arc routing problem into a node routing one. A general framework
for this type of transformation for arc routing problems without capacity constraints and without
turn penalties is given by Laporte in [16], and a different transformation (which basically results
on the same graph) and takes turns into account is also given by Corberdn et al. in [6]. Our
transformation is based on the one of [16], although it incorporates some new features to handle
turn penalties and capacity constraints. Also, we should mention that the way we handle turn
penalties is based on the path distances resulting from Remark 1, which is simpler than the
transformation used in [6].



Let Grp = (V, A) denote the new directed graph. Vertices in Grp correspond to required
links in Go: one vertex when the link is a required arc, and two vertices (one associated with
each of the two possible traversal directions for the edge) when the link is a required edge. In
particular, each required arc a;; € Ag defines a vertex p(a;j) € V, whereas each required edge
e;; € EfY defines two vertices, p(a;;),p(a;i) € V. In addition, vertex 0 € V, corresponding to
the depot. For notational purposes we will partition the vertex set into disjoint sets (we will
refer to them as clusters), i.e. V=TyUTy UToU---UT, with Tp = {0}. For t =1,---r, each
vertex set T} either is a singleton, when the vertex is associated with one arc of AOR, or contains
the two vertices p(a;j),p(aj;) associated with the two opposite arcs of edge e;; € Ry. For each
vertex p € V, Cp denotes the index of the cluster it belongs to. That is, C}, = r <= p € T,..
The set of arcs, A, contains one arc (p, q) for every pair of vertices p = p(aij), ¢ = q(arn) € V,
with Cp, # Cy, such that in Gg there exists a directed path connecting ¢ and h, that is feasible
for the rules. Observe that Grp need not be a complete graph. The cost of an arc (p,q) € A,
with p = p(a;;) and ¢ = q(agp), is given by the length of the shortest i — k-path in Gy that is
feasible with the rules. When j = k and no turn is allowed from (4, j) to (k, h), the lengths of all
the additional arcs that must be traversed for connecting (7, j) and (k,h) in a feasible manner
must be taken into account. That is, c¢pq = I(P;n) — Ik, Note that the resulting cost matrix is
asymmetric. Note also that the cost ¢,, accounts for the lengths of all the arcs in the feasible
path Pj,. This is a difference with the path-distance costs defined in [16] that do not account
for the lengths of the required links. In principle, the lengths of the required links need not
be computed since any feasible solution will service all required links exactly once and, thus,
the total length of the serviced edges is a constant that does not affect to the solution of the
optimization problem. However, when turn regulations have to be taken into account, the path
distance between two adjacent arcs cannot be defined as zero if the turn through the common
endnode is forbidden. On the contrary, it has to incorporate the lengths of all the arcs used to
define the feasible path (see Figure 1).
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Figure 1. Defining costs via path distances in Ggp

We define a demand function in G, which is inherited from the original demand function
in Go. Abusing notation, if p = p(a; ;) € V, we denote d, to the demand of the required link
(7,7). In what follows, unless it is necessary, we will usually drop the reference to the link of Ry



associated with a given vertex and we will just write p € V' instead of p(a;;) € V. To represent
vertices associated with two opposite traversal directions, p(a;;) and p(aj;), we will use p and p.

MCARPTC is equivalent to an asymmetric node routing problem on Grp that consists of
finding a set of |K| routes in such a way that:

e cach cluster is visited by exactly one route,
e for each cluster, exactly one of its vertices is visited by some route,

e the total demand of the vertices visited by each route does not exceed the capacity of the
vehicle,

of minimum total cost. The above problem is an extension of the Vehicle Routing Problem to
clusters of vertex sets known as the Generalized Vehicle Routing Problem (GVRP). Since in each
cluster the vertex that is going to be visited has to be decided, in [15] GVRP is considered by
Laporte as a location-routing problem. On the contrary, in [12] Ghiani and Improta transform
the problem into a Capacitated Arc Routing Problem. On the other hand, the rules used by
Noon and Bean in [20] to transform a Generalized Traveling Salesman Problem into a Traveling
Salesman Problem can also be used to transform a GVRP into a VRP. Capacity can be taken
into account by assigning the demand of the cluster to only one of its vertices (arbitrarily chosen).
Nevertheless, given that the cardinality of each cluster is either one or two, the model that we
propose in the next section does not use this last transformation and is built for the GV RP on
the graph Gy g.

3 The model for MCARPTC

For building our model for the problem we define the following decision variables:

S 1 if arc (p,q) € A belongs to route k € K;
Pak = 0 otherwise.

We use the following additional notation: VS C V, A(S) = {(p,q) € A:p,q€ S}; Vp eV,
dt(p)={q €V :(pq) € A}, 6 (p) ={q €V :(q,p) € A}. Note that if C, = C, then (p,q) ¢ A
and (¢,p) ¢ A. Thus, for p € Ty, for some t =1--- 7, then 6" (p) ¢ T; and 6~ (p) & T;.

Then, the model is:



(GV RP)min ST coaTpan (1)

kEK (p,q)cA

s.t. 3D wge=1 t=1,,r (2)

keK peT; ge5—(p)

D0 D ma=1  t=l.or (3)

keK peTy qeé+(p)

> Z quk— K] (4)

keK qed—(
Z Z UCqu = |K‘ (5)
keK qedt(0

Z Tgpk = Z Tpgk t=1,---,m;pei,Vke K (6)
q€6~(p) q€6t(p)
ddy | Y wpge| <D VEEK (7)
peV q€5t(p)

> g <IS|-|K| VSeVikeK (8)

(p,a)€A(S)
Tpgk € {O? 1} v (p7 Q) € A: ke K (9)

Constraints (2) and (3) ensure that for each cluster of vertices T}, exactly one route “enters”
the cluster and exactly one route “leaves” the cluster. Similarly, constraints (4) and (5) require
that the |K| routes start and end at the depot. Constraints (6) are needed to guarantee that,
the route that “enters” the cluster is the same than the route that “leaves” the cluster, and
also, that when a route visits a cluster, the same vertex is visited when entering and when
leaving the cluster. The capacity constraints (7) ensure that the capacities of the vehicles are
not violated, whereas constraints (8) are the well-known subtour elimination constraints (SEC).
The model has |A| x | K| binary variables and a number of constraints that is exponential in |V|
due to constraints (8). The number of constraints can be reduced if the SEC’s are expressed as
proposed by Desrochers and Laporte in [7] for the VRP based on the SEC’s of Miller, Tucker
and Zemlin [19] for the T'SP. In particular, they can be expressed as

Upk, — Uk + Dxgpry < D — dg Vke K\V(p,q € Ap#0st. dy+dy, <D (10)
dp < upy, <D Vp#0,ke K (11)

where wu,;, is an additional set of continuous variables.



4 Heuristics for the GVRP

In this section we describe the heuristics that we use for the GV RP. We are not aware of any
heuristic previously proposed in the literature for the GVRP and the previous work on heuristics
for the asymmetric Vehicle Routing Problem is quite scarce. The constructive and local search
methods that we use take into account forbidden turns as well as the constraint that one single
node is visited in each cluster. For the way they have been obtained, forbidden turn constraints
are implicitly considered both in the graph Gy g, that is not necessarily complete, and in the cost
function that has been defined. Therefore, we only need to take care explicitly of how to handle
the constraints that require that one node per cluster is visited. Asymmetry does not add any
specific difficulty to constructive methods. However, it increases notably the difficulties for local
search. The two ant heuristics presented in Subsection 4.3 use adaptations of the deterministic
constructive methods presented in Subsection 4.1 as well as the local search of Subsection 4.2.

4.1 Constructive methods

Two different constructive greedy heuristics have been used. The first one is a nearest neighbor
method and the second one is some type of nearest insertion heuristic. In both methods the
constraints that require that one vertex per cluster is visited are achieved basically by considering
the sets of clusters (instead of the set of vertices) and by enumerating the two possibilities for
appending or inserting one vertex of the cluster in the partial solution when a cluster is selected.
For s =1,---r we will denote d, to the demand of the vertex (vertices) of T;.

Nearest Neighbor Heuristic

Routes are built one at a time. When Route k is being constructed, clusters are sequentially
assigned to it using the nearest neighbor criterion among the clusters that would not violate
the capacity constraint. The adaptation of the nearest neighbor criterion to this case requires
that for clusters with two vertices, two different possibilities are evaluated for estimating the
cost of appending one of the nodes of the cluster to the partial solution that is being built. In
particular, at each step of the heuristic ¢; € argmin{c,q : ¢ € T}, denotes the vertex of cluster
t that gives the best way of connecting one vertex of cluster ¢ to vertex p. At each step of the
heuristic d,;, denotes the minimum demand among the clusters that are not yet assigned to
any route. This value is updated each time that a cluster is assigned to one route. A route
terminates when the available capacity of the route does not allow to add any new vertex. A
scheme of the heuristic is given in Algorithm 1.

Nearest Insertion Heuristic

This heuristic consists of two phases. Initially, clusters are ordered from furthest to closest
to the depot. The distance of cluster Ts to the depot is given by the minimum distance to/from
the depot of any of its vertices; i.e. min {min{coy : p € Ts}, min{cyo : p € Ts}}. For ease of
presentation we will asume that clusters are indexed according to that ordering. The first phase
of the heuristic builds |K| partial routes one at a time. For initiating Route k, a seed is selected.
The seed is one of the vertices of the cluster that is furthest to the depot, among the ones not
visited so far by any of the previous k — 1 partial routes. Specifically, the seed is the vertex of



Algorithm 1 Nearest Neighbor
L={TTs - T}
for k=1,---K do
R,=0;p=0; B=D; dmm:min{c/i\t:tEL}
while (B — dyin > 0) do ~
q € argmin{cpq, : Ty € L,qt € Ty, dy < B}; s = C
Ry =R U{(p,0)}
L:=L\{Ts}
B:=B —d,
pi=q
end while
R:=RU{(q,0)}

end for

that cluster which is closest to the depot (in any of the two directions). Let si € V' denote the
seed at iteration k, and let also I denote the set of intermediate vertices in the shortest paths
PO,S,C and f’sk,o, in Gyrp connecting the depot with sz, and s, with the depot, and suppose
that these vertices are ordered from furthest to closest to the depot. Then, vertices in I are
considered in turn and included in the initial route if there is still enough available capacity.
Let Eg = {0,p},p5, - ,pfbk} denote the set of vertices that are assigned to route k, ordered
according to their place in the route, and B the available capacity of route K at the end of
this phase.

For the second phase all partial routes are considered simultaneously. For each route, we
identify the unassigned cluster with the smallest value with respect to the nearest insertion
criterion in route k, among the ones that fit within the available capacity. That is, let s denote the

index of an unassigned cluster, and k € K such that c?s < B¥. Define now qf € argmin{cp@ . ¢t
]7 b
Coph —Cpk_ ph T4 € Ts,5=1,--- ,ni}, which gives the best insertion of some vertex of cluster s
g =157

within the route k, and let val¥ denote the cost of such insertion. The value of the best insertion
in route k is then given by cost* = min{val? : Ty € L,ds < B*}. Let ¢* denote the vertex to
be inserted, s* its cluster and j* the index of the node in route k for the insertion. Then, the
insertion that is performed is the one with minimum cost, among all the routes. A scheme of
the heuristic is given in Algorithm 2.

4.2 Local Search

Several neighborhoods have been considered for the Local Search. The first one is what we call
a substitution neighborhood, where the node of one cluster is substituted by the other node of
the cluster. The other two are a reinsertion neighborhood and a 3-exchange neighborhood.

Substitution Neighborhood: N1 This neighborhood contains all the solutions that can be
obtained by substituting one vertex p such that ‘TC,,‘ = 2 by the other vertex of T¢,. Here
we do not attempt to change neither the route nor the situation of the node within the route.
If we interpret the move in terms of the routes of the original arc-routing problem, this move




Algorithm 2 Nearest insertion

Initialization
Order the clusters from furthest to closest to the depot.
Define the ordered list L = {T1, T, ,Ts,--- , T, }.
Phase 1
for k=1,---K do
Let Ti(x) denote the first cluster in list L.
Select the seed si € argmin {cpo, Cop 1D € Ts(k)}.

o~ a3
Identify I, and I}, = {0,p},ph,--- ,pk }; B¥ =D — Zldsj.
J:

L=L\{T;:i=Cyqel}}
end for
Phase 11
while L # () do
fork=1,---K do
fors=1,---,r do
if T, € L and dy < B* then

Identify ¢* € argmin{c, a1 Capr — Cpi
k4

apk T Ok TAE To,j=1,---,ni}

Evaluate val¥.
end if
end for
cost? = min{val? : T, € L,ds; < B*}
Let g € T, denote the vertex to be inserted immediately before vertex j*.
end for
Let k* € argmin{cost* : k € K}; ¢* = qp=; j* = j*, s* = s
L:=L\{Ts}
R* = R* U{(pf_1,¢"), (¢ P} \ {0y, o)}
B¥ .= B¥ —d,..
end while

k*

10



consists of changing the traversal direction of a required edge and rearranging accordingly the
route. Let p denote the vertex that is going to be substituted by p and let f and ¢ denote its
two neighbors in the route in the order they are visited. Then, the cost of the move that results
when p is substituted by p, is given by —cy, — ¢pq + cfp + g

For exploring N1 we consider all vertices in turn and perform the first improving move.

Reinsertion Neighborhood: N2 This neighborhood contains all the solutions that can be
obtained by removing one vertex and reinserting it at a different place, not necessarily within the
same route. When the cluster of the vertex contains two vertices, the reinsertion also attempts
to see which of the two vertices is better fitted for the new location. Let p denote the vertex that
is removed, P the vertex that is reinserted (either p or its opposite) and let f; and ¢; denote its
current two neighbors in the route in the order they are visited. Then the cost of the move that
results when p is reinserted between fo and qq, is given by —cyf,;, — Cpgy +Cf1g1 — Coge + Cop T Chgo-
For exploring N2 we consider all vertices in turn and perform the first improving move.

3-Exchange Neighborhood: N3 We perform 3-interchanges as explained in [14]. Let a,b,c
be three non consecutive arcs of a given route and let us consider all the routes that can be
obtained by deleting a, b, c and permuting the three resulting subpaths. Note that in some of
them the direction of some of the subpaths is reversed. Reversing a path is likely to change
the value of the path and is much more expensive to evaluate than in the symmetric case. For
this reason, we only consider moves in which none of the three subpaths is reversed (see Figure
2). The cost of the move that results when substituting (p1,q1), (p2,¢2) and (ps, q3) by (p1,q2),
(p3,q1) and (p2,q3) is given by —cpig, = Cpags — Cpsgs T Cpigz + Cpsqy T Cpags- In our 3-Exchange
moves, instead of performing the 3-exchanges within each single route, we consider the macro
route that results from merging all of the |K| routes into a single one (the depot is visited |K|
times), and we apply the 3-exchange procedure to the macro route. It is important to note that
the solutions obtained with this interchange are always feasible, since the capacity constraints
are taken into account. In particular, candidate interchanges that violate the capacity constraint
of any of the routes are rejected.

For exploring N3 we consider all triplets of non adjacent arcs and perform the first improving
move.

Figure 2. Interchange where no subpath is reversed.

Algorithm 3 describes the local search that we apply.

11



Algorithm 3 Local Search
terminate «— false
while (not terminate) do
1. while (some improving move is found in N1) do
Explore N1
enddo
Explore N2
if (some improving move has been found in N2) then go to to 1.
Explore N3
if (some improving move has been found in N3) then go to to 1.
. terminate < true
end while

S Ut 0

4.3 The ants heuristic

Ant systems (AS) [8] emulate the behavior of ant colonies in their paths from their nests towards
food source: on the one hand, they deposit pheromone along the route, and on the other hand
they usually follow the path where more pheromone has been previously deposited. Since better
paths are followed by more ants they contain more pheromone. We have designed two ant
heuristics that fit within the above paradigm and iteratively apply the following two phases: 1)
Solution building by means of a randomized constructive procedure followed by a local search,
and i) Pheromone updating to report back information for building of new solutions. The
constructive procedure of the first heuristic, that we denote Antl, is a randomized adaptation of
the nearest neighbor heuristic as explained in Subsection 4.1. In the second heuristic, denoted
Ant2, the constructive procedure follows the same template than Algorithm 2 and consists of a
Phase I where the seeds for the initial routes are selected in a randomized fashion, followed by
Phase II, which is a randomized adaptation of the nearest insertion heuristic of Subsection 4.1,
where the actual routes are constructed.

As usual in AS’s, the randomized selection criteria used by the two heuristics during their
constructive procedures uses a probability distribution derived from the pheromone trail. In
Ant1, the probability of connecting the last vertex of the partial route, say p, with vertex ¢ (not
belonging to any route) is:

1 (me)® (Wp,q)ﬁ
Tpg = o 3 (12)
> (1) (pr)
reCL
where 7,4, = i represents the heuristic information associated with the distance from the

current vertex p and the candidate vertex g; 7,4 is the value of the pheromone in arc (p, ¢); and
CL denotes the index set for candidate vertices which are the ones in clusters not yet assigned
with demand not greater than the current available capacity of the route. The initial pheromone
values assign equal probability to all links. The parameters « and § determine the influence of
the pheromone trails and the heuristic information, respectively.

In Phase I of Ant2 the probability of selecting vertex p as seed for a route is given by:

12



. (Up)a(np)ﬁ
KD SR CATICNE]

qeCL

where 7, = cpq + c40 and o4 denotes the value of the pheromone trail of the solutions of the
previous iterations in which vertex g was the seed. C'L denotes the set of vertices of clusters
that do not belong to any route in the solution under construction. The parameters o and
have the same meaning as in (12).

In Phase II of Ant2, the probability of inserting vertex g between vertices p; and p;i1
(consecutive in some route in the current solution under construction), is

B
a 1
[maz {7p,.q+ Tap 1 = Tojpj1 0} [cp].,q+cq,,,j+l—cpj,pj+1+e}

B
; zh: [max {Tph,r + Trpnin — Tpmphﬂvo}]a { . ]

CppyrHCrpp 1 ~Cppppp1 HE

2 _
Tpiqg =

Here, the pheromone trail of the arcs is given by the vector 7, and « and ( have the same
meaning as above. The small value parameter € is included to prevent from dividing by zero.

Both in Antl and Ant2 the local search phase is the one described in Subsection 4.2 (see
Algorithm 3). After the local search, the pheromone trails are updated. For the Phase I of Ant2
the pheromone trail of each vertex is updated in two steps according to:

i) opi= (1 p)oy

>z

qest(p)

i) op:=0op+ p X Acp; where Aoy, = L
(Cpq { > 55qu}>

keK

where & denotes the incidence vector of the solution obtained at the end of the local search, and
p is the pheromone evaporation rate. Similarly, in Antl and in Phase II of Ant2 the pheromone
trail of each arc is updated in two steps according to:

i) Tpq -= (1- P)qu

1) Tpq = Tpq + p X ATpq; where A7y, = L
(Cpq { > ipq’@})
(p,g)€A keK

5 Computational experiments

In this section we report on the results obtained when applying the methodology described in the
previous sections to the urban waste collection problem in Sant Boi de Llobregat, a municipality
with over 80,000 inhabitants in the metropolitan area of Barcelona. We also compare the routes
that we generate with the ones that were previously used for urban waste collection in the
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municipality with the provided data. So far, the person in charge of the design of the routes
used a combination of experience and intuition to do this task.

The road/street map of Sant Boi de Llobregat is depicted in Figure 3. This map results in
a mixed graph with 777 vertices, 504 edges and 715 arcs. Required links are associated with
roads where there exist collection containers. Collection containers are located on the sidewalks
next to the roads in designated areas surrounded by a small border. Occasionally, in a double-
direction road only one of the sidewalks is appropriate for locating the container (the other one
might be too narrow, or may have trees, traffic signals, fences, etc. that do not make it possible
to locate the container). Thus, it is possible that a road can be traversed in both directions
(defining an edge of the graph), but can only be used (serviced) in one of the two directions
for collection purposes (defining a required arc). In particular, there are 220 required edges and
459 arcs. Required links define a subgraph with 72 strongly connected components. The total
length of required links is 55,993 m.

Figure 3: Map of Sant Boi de Llobregat

As explained in the previous sections, forbidden turns imply important constraints for defin-
ing feasible routes. These limitations are imposed not only due to traffic regulations but also,
when the roads are narrow, because the size of the trucks make it impossible to make the turn.
The map of the city contains 4150 turns, out of which 1316 are forbidden. The vast majority
of forbidden turns (1008) are U-turns, whereas 308 forbidden turns correspond to turns that
“connect” two different arcs/edges.
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Two indicators (closely related between them) that are typically used to measure demand
of waste collection are the number of inhabitants and the cubic meters per required link. In
Sant Boi de Llobregat the average number of inhabitants per day per required link is 109.24
(being one and 939 the minimum and maximum values, respectively) with a total of 73,917.
The remaining 6000 inhabitants in the census of Sant Boi live in residential non-urban areas
and are not included in the urban waste collection program. The average number of cubic meters
of waste per day per required link after compacting is 0,182 (the minimum and maximum are
0.002 and 1.565, respectively), with a total of 123,196.

The municipality owns 5 trucks of the same type, with a capacity of 25 cubic meters each.
Broadly speaking this means that the capacity of each truck permits to collect the daily waste of
15,000 inhabitants. One characteristic of waste is its high compacting factor. This means that
its volume in the container is considerably reduced when moved to the track by just pressing
the waste with an appropriate device of the truck. For the trucks in Sant Boi this factor is 1/6.

Two different versions of the ants heuristic described in Section 4 have been implemented.
The two heuristics only differ in the construction phase. In the first one, denoted NN, the
construction phase is the Nearest Neighbor heuristic of Algorithm 1, whereas the construction
phase of the second heuristic, denoted NI, is the Nearest insertion heuristic of Algorithm 2. The
values of the parameters in the ants heuristic are the following: o = 0.5, 6 = 0.5 and p = 0.9.
The total number of iterations has been fixed to 1000. All programs have been coded in C++
and the programs have been run on a Pentium IV, 3.2 Ghz and 512 Mb of RAM.

The results of the best solutions found with each heuristic are depicted in Table 1. The
lengths of each of the five routes of each solution are under the columns “turn constraints”.
Columns “inhabitants” and “m3”, respectively give the number of inhabitants served and the
collected amount of waste after compacting, in m3, of each of the routes of the best solutions
found. As can be seen, the NI heuristic gives the best results since the total length of the
obtained routes is a %3.83 smaller that with the NN heuristic. The results of both heuristics
allow to evaluate the increase in the actual costs of the routes due to forbidden turn constrains.
In Table 1, for each heuristic, the column under “no turn constraint” gives the length of the
routes when they service the same set of required links but without the turn constraints. When
no forbidden turn constraints are imposed, the total length of the five routes obtained with the
N1 heuristic reduces from 93,561.00 m to 90,494.38 m. This supposes an increase of 3.38% on
the total length of the routes due to forbidden turns. When the NN heuristic is used the total
length of the routes reduces from 97,294.25 m to 92,903.51 m, resulting in a percent increase on
the total length of the routes due to forbidden turns of 4.73. Thus, these percentages represent
the marginal costs of forbidden turn constraints, that cannot be avoided.

The obtained results can also be appreciated in Figures 4 and 5 that, respectively, show
graphically the behavior of the NN and NI heuristics both without forbidden turns and with
forbidden turns. Both figures depict the value of the best solution known so far in terms of the
number of iterations. It is easy to appreciate that both with and without turn constraints, the
NI outperforms the NN heuristic, not only in that it provides a better quality solution at the
end of the heuristic, but also in that the best known solution over all the iterations is attained
at an earlier stage of the heuristic.

Table 2 gives the required cputimes. As can be seen, the required cputimes of both NN and
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NI are considerably smaller when forbidden turns constraints are posed. This is due to the fact
that when such constraints are not required, there are many more possibilities to evaluate at

Table 2: Comparison of cputimes

Nearest Neighbor construction phase Nearest Insertion construction phase
no turn turn inhabitants m3 no turn turn inhabitants m3
constraints | constraints constraints | constraints
Route 1 9825.975 19971.186 14808 24.680 9413.583 18834.308 14213 23.688
Route 2 18723.989 21064.067 14464 24.107 17981.470 20003.835 14872 24.787
Route 3 24933.970 21641.083 14956 24.927 24166.987 21149.188 14917 24.862
Route 4 15404.073 10598.374 14776 24.627 15771.404 10384.054 14947 24.912
Route 5 24015.505 24019.530 14913 24.855 23210.936 23189.850 14968 24.947
Total 92903.511 97294.241 73917 123.196 90494.379 93561.000 73917 123.196
Table 1: Results of the five routes
Nearest Neighbor Nearest Insertion
no turn turn no turn turn
constraints | constraints constraints | constraints
Thest 16011.49 13030.75 377.86 14824.27
Tiotal 25095.18 26249.97 37397.90 37448.17

each iteration. If we compare the Nearest Neighbor strategy with the Nearest Insertion strategy,

since the computational burden per move is smaller in NN than in NI, the total time with the
NN heuristic is smaller than that of the NI heuristic, both with and without turn constraints.
However, the cputime needed to obtain the best solution is much smaller with NN than with
NI when forbidden turns constraints are posed, whereas without such constraints the time of

NN is slightly better than that of N1.
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Nearest Insertion
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102000.00 -
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Figure 4: Evolution of best value without U-turns
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Figure 5: Evolution of best value with U-turns

The routes that were used so far for urban waste collection in Sant Boi had an average length
of 30,000 m each, with a total length of approximately 150,000 m. Thus, the routes that we
obtain suppose a reduction on the total length of 35% and 37% for NN and NI, respectively.
Note that that these reduction percentages amount to more than 17,000 Km per year.

One factor that allows to evaluate the quality of the obtained routes is the total length of non-
required links in the obtained solutions. For the NN heuristic this value is 97,294 — 55,993 =
41,301 m, which represents a 42.44% of the total length of the routes, whereas for the NI
heuristic this value is 93,561 — 55,993 = 37,568 m, which represents a 40.15% of the total
length of the routes. These percentages are indeed much smaller than the 62.67% corresponding
to the 150,000 — 55,993 = 94,007 m of the original routes. Note that these figures represent
considerable reductions in the total length of the non- required links with respect to the original
routes of 56.04% and 60.04% for NN and NI, respectively.

Given that the fleet that works in waste collection is fixed, the economic impact derived from
this reduction must be associated to operating costs. Two main sources of operating costs are
reduced: the first one is related to fuel consumption, derived from a yearly reduction of 22,000
km to collect waste. The second one is the availability of additional time from truck workers.
Each truck is equipped with a driver and two operators. The additional time of the personnel
can be used for other tasks of the municipality (as, for instance, maintenance and sweeping of
streets).

We must, however, point out that there are additional types of benefits, difficult to quantify
currently, derived from this considerable reduction on the length of the routes. The first and
most important one is the reduction in the night acoustic contamination. The reduction in the
length of the routes indicates that there will also be a considerable reduction on the total time
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that the trucks will be collecting waste and, therefore, fewer inhabitants that will be disturbed
by the noise of the trucks.

6 Conclusions

In this paper we have presented the methodology that we have applied for the solution of an ur-
ban waste collection problem in Sant Boi de Llobregat within the metropolitan area of Barcelona
(Spain). The nature of the problem is that of an arc routing one, but by means of a transfor-
mation it has been modeled in terms of an arc routing problem with additional constraints for
forbidding some turns. Solutions to the problem have been obtained with heuristics based on
ant colonies and different neighborhood strategies have been compared.

As reported in the Computational Experiments Section The obtained solutions improve
considerably the ones that have been used so far both in terms of the operating cost and of
acoustic contamination.

The applicability of the proposed procedures to real-life circumstances is subject to their
integration within support systems to aid planners in decision-making. It should be possible
to modify routes constantly to take into account changes on urban circulation. SIRUS [1], was
the software spplication designed in this case. The system provides a graphical tool to simplify
different tasks required by the managers as the location of collection areas, allocation of refuse
bins, routing, etc.
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