
Bounded single-machine parallel-batch scheduling

with release dates and rejection

Lingfa Lu1, T.C.E. Cheng2,∗, Jinjiang Yuan1, Liqi Zhang1

1. Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, PR China
2. Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong

Abstract. We consider the bounded single-machine parallel-batch scheduling problem with release
dates and rejection. A job is either rejected, in which case a certain penalty has to be paid, or accepted
and then processed on the machine. The objective is to minimize the sum of the makespan of the ac-
cepted jobs and the total penalty of the rejected jobs. When the jobs have identical release dates, we
present a polynomial-time algorithm. When the jobs have a constant number of release dates, we give
a pseudo-polynomial-time algorithm. For the general problem, we provide a 2-approximation algorithm
and a polynomial-time approximation scheme.

Keywords: scheduling; parallel-batch; rejection penalty; polynomial-time approximation scheme

1 Introduction

The bounded single-machine parallel-batch scheduling problem with release dates and rejection
can be described as follows. There are n jobs J1, . . . , Jn and a single machine that can process
jobs in batches. Each job Jj has a processing time pj , a release date rj and a rejection penalty
wj . A job Jj is either rejected, in which case a certain penalty wj has to be paid, or accepted
and then processed on the machine. In the bounded model, the machine can process up to b jobs
simultaneously as a batch. The processing time of a batch is defined as the longest processing
time of the jobs contained in it. The objective is to minimize the sum of the makespan of the
accepted jobs and the total penalty of the rejected jobs. Denote by W the total penalty of the
rejected jobs. Using the general notation for scheduling problems, the problem is denoted by
1|p-batch, b < n, rj |Cmax + W .

In the last decade there has been significant interest in scheduling problems with batching
considerations. The motivation for batching jobs is to gain in efficiency: it may be cheaper
and faster to process jobs in a batch than to process them individually. The fundamental
model of the parallel-batch scheduling problem was first introduced by Lee et al. [9] with the
restriction that the number of the jobs in each batch is bounded by a number b. This bounded
model is motivated by the burn-in operations in semiconductor manufacturing. Brucker et al.
[1] provided an extensive discussion of the unbounded version of the parallel-batch scheduling
problem. Recent developments on this topic can be found from the web site [2]. In addition, Liu
and Yu [11], Deng and Zhang [4], Lee and Uzsoy [10], and Liu et al. [12] presented new complexity

∗Corresponding author: T.C.E. Cheng. Email address: lgtcheng@polyu.edu.hk

1

This is the Pre-Published Version.

results and approximation algorithms for the parallel-batch scheduling problem subject to release
dates.

In the classical scheduling literature, all the jobs must be processed and no rejection is
allowed. However, in real applications, this may not be true. Due to limited resources, the
scheduler may have the option to reject some jobs. The machine scheduling problem with
rejection was first considered by Bartal et al. [3]. They studied the off-line version, as well as
the on-line version, of scheduling with rejection on identical parallel machines. The objective is
to minimize the sum of the makespan of the accepted jobs and the total penalty of the rejected
jobs. After that, the machine scheduling problem with rejection has received increasing research
attention. Seiden [14] presented an improved on-line algorithm if preemption is allowed for all
the jobs. Hoogeveen et al. [8] considered the off-line multi-processor scheduling problem with
rejection where preemption is allowed. Engels et al. [5] studied single-machine scheduling with
rejection to minimize the sum of the weighted completion times of the accepted jobs and the
total penalty of the rejected jobs. Epstein et al. [6] considered on-line scheduling of unit-time
jobs with rejection to minimize the total completion time.

For the problem 1|p-batch, b = ∞, rj |Cmax + W , Lu et al. [13] presented an NP-hardness
proof, a 2-approximation algorithm, and a fully polynomial-time approximation scheme. In this
paper we consider the scheduling problem 1|p-batch, b < n, rj |Cmax + W . Brucker et al. [1]
showed that 1|p-batch, b < n, rj |Cmax is strongly NP-hard. Thus 1|p-batch, b < n, rj |Cmax + W
is strongly NP-hard, too, and so has no fully polynomial-time approximation scheme if P6=NP.
Liu and Yu [11] showed that 1|p-batch, b < n, rj |Cmax is binary NP-hard even when there are
two distinct release dates. This means that even when the jobs have a constant number of
release dates, 1|p-batch, b < n, rj |Cmax + W has no polynomial-time algorithm if P6=NP.

The main results in this paper are as follows. When the jobs have identical release dates,
we present a polynomial-time algorithm. When the jobs have a constant number of release
dates, we give a pseudo-polynomial-time algorithm. For the general problem, we provide a
2-approximation algorithm and a polynomial-time approximation scheme.

2 Exact algorithms

In this section we consider two special cases: (1) the case with identical release dates, and (2) the
case with k distinct release dates, where k is a fixed positive integer. We provide a polynomial
time algorithm for the first case and a pseudo-polynomial time algorithm for the second case.

2.1 The case with identical release dates

Assume that rj = r for j = 1, · · · , n. For the bounded parallel-batch scheduling problem to min-
imize the makespan, which can be denoted by 1|p-batch, b < n|Cmax, it can be solved optimally
(see Lee and Uzsoy [10]) by the full batch longest processing time rule (FBLPT-rule).

FBLPT-rule:

Step 1: Index the jobs such that p1 ≥ · · · ≥ pn.
Step 2. Assign all the jobs to batches in increasing order of their indexes such that each

batch contains exactly b jobs apart from the last batch.

2

Step 3. Sequence the batches in an arbitrary order.

By the optimality of the FBLPT-rule for 1|p-batch, b < n|Cmax, we have the following lemma.

Lemma 2.1.1. There exists an optimal schedule for 1|p-batch, b < n, rj = r|Cmax + W in
which the accepted jobs are assigned to the machine by the FBLPT-rule.

Assume that the jobs have been indexed such that p1 ≥ · · · ≥ pn. Let Aj(a) be the optimal
value of the objective function satisfying the following conditions: (1) the jobs in consideration
are J1, · · · , Jj , (2) Jj is accepted, and (3) the number of accepted jobs among J1, · · · , Jj is exactly
a. Similarly, let Rj(a) be the optimal value of the objective function satisfying the following
conditions: (1) the jobs in consideration are J1, · · · , Jj , (2) Jj is rejected, and (3) the number of
accepted jobs among J1, · · · , Jj is exactly a. We distinguish four cases in the following discussion.

Case 1. Both Jj−1 and Jj are rejected.

Since Jj is rejected, the number of accepted jobs among J1, · · · , Jj−1 is still a. Thus, we have
Rj(a) = Rj−1(a) + wj since Jj−1 is rejected.

Case 2. Jj−1 is accepted and Jj is rejected.

Similar to Case 1, we have Rj(a) = Aj−1(a) + wj .

Case 3. Jj−1 is rejected and Jj is accepted.

If a = kb + 1, then Jj has to start a new batch, and we have Aj(a) = Rj−1(a − 1) + pj . If
a 6= kb + 1, then Jj can be assigned to the last batch, and we have Aj(a) = Rj−1(a − 1). In
conclusion, we have

Aj(a) =

{
Rj−1(a− 1) + pj if a = kb + 1;
Rj−1(a− 1) otherwise.

Case 4. Both Jj−1 and Jj are accepted.

Similar to Case 3, we have

Aj(a) =

{
Aj−1(a− 1) + pj if a = kb + 1;
Aj−1(a− 1) otherwise.

Combining the above four cases, we can devise the following dynamic programming algo-
rithm DP1.

Dynamic programming algorithm DP1

The boundary conditions:

A1(1) = r + p1 and A1(a) = ∞ for any a 6= 1.

R1(0) = w1 and R1(a) = ∞ for any a 6= 0.

3

The recursive function:

Aj(a) =

{
min{Aj−1(a− 1) + pj , Rj−1(a− 1) + pj} if a = kb + 1;
min{Aj−1(a− 1), Rj−1(a− 1)} otherwise.

Rj(a) = min{Aj−1(a), Rj−1(a)}+ wj .

The optimal value is given by min{min{An(a), Rn(a)} : 0 ≤ a ≤ n}.

Theorem 2.1.2. DP1 solves 1|p-batch, b < n, rj = r|Cmax + W in O(n2) time.

Proof. The correctness of the algorithm is guaranteed by the above discussion. The
recursive function has at most O(n2) states. Each iteration takes a constant time to execute.
Hence the time complexity is bounded by O(n2). 2

2.2 The case with k distinct release dates

For the problem 1|p-batch, b < n, rj |Cmax with a constant number of release dates, Liu and Yu
[11] presented a pseudo-polynomial-time algorithm. By extending their algorithm, we present the
following pseudo-polynomial-time algorithm for 1|p-batch, b < n, rj |Cmax + W with a constant
number of release dates.

Assume that the jobs have been indexed such that p1 ≥ · · · ≥ pn. Let R1, R2, · · · , Rk with
R1 < R2 < · · · < Rk be the k distinct release dates. We divide [R1,+∞) into k time intervals
[R1, R2), [R2, R3), · · · , [Rk, Rk+1), where Rk+1 = +∞. Let fj(s1, · · · , sk; a1, · · · , ak; l1, · · · , lk;w)
be the optimal value of the objective function satisfying the following conditions: (1) The jobs
in consideration are J1, · · · , Jj . (2) The first batch starting in [Ri, Ri+1) starts at time si. If
no batch starts in [Ri, Ri+1), then we set si = +∞. (3) The last batch starting in [Ri, Ri+1)
contains ai jobs. If no batch starts in [Ri, Ri+1), then we set ai = b. (4) The total length of the
batches starting in [Ri, Ri+1) is li. If no batch starts in [Ri, Ri+1), then we set li = 0. (5) The
total penalty of rejected jobs is exactly w. We distinguish two cases in the following discussion.

Case 1: Jj is rejected.

Since Jj is rejected, we have fj(s1, · · · , sk; a1, · · · , ak; l1, · · · , lk;w) = fj−1(s1, · · · , sk; a1, · · · , ak;
l1, · · · , lk;w − wj) + wj .

Case 2: Jj is accepted.

Given a state vector (s1, · · · , sk; a1, · · · , ak; l1, · · · , lk;w), we assume that sl = max{si : si 6=
+∞}. Let hi(j) be the optimal objective value under the constraint that the batch contain-
ing Jj starts in [Ri, Ri+1), where Ri ≥ rj and i ≤ l. If ai = 1 and i < l, then Jj has to
start a new batch in [Ri, Ri+1) and this does not increase the makespan of the accepted jobs
since i < l. Thus, we have hi(j) = fj−1(s1, · · · , sk; a1, · · · , ai−1, b, ai+1, · · · , ak; l1, · · · , li−1, li −
pj , li+1, · · · , lk;w). If ai = 1 and i = l, then Jj has to start a new batch in [Ri, Ri+1) and
this will increase the makespan of the accepted jobs by a length pj since i = l. Thus, we
have hi(j) = fj−1(s1, · · · , sk; a1, · · · , ai−1, b, ai+1, · · · , ak; l1, · · · , li−1, li − pj , li+1, · · · , lk;w) + pj .
If ai > 1, then Jj can be assigned in the last batch in [Ri, Ri+1). Thus, we have hi(j) =
fj−1(s1, · · · , sk; a1, · · · , ai−1, ai − 1, ai+1, · · · , ak; l1, · · · , lk;w). Furthermore, we also have

4

fj(s1, · · · , sk; a1, · · · , ak; l1, · · · , lk;w) = min{hi(j) : Ri ≥ rj and 1 ≤ i ≤ l},
where

hi(j) =





fj−1(s1, · · · , sk; a1, · · · , ai−1, b, ai+1, · · · , ak; l1, · · · , li−1, li − pj , li+1, · · · , lk;w)
if ai = 1 and i < l;

fj−1(s1, · · · , sk; a1, · · · , ai−1, b, ai+1, · · · , ak; l1, · · · , li−1, li − pj , li+1, · · · , lk;w) + pj

if ai = 1 and i = l;
fj−1(s1, · · · , sk; a1, · · · , ai−1, ai − 1, ai+1, · · · , ak; l1, · · · , lk;w)

if ai > 1.

Combining the above two cases, we design the following dynamic programming algorithm
DP2.

Dynamic programming algorithm DP2

The boundary conditions:

Given a state vector (s1, · · · , sk; a1, · · · , ak; l1, · · · , lk;w), we assume that sl = max{si :
si 6= +∞}. We define f0(s1, · · · , sk; b, · · · , b; 0, · · · , 0; 0) = sl, and for any otherwise cases,
f0(s1, · · · , sk; a1, · · · , ak; l1, · · · , lk;w) = +∞.

The recursive function:

fj(s1, · · · , sk; a1, · · · , ak; l1, · · · , lk;w) = min{fj−1(s1, · · · , sk; a1, · · · , ak; l1, · · · , lk;w − wj) +
wj , min{hi(j) : Ri ≥ rj and 1 ≤ i ≤ l}}, where

hi(j) =





fj−1(s1, · · · , sk; a1, · · · , ai−1, b, ai+1, · · · , ak; l1, · · · , li−1, li − pj , li+1, · · · , lk;w)
if ai = 1 and i < l;

fj−1(s1, · · · , sk; a1, · · · , ai−1, b, ai+1, · · · , ak; l1, · · · , li−1, li − pj , li+1, · · · , lk;w) + pj

if ai = 1 and i = l;
fj−1(s1, · · · , sk; a1, · · · , ai−1, ai − 1, ai+1, · · · , ak; l1, · · · , lk;w)

if ai > 1.

The optimal value is given by min{fn(s1, · · · , sk; a1, · · · , ak; l1, · · · , lk;w)}.

Theorem 2.2.1. DP2 solves 1|p-batch, b < n, rj ∈ {Ri : 1 ≤ i ≤ k}|Cmax + W in
O(nkbkpk−1

1 (
∑

wj)(
∑

pj)k) time.

Proof. The correctness of the algorithm is guaranteed by the above discussion. Clearly,
we have 1 ≤ ai ≤ b, 0 ≤ li ≤

∑
pj and 0 ≤ w ≤ ∑

wj . Furthermore, if some batch starts in
[Ri, Ri+1) for i = 1, · · · , k, then we have s1 = R1 and Ri ≤ si < min{Ri + p1, Ri+1}. Thus, the
recursive function has at most O(nbkpk−1

1 (
∑

wj)(
∑

pj)k) states. Each iteration takes an O(k)
time to execute. Hence the total running time is bounded by O(nkbkpk−1

1 (
∑

wj)(
∑

pj)k). 2

5

3 Approximation algorithms

In this section we present a 2-approximation algorithm and a polynomial-time approximation
scheme for 1|p-batch, b < n, rj |Cmax + W .

3.1 A 2-approximation algorithm

Assume that S is a set of jobs. We use p(S) = maxJj∈S pj and w(S) =
∑

Jj∈S wj to denote the
processing time and the total rejection penalty of S, respectively. We propose a 2-approximation
algorithm for the considered problem.

Approximation algorithm A

Step 1. For each t ∈ {rj : j = 1, . . . , n}, we divide the jobs into two sets of jobs such that
S1(t) = {Jj : rj ≤ t} and S2(t) = {Jj : rj > t}.

Step 2. Setting rj = 0 for each Jj ∈ S1(t), we obtain a new instance I(t). Apply algorithm
DP1 to the instance I(t). Let B1, · · · , Bk be the batches of the accepted jobs obtained from
DP1. Process B1, · · · , Bk from time t in an arbitrary order on the machine and reject all the
other jobs. The resulting schedule for the original instance is denoted by π(t).

Step 3. Let Z(t) be the value of the objective function for each π(t). Among all the sched-
ules obtained above, select the one with the minimum Z(t) value. 2

Let π be the schedule obtained by the approximation algorithm A. Let Z and Z∗ be the
objective values of the schedule π and an optimal schedule π∗, respectively.

Theorem 3.1.1. Z ≤ 2Z∗ and the bound is tight.

Proof. Let A∗ and R∗ be the sets of accepted and rejected jobs in π∗, respectively. Let
r∗ = max{rj : Jj ∈ A∗}. By the definition of r∗, we have S2(r∗) = {Jj : rj > r∗} ⊆ R∗. Then
we have Z∗ ≥ r∗ + w(S2(r∗)). Apply algorithm DP1 to the instance I(r∗). Let B1, · · · , Bk be
the batches of accepted jobs and let R be the set of rejected jobs obtained from DP1. Clearly,
we also have Z∗ ≥ Z(r∗)− r∗ = p(B1) + · · ·+ p(Bk) + w(R). Thus, we have

Z ≤ Z(r∗) = r∗ + p(B1) + · · ·+ p(Bk) + w(R) + w(S2(r∗)) ≤ 2Z∗.

To show that the bound is tight, we consider the following instance with three jobs: Let
b = 1. (r1, p1, w1) = (0, 1, 2), (r2, p2, w2) = (0, 1, 0) and (r3, p3, w3) = (1, 0, 2). It is easy to verify
that Z(0) = p1 + w2 + w3 = 3 and Z = Z(1) = 1 + p1 + p3 + w2 = 2. However, the optimal
schedule is to accept J1, J3 and reject J2, with J1 starting processing at time 0 followed by J3.
That is, Z∗ = 1. Thus, we have Z = 2 = 2Z∗. 2

3.2 A polynomial-time approximation scheme

Let Z and Z∗ be the objective values of the approximation algorithm A and an optimal schedule
π∗, respectively. By Theorem 3.1.1, we have Z∗ ≤ Z ≤ 2Z∗. For any job Jj with wj > Z, Jj

6

must be accepted in π∗. Otherwise, we have Z∗ ≥ wj > Z ≥ Z∗, a contradiction. Similarly, for
any job Jj with rj > Z or pj > Z, Jj must be rejected in π∗. We modify rj , pj and wj such
that rj = min{rj , Z}, pj = min{pj , Z} and wj = min{wj , Z}. Clearly, this does not change the
optimal objective value. Thus, we can assume that max{rj , pj , wj} ≤ Z for each j = 1, · · · , n.
Now, we propose a polynomial-time approximation scheme Aε for this problem.

Polynomial-time approximation scheme Aε

Step 1. For any ε > 0, set δ = εZ and M = εZ
2n . Given an instance I, we define a new

instance I ′ by rounding rj , pj and wj in I such that r′j = b rj

δ cδ, p′j = b pj

M cM and w′j = bwj

M cM ,
for j = 1, · · · , n.

Step 2. Apply algorithm DP2 to the instance I ′ to obtain an optimal solution π∗(I ′) for the
instance I ′.

Step 3. Increase the starting time of each job in π∗(I ′) by δ and replace p′j and w′j by the
original pj and wj in π∗(I ′), respectively, for each j = 1, · · · , n, to obtain a feasible solution π
for the instance I.

Let Zε be the objective value of the schedule π obtained from Aε. We have the following
theorem.

Theorem 3.2.1 Algorithm Aε is a polynomial-time approximation scheme for the problem
1|p-batch, b < n, rj |Cmax + W . Specifically, Aε is a fully polynomial-time approximation scheme
when there are k distinct release dates in the original instance, where k is a fixed positive integer.

Proof. Let Z∗(I ′) be the optimal objective value of the schedule π∗(I ′). Clearly, we have
Z∗(I ′) ≤ Z∗. Increase the starting time of each job in π∗(I ′) by δ ≤ 2εZ∗, which increases
the objective value by at most 2εZ∗. Replace p′j and w′j by pj and wj , respectively, for each
j = 1, · · · , n. It is easy to see that we obtain a feasible schedule for the instance I. Thus, we
have

Zε ≤ Z∗(I ′) + 2εZ∗ +
n∑

j=1

(pj − p′j) +
n∑

j=1

(wj − w′j) ≤ Z∗ + 2εZ∗ + nM + nM ≤ (1 + 4ε)Z∗.

Since rj ≤ Z, there are at most 1
ε +1 distinct release dates in I ′. Since pj ≤ Z for j = 1, · · · , n,

we have
∑n

j=1b pj

M c ≤ 2n
ε

∑n
j=1

pj

Z ≤ 2n2

ε . Similarly, we have
∑n

j=1bwj

M c ≤ 2n
ε

∑n
j=1

wj

Z ≤
2n2

ε . Thus, the time complexity of DP2 (also Aε) is O(nkbkpk−1
1 (

∑
wj)(

∑
pj)k) = O(n(1

ε +
1)b

1
ε
+1(2n2

ε)
2
ε
+2), confirming that algorithm Aε is a polynomial-time approximation scheme.

Specifically, if there are k distinct release dates in the orginal instance I, then the rounding
stance I ′ has at most k distinct release dates. Thus, the time complexity of DP2 (also Aε) is
O(nkbkpk−1

1 (
∑

wj)(
∑

pj)k) = O(nkbk(2n2

ε)2k). That is, Aε is a fully polynomial-time approxi-
mation scheme when there are k distinct release dates in the original instance. 2

7

Acknowledgments

This research was supported in part by the Research Grants Council of Hong Kong under grant
number N-PolyU502/07. Yuan and Lu were also supported in part by grants NSFC (10671183)
and NFSC-RGC (70731160633).

References

[1] P. Brucker, A. Gladky, H. Hoogeveen, M.Y. Kovalyov, C.N. Potts, S.L. van de Velde,
Scheduling a batching machine. Journal of scheduling 1, 31-54, 1998.

[2] P. Brucker, S. Knust, Complexity results for scheduling problem,
http://www.mathematik.uniosnabrueck.de/reseach/OR/class/2007.

[3] Y. Bartal, S. Leonardi, A. M. Spaccamela, J. Sgall, L. Stougie, Multiprocessor scheduling
with rejection. SIAM Journal on Discrete Mathematics 13, 64-78, 2000.

[4] X. Deng, Y.Z. Zhang, Minimizing mean response time for batch processing systems. Lecture
Notes on Computer Science 1627, 231-240, 1999.

[5] D.W. Engels, D.R. Karger, S.G. Kolliopoulos, S. Sengupta, R.N. Uma, J. Wein, Techniques
for scheduling with rejection. Journal of Algorithms 49, 175-191, 2003.

[6] L. Epstein, J. Noga, G.J. Woeginger, On-line scheduling of unit time jobs with rejection:
minimizing the total completion time. Operations Research Letters 30, 415-420, 2002.

[7] R.L. Graham, E.L. Lawer, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and ap-
proximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Math-
ematics 5, 1-15, 1979.

[8] H. Hoogeveen, M. Skutella, G.J. Woeginger, Preemptive scheduling with rejection. Mathe-
matical Programming 94, 361-374, 2003.

[9] C.-Y. Lee, R. Uzsoy, L.A. Martin-Vega, Efficient algorithms for scheduling semiconductor
burn-in operations. Opereations Research 40, 764-775, 1992.

[10] C.-Y. Lee, R. Uzsoy, Minimizing makespan on a single batch processing machine with
dynamic job arrivals. International Journal of Production Research 37, 219-236, 1999.

[11] Z.H. Liu, W.C. Yu, Scheduling one batch processor subject to job release dates. Discrete
Applied Mathematics 105, 129-136, 2000.

[12] Z.H. Liu, J.J. Yuan, T.C.E. Cheng, On scheduling an unbounded batch machine. Operations
Research Letters 31, 42-48, 2003.

[13] L.F. Lu, L.Q. Zhang, J.J. Yuan, 2008. The unbounded parallel batch machine scheduling
with release dates and rejection to minimize makespan. Theoretical Computer Science 396,
283-289.

[14] S. Seiden, Preemptive multiprocessor scheduling with rejection. Theoretical Computer Sci-
ence 262, 437-458, 2001.

8

